

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, QEI, POR, PWM, WDT
Number of I/O	15
Program Memory Size	12KB (12K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj12mc201-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33FJ12MC201/202 PRODUCT FAMILIES

The device names, pin counts, memory sizes, and peripheral availability of each device are listed in Table 1. The following pages show their pinout diagrams.

TABLE 1: dsPIC33FJ12MC201/202 CONTROLLER FAMIL	IES
--	-----

		ry				Re	emapp	able Pe	eriphera	als						
Device	Pins	Program Flash Memo (Kbyte)	RAM (Kbyte)	Remappable Pins	16-bit Timer	Input Capture	Output Compare Standard PWM	Motor Control PWM	Quadrature Encoder Interface	UART	External Interrupts ⁽³⁾	SPI	10-Bit/12-Bit ADC	I ² C TM	I/O Pins	Packages
dsPIC33FJ12MC201	20	12	1	10	3(1)	4	2	4ch ⁽²⁾ 2ch ⁽²⁾	1	1	3	1	1ADC, 4 ch	1	15	PDIP SOIC SSOP
dsPIC33FJ12MC202	28	12	1	16	3(1)	4	2	6ch ⁽²⁾ 2ch ⁽²⁾	1	1	3	1	1ADC. 6 ch	1	21	SPDIP SOIC SSOP QFN

Note 1: Only two out of three timers are remappable.

2: Only PWM fault inputs are remappable.

3: Only two out of three interrupts are remappable.

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION

2.2.1 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

2.3 CPU Logic Filter Capacitor Connection (VCAP)

A low-ESR (< 5 Ohms) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD, and must have a capacitor between 4.7 μ F and 10 μ F, 16V connected to ground. The type can be ceramic or tantalum. Refer to **Section 24.0 "Electrical Characteristics"** for additional information.

The placement of this capacitor should be close to the VCAP. It is recommended that the trace length not exceed one-quarter inch (6 mm). Refer to **Section 21.2** "**On-Chip Voltage Regulator**" for details.

2.4 Master Clear (MCLR) Pin

The $\overline{\text{MCLR}}$ pin provides for two specific device functions:

- Device Reset
- Device programming and debugging

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor C, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations.

Place the components shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

ote 1: $R \le 10 \ k\Omega$ is recommended. A suggested starting value is $10 \ k\Omega$ Ensure that the MCLR pin VIH and VIL specifications are met.

2: $\underline{R1} \leq 470\Omega$ will limit any current flowing into \overline{MCLR} from the external capacitor C, in the event of \overline{MCLR} pin breakdown, due to Electrostatic Discharge (ESD) or <u>Electrical</u> Overstress (EOS). Ensure that the \overline{MCLR} pin VIH and VIL specifications are met.

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the dsPIC33FJ12MC201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 4. "Program Memory" (DS70202) of the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).

The dsPIC33FJ12MC201/202 architecture features separate program and data memory spaces and buses. This architecture also allows the direct access of program memory from the data space during code execution.

4.1 Program Address Space

The program address memory space of the dsPIC33FJ12MC201/202 devices is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping as described in Section 4.6 "Interfacing Program and Data Memory Spaces".

User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

The memory map for the dsPIC33FJ12MC201/202 family of devices is shown in Figure 4-1.

FIGURE 4-1: PROGRAM MEMORY MAP FOR dsPIC33FJ12MC201/202 DEVICES

dsPIC33FJ12MC201/202

TABLE 4-13: UART1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	—	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISI	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	_	_	_	_	_	_				UART	Transmit Re	gister				xxxx
U1RXREG	0226	_	_	_	_	_	_	_				UART	Receive Re	gister				0000
U1BRG	0228		Baud Rate Generator Prescaler 0000															

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-14: SPI1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	_	SPISIDL	—	—	—	—			SPIROV	_		—		SPITBF	SPIRBF	0000
SPI1CON1	0242	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	_	_	_	_	_	_	—	_	_	_	_	FRMDLY	_	0000
SPI1BUF	0248							SPI1 Trans	mit and Re	ceive Buffer	Register							0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

5.4.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program one row of program Flash memory at a time. To do this, it is necessary to erase the 8-row erase page that contains the desired row. The general process is:

- 1. Read eight rows of program memory (512 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase the block (see Example 5-1):
 - a) Set the NVMOP bits (NVMCON<3:0>) to '0010' to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the page to be erased into the TBLPAG and W registers.
 - c) Write 0x55 to NVMKEY.
 - d) Write 0xAA to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.
- 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 5-2).

