

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

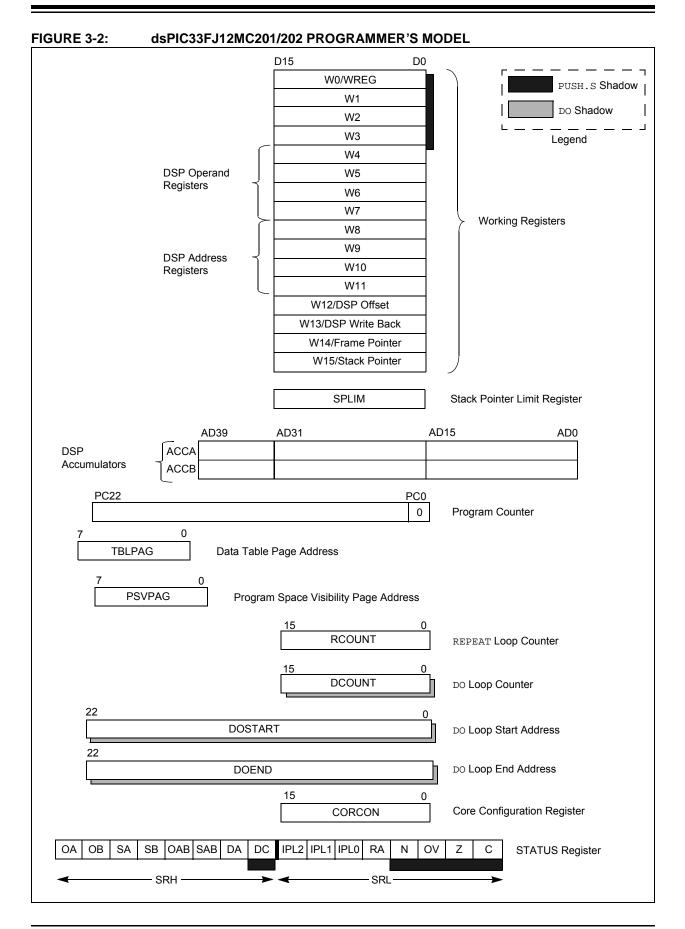
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

• **X** F

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I²C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, QEI, POR, PWM, WDT
Number of I/O	15
Program Memory Size	12KB (12K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj12mc201-i-p

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin Type	Buffer Type	PPS	Description					
INDX	Ι	ST	Yes	Quadrature Encoder Index Pulse input.					
QEA	I.	ST	Yes	Quadrature Encoder Phase A input in QEI mode.					
				Auxiliary Timer External Clock/Gate input in Timer mode.					
QEB	I	ST	Yes	Quadrature Encoder Phase A input in QEI mode.					
UPDN	0	CMOS	Yes	Auxiliary Timer External Clock/Gate input in Timer mode. Position Up/Down Counter Direction State.					
FLTA1	1	ST		PWM1 Fault A input.					
PWM1L1	Ó			PWM1 Low output 1					
PWM1H1	ŏ			PWM1 High output 1					
PWM1L2	0	_		PWM1 Low output 2					
PWM1H2	0	_	No	PWM1 High output 2					
PWM1L3	0	—		PWM1 Low output 3					
PWM1H3	0	—		PWM1 High output 3					
FLTA2		ST		PWM2 Fault A input.					
PWM2L1	0	—		PWM2 Low output 1					
PWM2H1	0	—	No	PWM2 High output 1					
PGED1	I/O	ST	No	Data I/O pin for programming/debugging communication channel 1.					
PGEC1	I	ST	No	Clock input pin for programming/debugging communication channel 1.					
PGED2	I/O	ST	No	Data I/O pin for programming/debugging communication channel 2.					
PGEC2	I.	ST	No	Clock input pin for programming/debugging communication channel 2.					
PGED3	I/O	ST	No	Data I/O pin for programming/debugging communication channel 3.					
PGEC3	I.	ST	No	Clock input pin for programming/debugging communication channel 3.					
MCLR	I/P	ST	No	Master Clear (Reset) input. This pin is an active-low Reset to the device.					
AVdd	Р	Р	No	Positive supply for analog modules. This pin must be connected at all times.					
AVss	Р	Р	No	Ground reference for analog modules.					
Vdd	Р	_	No	Positive supply for peripheral logic and I/O pins.					
Vcap	Р	_	No	CPU logic filter capacitor connection.					
Vss	Р		No	Ground reference for logic and I/O pins.					
VREF+	Ι	Analog	No	Analog voltage reference (high) input.					
Vref-	I	Analog	No	Analog voltage reference (low) input.					

