

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I²C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, QEI, POR, PWM, WDT
Number of I/O	15
Program Memory Size	12KB (12K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj12mc201-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

dsPIC33FJ12MC201/202

NOTES:

TABLE 4-15:	ADC1 REGISTER MAP FOR dsPIC33FJ12MC202
-------------	--

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								ADC Dat	a Buffer 0								xxxx
ADC1BUF1	0302								ADC Dat	a Buffer 1								xxxx
ADC1BUF2	0304		ADC Data Buffer 2										xxxx					
ADC1BUF3	0306		ADC Data Buffer 3										xxxx					
ADC1BUF4	0308		ADC Data Buffer 4										xxxx					
ADC1BUF5	030A		ADC Data Buffer 5										xxxx					
ADC1BUF6	030C								ADC Dat	a Buffer 6								xxxx
ADC1BUF7	030E								ADC Dat	a Buffer 7								xxxx
ADC1BUF8	0310								ADC Dat	a Buffer 8								xxxx
ADC1BUF9	0312								ADC Dat	a Buffer 9								xxxx
ADC1BUFA	0314								ADC Data	a Buffer 10								xxxx
ADC1BUFB	0316								ADC Data	a Buffer 11								xxxx
ADC1BUFC	0318								ADC Data	a Buffer 12								xxxx
ADC1BUFD	031A								ADC Data	a Buffer 13								xxxx
ADC1BUFE	031C								ADC Data	a Buffer 14								xxxx
ADC1BUFF	031E								ADC Data	a Buffer 15								xxxx
AD1CON1	0320	ADON	—	ADSIDL	—	—	AD12B	FOR	M<1:0>	5	SSRC<2:0>	,	—	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	,	VCFG<2:0	>			CSCNA	CHP	S<1:0>	BUFS	_		SMPI	<3:0>		BUFM	ALTS	0000
AD1CON3	0324	ADRC	_	—		5	SAMC<4:0>	•	_			-	ADCS	6<7:0>				0000
AD1CHS123	0326		_	—	_	—	CH123N	IB<1:0>	CH123SB	—	_	—	_	—	CH123N	NA<1:0>	CH123SA	0000
AD1CHS0	0328	CH0NB	_	—		С	H0SB<4:0	>		CH0NA	_	—		С	H0SA<4:0	>	1	0000
AD1PCFGL	032C	_	_	—	_	_	—	—	—	—	_	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
AD1CSSL	0330	—	—	—	_	—	_	_	—	_	_	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

6.0 RESETS

- Note 1: This data sheet summarizes the features of the dsPIC33FJ12MC201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 8.** "**Reset**" (DS70192) of the *"dsPIC33F/PIC24H Family Reference Manual"*, which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- · POR: Power-on Reset
- · BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- · IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
 - Uninitialized W Register Reset
 - Security Reset

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state, and some are unaffected.

Note: Refer to the specific peripheral section or Section 3.0 "CPU" of this manual for register Reset states.

All types of device Reset set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

All bits that are set, with the exception of the POR bit (RCON<0>), are cleared during a POR event. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this data sheet.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

FIGURE 6-1: **RESET SYSTEM BLOCK DIAGRAM** RESET Instruction Glitch Filter MCLR WDT Module Sleep or Idle BOR Internal SYSRST Regulator סס POR VDD Rise Detect **Trap Conflict** Illegal Opcode Uninitialized W Register **Configuration Mismatch**

© 2007-2011 Microchip Technology Inc.

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
	_		—		ILR	<3:0>	
bit 15							bit 8
L							
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
				VECNUM<6:	0>		
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown
bit 15-12	Unimplemen	ted: Read as '0	,				
bit 11-8	ILR<3:0>: Ne	w CPU Interrup	ot Priority Lev	el bits			
	1111 = CPU	Interrupt Priority	/ Level is 15				
	•						
	•						
	0001 = CPU	Interrupt Priority	/ Level is 1				
	0000 = CPU	Interrupt Priority	/Level is 0				
bit 7	Unimplemen	ted: Read as '0	,				
bit 6-0	VECNUM<6:0	>: Vector Num	ber of Pendir	ng Interrupt bit	S		
	0111111 = In	terrupt Vector p	ending is nu	mber 135			
	•						
	•						
	0000001 = In	terrupt Vector p	ending is nu	mber 9			
	0000000 = In	terrupt Vector p	ending is nu	mber 8			