- 5. Write the program block to Flash memory:
 - a) Set the NVMOP bits to '0001' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 0x55 to NVMKEY.
 - c) Write 0xAA to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- 6. Repeat steps 4 and 5, using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG, until all 512 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 5-3.

EXAMPLE 5-1: ERASING A PROGRAM MEMORY PAGE

;	Set ı	ap NVMCOI	N for block erase operation		
		MOV	#0x4042, W0	;	
		MOV	W0, NVMCON	;	Initialize NVMCON
;	Init	pointer	to row to be ERASED		
		MOV	<pre>#tblpage(PROG_ADDR), W0</pre>	;	
		MOV	W0, TBLPAG	;	Initialize PM Page Boundary SFR
		MOV	<pre>#tbloffset(PROG_ADDR), W0</pre>	;	Initialize in-page EA[15:0] pointer
		TBLWTL	WO, [WO]	;	Set base address of erase block
		DISI	#5	;	Block all interrupts with priority <7
				;	for next 5 instructions
		MOV	#0x55, W0		
		MOV	W0, NVMKEY	;	Write the 55 key
		MOV	#0xAA, W1	;	
		MOV	W1, NVMKEY	;	Write the AA key
		BSET	NVMCON, #WR	;	Start the erase sequence
		NOP		;	Insert two NOPs after the erase
		NOP		;	command is asserted

dsPIC33FJ12MC201/202

EXAMPLE 5-2: LOADING THE WRITE BUFFERS

;	Set up NVMCO	N for row programming opera	ıti	ons
	MOV	#0x4001, W0	;	
	MOV	W0, NVMCON	;	Initialize NVMCON
;	Set up a poir	nter to the first program m	nem	nory location to be written
;	program memor	ry selected, and writes ena	ıbl	ed
	MOV	#0x0000, W0	;	
	MOV	W0, TBLPAG	;	Initialize PM Page Boundary SFR
	MOV	#0x6000, W0	;	An example program memory address
;	Perform the	TBLWT instructions to write	e t	the latches
;	0th_program_	word		
	MOV	#LOW_WORD_0, W2	;	
	MOV	<pre>#HIGH_BYTE_0, W3</pre>	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
;	lst_program_	word		
	MOV	#LOW_WORD_1, W2	;	
	MOV	#HIGH_BYTE_1, W3	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
;	2nd_program	_word		
	MOV	#LOW_WORD_2, W2	;	
	MOV	#HIGH_BYTE_2, W3	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
	•			
	•			
	•			
;	63rd_program	_word		
	MOV	#LOW_WORD_31, W2	;	
	MOV	#HIGH_BYTE_31, W3	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch

EXAMPLE 5-3: INITIATING A PROGRAMMING SEQUENCE

DISI	#5	; Block all interrupts with priority <7 ; for next 5 instructions
MOV	#0x55, W0	
MOV	W0, NVMKEY	; Write the 55 key
MOV	#0xAA, W1	;
MOV	W1, NVMKEY	; Write the AA key
BSET	NVMCON, #WR	; Start the erase sequence
NOP		; Insert two NOPs after the
NOP		; erase command is asserted