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels PPS = Peripheral Pin Select Analog = Analog input O = Output

P = Power I = Input

4.6 Interfacing Program and Data Memory Spaces

The dsPIC33FJ12MC201/202 architecture uses a 24bit-wide program space and a 16-bit-wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the dsPIC33FJ12MC201/ 202 architecture provides two methods by which program space can be accessed during operation:

- Using table instructions to access individual bytes, or words, anywhere in the program space
- Remapping a portion of the program space into the data space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for lookups from a large table of static data. The application can only access the lsw of the program word.

4.6.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Page register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the MSb of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

For remapping operations, the 8-bit Program Space Visibility register (PSVPAG) is used to define a 16K word page in the program space. When the MSb of the EA is '1', PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike table operations, this limits remapping operations strictly to the user memory area.

Table 4-28 and Figure 4-7 show how the program EA is created for table operations and remapping accesses from the data EA.

	Access	Program Space Address						
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>		
Instruction Access	User	0		PC<22:1>		0		
(Code Execution)			0xx xxxx x	xxx xxx	x xxxx xxx0			
TBLRD/TBLWT	User	TBLPAG<7:0>		Data EA<15:0>				
(Byte/Word Read/Write)		0xxx xxxx xxxx xxxx xxxx						
	Configuration	TB	LPAG<7:0>	PAG<7:0> Data EA<15:0>				
		1	xxx xxxx	XXXX X	xxx xxxx xxxx			
Program Space Visibility	User	0 PSVPAG<7		<7:0> Data EA<14:0> ⁽¹⁾		0> ⁽¹⁾		
(Block Remap/Read)		0	XXXX XXXX	2	xxx xxxx xxxx	xxxx		

TABLE 4-28: PROGRAM SPACE ADDRESS CONSTRUCTION

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

8.1 CPU Clocking System

The dsPIC33FJ12MC201/202 devices provide seven system clock options:

- Fast RC (FRC) Oscillator
- FRC Oscillator with PLL
- Primary (XT, HS or EC) Oscillator
- Primary Oscillator with PLL
- Secondary (LP) Oscillator
- · Low-Power RC (LPRC) Oscillator
- FRC Oscillator with postscaler

8.1.1 SYSTEM CLOCK SOURCES

8.1.1.1 Fast RC

The Fast RC (FRC) internal oscillator runs at a nominal frequency of 7.37 MHz. User software can tune the FRC frequency. User software can optionally specify a factor (ranging from 1:2 to 1:256) by which the FRC clock frequency is divided. This factor is selected using the FRCDIV<2:0> (CLKDIV<10:8>) bits.

8.1.1.2 Primary

The primary oscillator can use one of the following as its clock source:

- XT (Crystal): Crystals and ceramic resonators in the range of 3 MHz to 10 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- HS (High-Speed Crystal): Crystals in the range of 10 MHz to 40 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- EC (External Clock): The external clock signal is directly applied to the OSC1 pin.

8.1.1.3 Secondary

The secondary (LP) oscillator is designed for low power and uses a 32.768 kHz crystal or ceramic resonator. The LP oscillator uses the SOSCI and SOSCO pins.

8.1.1.4 Low-Power RC

The Low-Power RC (LPRC) internal oscIllator runs at a nominal frequency of 32.768 kHz. It is also used as a reference clock by the Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

8.1.1.5 FRC

The clock signals generated by the FRC and primary oscillators can be optionally applied to an on-chip Phase-Locked Loop (PLL) to provide a wide range of output frequencies for device operation. PLL configuration is described in **Section 8.1.3 "PLL Configuration**".

The FRC frequency depends on the FRC accuracy (see Table 24-18) and the value of the FRC Oscillator Tuning register (see Register 8-4).

8.1.2 SYSTEM CLOCK SELECTION

The oscillator source used at a device Power-on Reset event is selected using Configuration bit settings. The oscillator Configuration bit settings are located in the Configuration registers in the program memory. (Refer to Section 21.1 "Configuration Bits" for further details.) The Initial Oscillator Selection Configuration bits, FNOSC<2:0> (FOSCSEL<2:0>), and the Primary Oscillator Mode Select Configuration bits, POSCMD<1:0> (FOSC<1:0>), select the oscillator source that is used at a Power-on Reset. The FRC primary oscillator is the default (unprogrammed) selection.

The Configuration bits allow users to choose among 12 different clock modes, shown in Table 8-1.

The output of the oscillator (or the output of the PLL if a PLL mode has been selected) Fosc is divided by 2 to generate the device instruction clock (FcY) and the peripheral clock time base (FP). FcY defines the operating speed of the device, and speeds up to 40 MHz are supported by the dsPIC33FJ12MC201/202 architecture.

Instruction execution speed or device operating frequency, FCY, is given by:

EQUATION 8-1: DEVICE OPERATING FREQUENCY

 $FCY = \frac{FOSC}{2}$

REGISTER 9-3: PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3							
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
—	—	—		—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	R/W-0	U-0	U-0	U-0	U-0
—	—	—	PWM2MD	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable	R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unl			iown	

bit 15-5 Unimplemented: Read as '0'

bit 4 PWM2MD: PWM2 Module Disable bit

1 = PWM2 module is disabled

0 = PWM2 module is enabled

bit 3-0 Unimplemented: Read as '0'

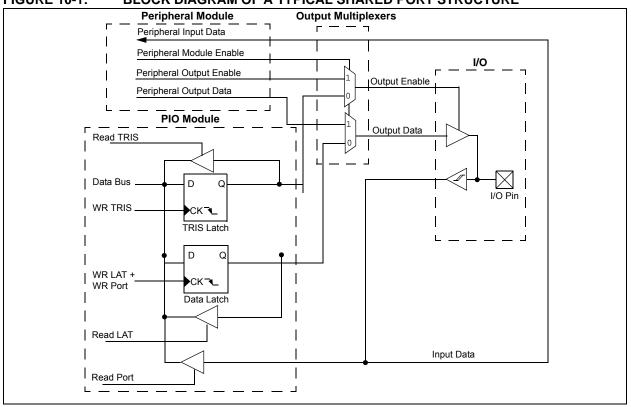
10.0 I/O PORTS

- Note 1: This data sheet summarizes the features of the dsPIC33FJ12MC201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 10.** "I/O Ports" (DS70193) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

All of the device pins (except VDD, VSS, MCLR, and OSC1/CLKI) are shared among the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

10.1 Parallel I/O (PIO) Ports

Generally a parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through," in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 10-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected.


When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. This means the corresponding LATx and TRISx registers and the port pin will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

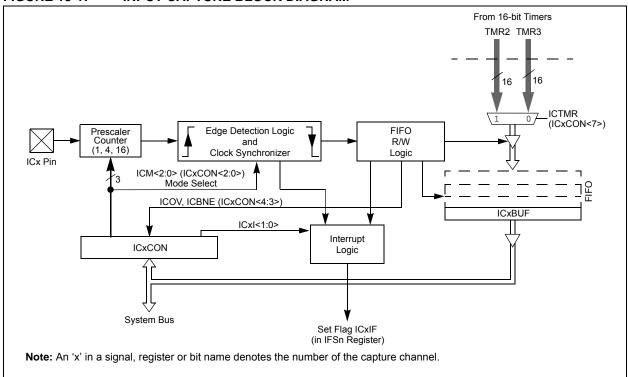
© 2007-2011 Microchip Technology Inc.

NOTES:

13.0 INPUT CAPTURE

- Note 1: This data sheet summarizes the features of the dsPIC33FJ12MC201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 12. "Input Capture" (DS70198) of the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The Input Capture module is useful in applications requiring frequency (period) and pulse measurement. The dsPIC33FJ12MC201/202 devices support up to eight input capture channels.


The Input Capture module captures the 16-bit value of the selected Time Base register when an event occurs at the ICx pin. The events that cause a capture event are listed below in three categories:

- 1. Simple Capture Event modes:
 - Capture timer value on every falling edge of input at ICx pin
 - Capture timer value on every rising edge of input at ICx pin
- 2. Capture timer value on every edge (rising and falling)
- 3. Prescaler Capture Event modes:
 - Capture timer value on every 4th rising edge of input at ICx pin
 - Capture timer value on every 16th rising edge of input at ICx pin

Each Input Capture channel can select one of two 16-bit timers (Timer2 or Timer3) for the time base. The selected timer can use either an internal or external clock.