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE
bit 15							bit 8
Γ							
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
SFTACERR	DIV0ERR		MATHERR	ADDRERR	STKERR	OSCFAIL	_
bit 7							bit 0
Logond:							
R = Readable	hit	W = Writable	hit	U = Unimpler	nented hit read	1 as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15	NSTDIS: Inte	rrupt Nesting [Disable bit				
	1 = Interrupt r	nesting is disat	bled				
	0 = Interrupt r	nesting is enab					
bit 14	OVAERR: AC	cumulator A O	verflow I rap F	lag bit			
	0 = Trap was	not caused by	overflow of Accun	cumulator A			
bit 13	OVBERR: Ac	cumulator B C	verflow Trap F	lag bit			
	1 = Trap was	caused by ove	erflow of Accun	nulator B			
	0 = Trap was	not caused by	overflow of Ac	cumulator B			
bit 12	COVAERR: A	Accumulator A	Catastrophic C	Overflow Trap H	-lag bit		
	1 = Trap was 0 = Trap was	not caused by	catastrophic oven	overflow of Accumic	umulator A		
bit 11	COVBERR: A	Accumulator B	Catastrophic C	Overflow Trap I	-lag bit		
	1 = Trap was	caused by cat	astrophic over	flow of Accum	ulator B		
L:1 40	0 = Trap was	not caused by	catastrophic o	overflow of Acc	umulator B		
DIE TO	1 = Tran over	flow of Accum	ulator ∆				
	0 = Trap disal	bled					
bit 9	OVBTE: Accu	umulator B Ove	erflow Trap En	able bit			
	1 = Trap over 0 = Trap disal	flow of Accum bled	ulator B				
bit 8	COVTE: Cata	astrophic Overf	low Trap Enab	le bit			
	1 = Trap on c 0 = Trap disal	atastrophic ove bled	erflow of Accur	mulator A or B	enabled		
bit 7	SFTACERR:	Shift Accumula	ator Error Statu	ıs bit			
	1 = Math erro	r trap was cau r trap was not	sed by an inva	lid accumulato	or shift Ilator shift		
bit 6	DIV0ERR: Ar	ithmetic Error	Status bit				
	1 = Math erro 0 = Math erro	r trap was cau r trap was not	sed by a divide caused by a di	e by zero ivide by zero			
bit 5	Unimplemen	ted: Read as '	0'				
bit 4	MATHERR: A	Arithmetic Erro	Status bit				
	1 = Math erro	r trap has occu	urred				
h # 0	0 = Math erro	r trap has not					
DIT 3		Audress Error	rap Status bit				
	$0 = \text{Address} \epsilon$	error trap has r	not occurred				

REGISTER 10-14: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	—			RP1R<4:0>				
bit 15							bit 8		
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	—			RP0R<4:0>				
bit 7							bit 0		
Legend:									
R = Readable	bit W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value at I	POR	POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown							
bit 15-13	Unimplemen	Unimplemented: Read as '0'							
bit 12-8	RP1R<4:0>: I peripheral fun	Peripheral Outp ction numbers)	out Function i	s Assigned to F	RP1 Output Pir	h bits (see Table	10-2 for		
bit 7-5	Unimplemen	ted: Read as 'd)'						
bit 4-0	RP0R<4:0>: Peripheral Output Function is Assigned to RP0 Output Pin bits (see Table 10-2 for								

peripheral function numbers)

REGISTER 10-15: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP3R<4:0>		
bit 15		•					bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP2R<4:0>		
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable I	oit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at Pe	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP3R<4:0>:** Peripheral Output Function is Assigned to RP3 Output Pin bits (see Table 10-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP2R<4:0>:** Peripheral Output Function is Assigned to RP2 Output Pin bits (see Table 10-2 for peripheral function numbers)

14.1 Output Compare Modes

Configure the Output Compare modes by setting the appropriate Output Compare Mode (OCM<2:0>) bits in the Output Compare Control (OCxCON<2:0>) register. Table 14-1 lists the different bit settings for the Output Compare modes. Figure 14-2 illustrates the output compare operation for various modes. The user application must disable the associated timer when writing to the output compare control registers to avoid malfunctions.

Note: See Section 13. "Output Compare" in the "dsPIC33F/PIC24H Family Reference Manual" (DS70209) for OCxR and OCxRS register restrictions.

TABLE 14-1:	OUTPUT COMPARE MODES
-------------	-----------------------------

OCM<2:0>	Mode	OCx Pin Initial State	OCx Interrupt Generation
000	Module Disabled	Controlled by GPIO register	—
001	Active-Low One-Shot	0	OCx Rising edge
010	Active-High One-Shot	1	OCx Falling edge
011	Toggle Mode	Current output is maintained	OCx Rising and Falling edge
100	Delayed One-Shot	0	OCx Falling edge
101	Continuous Pulse mode	0	OCx Falling edge
110	PWM mode without fault protection	0, if OCxR is zero 1, if OCxR is non-zero	No interrupt
111	PWM mode with fault protection	0, if OCxR is zero 1, if OCxR is non-zero	OCFA Falling edge for OC1 to OC4