Other operational features include:

- Device wake-up from capture pin during CPU Sleep and Idle modes
- · Interrupt on Input Capture event
- · 4-word FIFO buffer for capture values
 - Interrupt optionally generated after 1, 2, 3, or 4 buffer locations are filled
- Use of Input Capture to provide additional sources of external interrupts

FIGURE 13-1: INPUT CAPTURE BLOCK DIAGRAM

13.1 Input Capture Registers

REGISTER 13-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
	_	ICSIDL	_			_	_				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R-0, HC	R-0, HC	R/W-0	R/W-0	R/W-0				
ICTMR	ICI<	:1:0>	ICOV	ICBNE		ICM<2:0>					
bit 7							bit (
Legend:											
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own				
bit 15-14	Unimplemen	ted: Read as '	0'								
bit 13	ICSIDL: Inpu	t Capture Mod	ule Stop in Idle	e Control bit							
		1 = Input capture module will halt in CPU Idle mode									
				operate in CPU	Idle mode						
bit 12-8	-	ted: Read as '									
bit 7	ICTMR: Input Capture Timer Select bits 1 = TMR2 contents are captured on capture event										
		ntents are capt ntents are capt									
bit 6-5	ICI<1:0>: Sel	CI<1:0>: Select Number of Captures per Interrupt bits									
	10 = Interrupt 01 = Interrupt	t on every four t on every third t on every seco t on every capt	capture event	t							
bit 4	ICOV: Input C	Capture Overflo	w Status Flag	bit (read-only)							
		ture overflow o capture overflo									
bit 3	ICBNE: Input	Capture Buffe	r Empty Status	s bit (read-only)						
		ture buffer is n ture buffer is e		ast one more c	apture value c	an be read					
bit 2-0	ICM<2:0>: In	put Capture M	ode Select bits	3							
	(Rising 110 = Unuse 101 = Captur 100 = Captur 011 = Captur 010 = Captur 001 = Captur (ICI<1	g edge detect of d (module disa e mode, every e mode, every e mode, every e mode, every e mode, every	only, all other on bled) 16th rising ed 4th rising edg rising edge falling edge edge (rising a control interru	control bits are ge e	not applicable	eep or Idle mode .)					

14.1 Output Compare Modes

Configure the Output Compare modes by setting the appropriate Output Compare Mode (OCM<2:0>) bits in the Output Compare Control (OCxCON<2:0>) register. Table 14-1 lists the different bit settings for the Output Compare modes. Figure 14-2 illustrates the output compare operation for various modes. The user application must disable the associated timer when writing to the output compare control registers to avoid malfunctions.

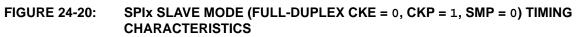
Note: See Section 13. "Output Compare" in the "dsPIC33F/PIC24H Family Reference Manual" (DS70209) for OCxR and OCxRS register restrictions.

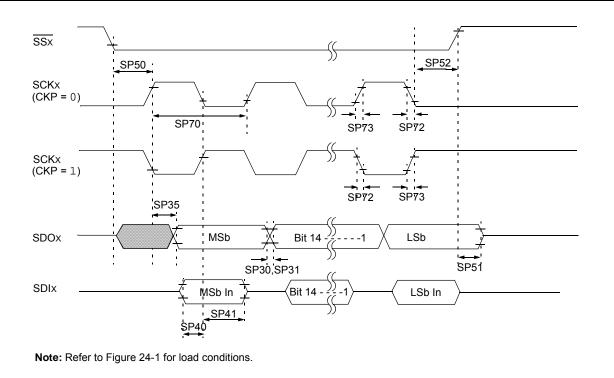
TABLE 14-1:	OUTPUT COMPARE MODES
-------------	-----------------------------

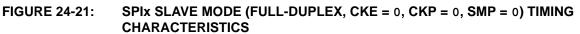
OCM<2:0>	Mode	OCx Pin Initial State	OCx Interrupt Generation
000	Module Disabled	Controlled by GPIO register	—
001	Active-Low One-Shot	0	OCx Rising edge
010	Active-High One-Shot	1	OCx Falling edge
011	Toggle Mode	Current output is maintained	OCx Rising and Falling edge
100	Delayed One-Shot	0	OCx Falling edge
101	Continuous Pulse mode	0	OCx Falling edge
110	PWM mode without fault protection	0, if OCxR is zero 1, if OCxR is non-zero	No interrupt
111	PWM mode with fault protection	0, if OCxR is zero 1, if OCxR is non-zero	OCFA Falling edge for OC1 to OC4

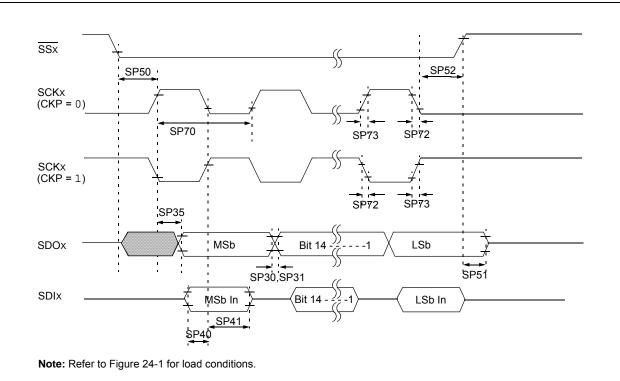
R/W-0	U-0	R/W-0	R/W-1 HC	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN	—	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0 HC				

R/W-0	R/W-U	R/VV-U	R/W-U TC			R/W-U TC	
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit 0


Legend:		U = Unimplemented bit, read as '0'						
R = Readable	bit	W = Writable bit	HS = Set in hardware	HC = Cleared in hardware				
-n = Value at POR		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
bit 15	12CEN: 12Cx							
			figures the SDAx and SCLx pin pins are controlled by port func					
bit 14	Unimplemen	ted: Read as '0'						
bit 13	I2CSIDL: Sto	p in Idle Mode bit						
		ue module operation whe module operation in Idle	n device enters an Idle mode mode					
bit 12	SCLREL: SC	Lx Release Control bit (w	/hen operating as I ² C slave)					
	1 = Release S 0 = Hold SCL	SCLx clock x clock low (clock stretch)					
	at beginning of If STREN = 0	, software can write '0' t of slave transmission. Ha	rdware clear at end of slave re					
	Bit is R/S (i.e. transmission.	, software can only write	'1' to release clock). Hardware	e clear at beginning of slave				
bit 11			ment Interface (IPMI) Enable t	pit				
	1 = IPMI mod 0 = IPMI mod	e is enabled; all address e disabled	es Acknowledged					
bit 10	A10M: 10-bit	Slave Address bit						
		is a 10-bit slave address is a 7-bit slave address						
bit 9	DISSLW: Disa	able Slew Rate Control b	it					
		control disabled control enabled						
bit 8	SMEN: SMBu	is Input Levels bit						
		D pin thresholds compliar MBus input thresholds	nt with SMBus specification					
bit 7 GCEN: Gene		ral Call Enable bit (when	operating as I ² C slave)					
	 1 = Enable interrupt when a general call address is received in the I2CxRSR (module is enabled for reception) 0 = General call address disabled 							
bit 6	STREN: SCL	x Clock Stretch Enable b	it (when operating as I ² C slave)				
	Used in conju 1 = Enable so	nction with SCLREL bit. oftware or receive clock s oftware or receive clock s	tretching	·				


REGISTER 18-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

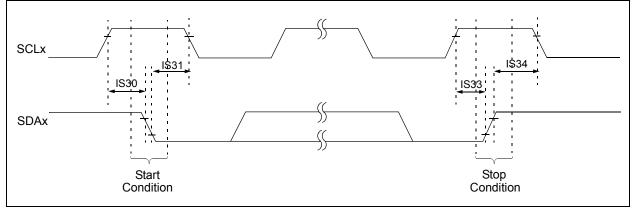

bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected.
bit 2	R_W: Read/Write Information bit (when operating as I^2C slave)
SR 2	 1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave Hardware set or clear after reception of I²C device address byte.
bit 1	RBF: Receive Buffer Full Status bit 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit 1 = Transmit in progress, I2CxTRN is full 0 = Transmit complete, I2CxTRN is empty Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.