dsPIC33FJ12MC201/202

REGISTER 15-7: PxDTCON1: DEAD-TIME CONTROL REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DTBPS<1:0>				DTE	3<5:0>		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DTAF	PS<1:0>			DTA	<5:0>		
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable bit		U = Unimplemented bit, read		d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-14 DTBPS<1:0>: Dead-Time Unit B Prescale 11 = Clock period for Dead-Time Unit B is 10 = Clock period for Dead-Time Unit B is 01 = Clock period for Dead-Time Unit B is 00 = Clock period for Dead-Time Unit B is 00 = Clock period for Dead-Time Unit B is DTB<5:0>: Unsigned 6-bit Dead-Time Val DTAPS<1:0>: Dead-Time Unit A Prescale 11 = Clock period for Dead-Time Unit A is 10 = Clock period for Dead-Time Unit A is 01 = Clock period for Dead-Time Unit A is			e Select bits 8 Tcy 4 Tcy 2 Tcy Tcy ue for Dead-Ti e Select bits 8 Tcy 4 Tcy 2 Tcy 7 Cy	me Unit B bits			
bit 5-0	DTA<5:0>: U	nsigned 6-bit D	ead-Time Val	ue for Dead-Ti	me Unit A bits		

110	11.0	11.0								
0-0	0-0	0-0				SMD				
 bit 15		_	DISSON	DISSDO	WODE TO	OWI	bit 8			
bit to										
R/W-0) R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
SSEN ⁽²	2) CKP	MSTEN	-	SPRE<2:0>(3)	PPRE	<1:0> ⁽³⁾			
bit 7							bit 0			
Legend:										
R = Reada	able bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'				
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown			
bit 15-13	Unimplemen	ted: Read as '	0'							
bit 12	DISSCK: Dis	able SCKx pin	bit (SPI Maste	r modes only)						
	1 = Internal S	PI clock is disa PI clock is ena	abled, pin func bled	tions as I/O						
bit 11		able SDOx nin	hit							
bit II	1 = SDOx pin	is not used by	module; pin f	unctions as I/C)					
	0 = SDOx pin	is controlled b	y the module							
bit 10	MODE16: Wo	ord/Byte Comm	unication Sele	ect bit						
	1 = Communi	1 = Communication is word-wide (16 bits)								
hit 9	SMP: SPly D	ata Innut Samr	le Phase hit							
bit 0	Master mode									
	1 = Input data	a sampled at er	nd of data outp	out time						
	0 = Input data Slave mode:	a sampled at m	Iddle of data c	output time						
	SMP must be	cleared when	SPIx is used i	n Slave mode						
bit 8	CKE: SPIx C	lock Edge Sele	ct bit ⁽¹⁾							
	1 = Serial out	put data chang	es on transitio	on from active	clock state to Id	le clock state (see bit 6)			
bit 7		Put data chang	bit (Slove me	אר ווסח ומופ כונ אבא (2)	ock state to activ	e clock state (see bit 6)			
DIL 7	1 = SSx pin u	sed for Slave r	node	ue)/						
	0 = SSx pin n	ot used by mo	dule. Pin contr	olled by port f	unction.					
bit 6 CKP: Clock Polarity Select bit										
	1 = Idle state	for clock is a h	igh level; activ	ve state is a lov	w level					
bit 5	0 - Iule state	tor Mode Enab	le hit	e state is a hig	ii level					
1 = Master mode										
	0 = Slave mo	de								
Note 1:	The CKE bit is not	used in the Fra	amed SPI mod	des. Program f	this bit to '0' for t	the Framed SF	Pl modes			
	$(\Box \mathbf{K} \mathbf{V} \mathbf{E} \mathbf{N} = \bot).$									

- 2: This bit must be cleared when FRMEN = 1.
- 3: Do not set both Primary and Secondary prescalers to a value of 1:1.

19.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ12MC201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 17. "UART" (DS70188) of the *"dsPIC33F/PIC24H Family Reference Manual"*, which is available on the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33FJ12MC201/202 device family. The UART is a full-duplex asynchronous system that can communicate with peripheral devices, such as personal computers, LIN, and RS-232, and RS-485 interfaces. The module <u>also supports a hardware flow</u> control option with the UxCTS and UxRTS pins and also includes an IrDA[®] encoder and decoder.

The primary features of the UART module are:

- Full-Duplex, 8-bit or 9-bit Data Transmission through the UxTX and UxRX pins
- Even, Odd, or No Parity Options (for 8-bit data)
- · One or two stop bits
- Hardware flow control option with UxCTS and UxRTS pins
- Fully integrated Baud Rate Generator with 16-bit prescaler
- Baud rates ranging from 10 Mbps to 38 bps at 40 MIPS
- 4-deep First-In First-Out (FIFO) Transmit Data buffer
- 4-deep FIFO Receive Data buffer
- Parity, framing and buffer overrun error detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive interrupts
- · A separate interrupt for all UART error conditions
- · Loopback mode for diagnostic support
- Support for sync and break characters
- · Support for automatic baud rate detection
- IrDA[®] encoder and decoder logic
- 16x baud clock output for IrDA[®] support