TABLE 22-2: INSTRUCTION SET OVERVIEW

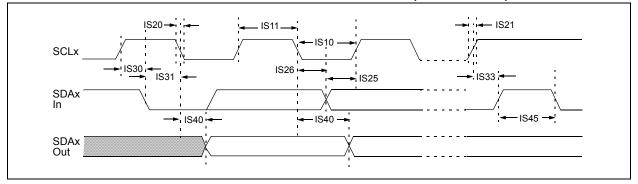
2	ADD	ADD ADD ADD	Acc f	Add Accumulators	-	T	· · · · · · · · · · · · · · · · · · ·
2		ADD	f		1	1	OA,OB,SA,SB
2				f = f + WREG	1	1	C,DC,N,OV,Z
2			f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
2		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
2		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
2		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
2		ADD	Wso,#Slit4,Acc	16-bit Signed Add to Accumulator	1	1	OA,OB,SA,SB
	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = $f + WREG + (C)$	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = Iit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
		BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
6	BRA	BRA	C,Expr	Branch if Carry	1	1 (2)	None
		BRA	GE, Expr	Branch if greater than or equal	1	1 (2)	None
		BRA	GEU, Expr	Branch if unsigned greater than or equal	1	1 (2)	None
		BRA	GT, Expr	Branch if greater than	1	1 (2)	None
		BRA	GTU, Expr	Branch if unsigned greater than	1	1 (2)	None
		BRA	LE, Expr	Branch if less than or equal	1	1 (2)	None
		BRA	LEU, Expr	Branch if unsigned less than or equal	1	1 (2)	None
		BRA	LT, Expr	Branch if less than	1	1 (2)	None
		BRA	LTU, Expr	Branch if unsigned less than	1	1 (2)	None
		BRA	N,Expr	Branch if Negative	1	1 (2)	None
		BRA	NC, Expr	Branch if Not Carry	1	1 (2)	None
		BRA	NN, Expr	Branch if Not Negative	1	1 (2)	None
		BRA	NOV, Expr	Branch if Not Overflow	1	1 (2)	None
		BRA	NZ, Expr	Branch if Not Zero	1	1 (2)	None
		BRA	OA, Expr	Branch if Accumulator A overflow	1	1 (2)	None
		BRA	OB, Expr	Branch if Accumulator B overflow	1	1 (2)	None
		BRA	OV, Expr	Branch if Overflow	1	1 (2)	None
		BRA	SA, Expr	Branch if Accumulator A saturated	1	1 (2)	None
7		BRA	SB, Expr	Branch if Accumulator B saturated	1	1 (2)	None
		BRA	Expr	Branch Unconditionally	1	2	None
				Branch if Zero	1	1 (2)	None
		BRA	Z,Expr Wn	Computed Branch	1	2	None
	BSET	BRA		Bit Set f	1	2 1	None
	1460	BSET	f,#bit4	Bit Set Ws	1	1	None
8	DCW	BSET	Ws,#bit4				
D	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
	DEC	BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
9	BTG	BTG BTG	f,#bit4 Ws,#bit4	Bit Toggle f Bit Toggle Ws	1	1	None None

TABLE 24-40: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol TLO:SCL	Characteristic ⁽³⁾		Min ⁽¹⁾	Max	Units	Conditions		
IM10		Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)	—	μs	_		
			400 kHz mode	Tcy/2 (BRG + 1)	—	μs	_		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μs	—		
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)		μs	—		
			400 kHz mode	Tcy/2 (BRG + 1)		μs	—		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μs	—		
IM20	TF:SCL	SDAx and SCLx Fall Time	100 kHz mode	—	300	ns	CB is specified to be		
			400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF		
			1 MHz mode ⁽²⁾	—	100	ns			
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be		
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF		
			1 MHz mode ⁽²⁾		300	ns			
IM25	TSU:DAT	Data Input	100 kHz mode	250		ns	_		
		Setup Time	400 kHz mode	100		ns			
			1 MHz mode ⁽²⁾	40	—	ns			
IM26	THD:DAT	Data Input	100 kHz mode	0	—	μs	_		
		Hold Time	400 kHz mode	0	0.9	μs			
			1 MHz mode ⁽²⁾	0.2		μs			
IM30	TSU:STA	Start Condition Setup Time	100 kHz mode	Tcy/2 (BRG + 1)	—	μs	Only relevant for		
			400 kHz mode	Tcy/2 (BRG + 1)	—	μs	Repeated Start		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs	condition		
IM31	THD:STA	Start Condition Hold Time	100 kHz mode	Tcy/2 (BRG + 1)	—	μs	After this period the		
			400 kHz mode	Tcy/2 (BRG + 1)	—	μs	first clock pulse is		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs	generated		
IM33	Tsu:sto	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	μs	_		
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)		μs			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μs			
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)		ns	—		
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	—	ns	-		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	ns	-		
IM40	TAA:SCL	Output Valid From Clock	100 kHz mode	— 3500 ns		—			
			400 kHz mode	—	1000	ns	—		
			1 MHz mode ⁽²⁾	—	400	ns	—		
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be		
			400 kHz mode	1.3	_	μs	free before a new		
			1 MHz mode ⁽²⁾	0.5	—	μs	transmission can start		
IM50	Св	Bus Capacitive L	oading	—	400	pF	—		
IM51	Pgd	Pulse Gobbler De	elav	65	390	ns	See Note 4		


Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to Section 19. "Inter-Integrated Circuit (I²C[™])" (DS70195) in the "*dsPIC33F/PIC24H Family Reference Manual*". Please see the Microchip web site (www.microchip.com) for the latest family reference manual sections.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).


3: These parameters are characterized by similarity, but are not tested in manufacturing.

4: Typical value for this parameter is 130 ns.

TABLE 24-46: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic	Min.	Тур ⁽¹⁾	Max.	Units	Conditions	
Clock Parameters ⁽²⁾								
AD50	TAD	ADC Clock Period	76	_	_	ns	_	
AD51	tRC	ADC Internal RC Oscillator Period	—	250	—	ns	—	
Conversion Rate								
AD55	tCONV	Conversion Time	—	12 TAD	—		—	
AD56	FCNV	Throughput Rate	—	—	1.1	Msps	—	
AD57	TSAMP	Sample Time	2.0 Tad	—	—	_	—	
		Timir	g Param	eters				
AD60	tPCS	Conversion Start from Sample Trigger ⁽¹⁾	2.0 Tad	_	3.0 Tad		Auto-Convert Trigger (SSRC<2:0> = 111) not selected	
AD61	tpss	Sample Start from Setting Sample (SAMP) bit ⁽¹⁾	2.0 Tad	—	3.0 Tad	_	—	
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽¹⁾		0.5 Tad	—			
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽¹⁾		_	20	μs	_	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

TABLE 25-1: MAJOR SECTION UPDATES

Section Name	Update Description			
Section 19.0 "10-bit/12-bit Analog-to-Digital Converter (ADC)"	Updated ADC Conversion Clock Select bits in the AD1CON3 register from ADCS< 5 :0> to ADCS< 7 :0>. Any references to these bits have also been updated throughout this data sheet (Register 19-3).			
	Replaced Figure 19-1 (ADC1 Module Block Diagram for dsPIC33FJ12MC201) and added Figure 19-2 (ADC1 Block Diagram for dsPIC33FJ12MC202).			
	Removed Equation 19-1: ADC Conversion Clock Period and Figure 19-2: ADC Transfer Function (10-Bit Example).			
	Added Note 2 to Figure 19-2: ADC Conversion Clock Period Block Diagram.			
	Updated ADC1 Input Channel 1, 2, 3 Select Register (see Register 19-4) as follows:			
	 Changed bit 10-9 (CH123NB - dsPIC33FJ12MC201 devices only) description for bit value of 10 (if AD12B = 0). 			
	 Updated bit 8 (CH123SB) to reflect device-specific information. Updated bit 0 (CH123SA) to reflect device-specific information. Changed bit 2-1 (CH123NA - dsPIC33FJ12MC201 devices only) description for bit value of 10 (if AD12B = 0). 			
	 Updated ADC1 Input Channel 0 Select Register (see Register 19-5) as follows: Changed bit value descriptions for bits 12-8 Changed bit value descriptions for bits 4-0 (dsPIC33FJ12MC201 devices) 			
	Modified Notes 1 and 2 in the ADC1 Input Scan Select Register Low (see Register 19-6)			
	Modified Notes 1 and 2 in the ADC1 Port Configuration Register Low (see Register 19-7)			
Section 20.0 "Special Features"	Added FICD register information for address 0xF8000E in the Device Configuration Register Map (see Table 20-1).			
	Added FICD register content (BKBUG, COE, JTAGEN, and ICS<1:0> to the dsPIC33FJ12MC201/202 Configuration Bits Description (see Table 20-2).			
	Added a note regarding the placement of low-ESR capacitors, after the second paragraph of Section 20.2 " On-Chip Voltage Regulator " and to Figure 20-2.			
	Removed the words "if enabled" from the second sentence in the fifth paragraph of Section 20.3 "BOR: Brown-out Reset"			

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support