A simplified block diagram of the UART module is shown in Figure 19-1. The UART module consists of these key hardware elements:

- Baud Rate Generator
- Asynchronous Transmitter
- · Asynchronous Receiver

FIGURE 19-1: UART SIMPLIFIED BLOCK DIAGRAM

REGISTER 19-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect 0 = Address Detect mode disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	1 = Parity error has been detected for the current character (character at the top of the receive FIFO)0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	1 = Framing error has been detected for the current character (character at the top of the receive FIFO)
	0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (read-only/clear-only)
	 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed. Clearing a previously set OERR bit (1 →0 transition) will reset the receiver buffer and the UxRSR to the empty state.
bit 0	URXDA: Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

Note 1: Refer to **Section 17. "UART"** (DS70188) in the *"dsPIC33F/PIC24H Family Reference Manual"* for information on enabling the UART module for transmit operation.

TABLE 24-31: QEI INDEX PULSE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended				
Param No.	Symbol	Characteristic ⁽¹⁾		Min	Max	Units	Conditions
TQ50	TqIL	Filter Time to Recognize Low, with Digital Filter		3 * N * Tcy		ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)
TQ51	TqiH	Filter Time to Recognize High, with Digital Filter		3 * N * Tcy	-	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)
TQ55	Tqidxr	Index Pulse Recognized to Position Counter Reset (ungated index)		3 Тсү	_	ns	—

Note 1: These parameters are characterized by similarity, but are not tested in manufacturing.

 Alignment of index pulses to QEA and QEB is shown for position counter Reset timing only. Shown for forward direction only (QEA leads QEB). Same timing applies for reverse direction (QEA lags QEB) but index pulse recognition occurs on falling edge.

TABLE	24-45: A	DC CONVERSION (12-BIT MC	DDE) TIM	ING RE	QUIREN	IENTS	
AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param No.	Symbol	Characteristic	Min. Typ ⁽²⁾ Max. Units Conditions				
		Clock	Paramete	ers ⁽¹⁾			
AD50	Tad	ADC Clock Period	117.6			ns	—
AD51	tRC	ADC Internal RC Oscillator Period	ns			—	
		Con	version R	ate			
AD55	tCONV	Conversion Time	—	14 Tad		ns	—
AD56	FCNV	Throughput Rate	—		500	Ksps	—
AD57	TSAMP	Sample Time	3.0 Tad			_	_
		Timir	ng Parame	ters	-		
AD60	tPCS	Conversion Start from Sample Trigger ⁽²⁾	2.0 Tad	_	3.0 Tad		Auto-convert trigger not selected
AD61	tpss	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2.0 Tad		3.0 Tad		—
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾	_	0.5 Tad		_	—
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽²⁾			20	μs	

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

2: These parameters are characterized but not tested in manufacturing.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS						
Dimension Limits		MIN	NOM	MAX			
Number of Pins	Z		28				
Pitch	е		1.27 BSC				
Overall Height	A	-	-	2.65			
Molded Package Thickness	A2	2.05	-	-			
Standoff §	A1	0.10	-	0.30			
Overall Width	E		10.30 BSC				
Molded Package Width	E1	7.50 BSC					
Overall Length	D	17.90 BSC					
Chamfer (Optional)	h	0.25	-	0.75			
Foot Length	L	0.40	-	1.27			
Footprint	L1	1.40 REF					
Lead Angle	Θ	0°	-	I			
Foot Angle	φ	0°	-	8°			
Lead Thickness	С	0.18	-	0.33			
Lead Width	b	0.31	-	0.51			
Mold Draft Angle Top	α	5°	-	15°			
Mold Draft Angle Bottom	β	5°	-	15°			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
	Dimension Limits	MIN	NOM	MAX	
Number of Pins	N 28				
Pitch	е		0.65 BSC		
Overall Height	A	0.80 0.90 1.0			
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Width	E	6.00 BSC			
Exposed Pad Width	E2	3.65	3.70	4.20	
Overall Length	D	6.00 BSC			
Exposed Pad Length	D2	3.65	3.70	4.20	
Contact Width	b	0.23	0.30	0.35	
Contact Length		0.50	0.55	0.70	
Contact-to-Exposed Pad		0.20	_	_	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105B

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3180 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-213-7830 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

05/02/11