REGISTER 7-24: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

8.1 CPU Clocking System

The dsPIC33FJ12MC201/202 devices provide seven system clock options:

- Fast RC (FRC) Oscillator
- FRC Oscillator with PLL
- Primary (XT, HS or EC) Oscillator
- Primary Oscillator with PLL
- Secondary (LP) Oscillator
- · Low-Power RC (LPRC) Oscillator
- FRC Oscillator with postscaler

8.1.1 SYSTEM CLOCK SOURCES

8.1.1.1 Fast RC

The Fast RC (FRC) internal oscillator runs at a nominal frequency of 7.37 MHz. User software can tune the FRC frequency. User software can optionally specify a factor (ranging from 1:2 to 1:256) by which the FRC clock frequency is divided. This factor is selected using the FRCDIV<2:0> (CLKDIV<10:8>) bits.

8.1.1.2 Primary

The primary oscillator can use one of the following as its clock source:

- XT (Crystal): Crystals and ceramic resonators in the range of 3 MHz to 10 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- HS (High-Speed Crystal): Crystals in the range of 10 MHz to 40 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- EC (External Clock): The external clock signal is directly applied to the OSC1 pin.

8.1.1.3 Secondary

The secondary (LP) oscillator is designed for low power and uses a 32.768 kHz crystal or ceramic resonator. The LP oscillator uses the SOSCI and SOSCO pins.

8.1.1.4 Low-Power RC

The Low-Power RC (LPRC) internal oscIllator runs at a nominal frequency of 32.768 kHz. It is also used as a reference clock by the Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

8.1.1.5 FRC

The clock signals generated by the FRC and primary oscillators can be optionally applied to an on-chip Phase-Locked Loop (PLL) to provide a wide range of output frequencies for device operation. PLL configuration is described in **Section 8.1.3 "PLL Configuration**".

The FRC frequency depends on the FRC accuracy (see Table 24-18) and the value of the FRC Oscillator Tuning register (see Register 8-4).

8.1.2 SYSTEM CLOCK SELECTION

The oscillator source used at a device Power-on Reset event is selected using Configuration bit settings. The oscillator Configuration bit settings are located in the Configuration registers in the program memory. (Refer to Section 21.1 "Configuration Bits" for further details.) The Initial Oscillator Selection Configuration bits, FNOSC<2:0> (FOSCSEL<2:0>), and the Primary Oscillator Mode Select Configuration bits, POSCMD<1:0> (FOSC<1:0>), select the oscillator source that is used at a Power-on Reset. The FRC primary oscillator is the default (unprogrammed) selection.

The Configuration bits allow users to choose among 12 different clock modes, shown in Table 8-1.

The output of the oscillator (or the output of the PLL if a PLL mode has been selected) Fosc is divided by 2 to generate the device instruction clock (FcY) and the peripheral clock time base (FP). FcY defines the operating speed of the device, and speeds up to 40 MHz are supported by the dsPIC33FJ12MC201/202 architecture.

Instruction execution speed or device operating frequency, FCY, is given by:

EQUATION 8-1: DEVICE OPERATING FREQUENCY

 $FCY = \frac{FOSC}{2}$

REGISTER 9	9-1: PMD	1: PERIPHER		E DISABLE C	ONTROL RE	GISTER 1	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
		T3MD	T2MD	T1MD	QEIMD	PWM1MD	—
bit 15					·	·	bit 8
R/W-0	U-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0
I2C1MD	—	U1MD	—	SPI1MD	—	—	AD1MD ⁽¹⁾
bit 7							bit 0
L							
Legend:							
R = Readable	e bit	W = Writable	bit		nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		0° = Bit is clea	ared	x = Bit is unkn	iown
bit 15 14	Unimplomo	ntod: Dood os '	o'				
bit 13		r3 Module Disal	u hle hit				
bit 15	1 = Timer3 n	nodule is disable	ed				
	0 = Timer3 n	nodule is enable	ed				
bit 12	T2MD: Time	r2 Module Disal	ole bit				
	1 = Timer2 n	nodule is disable	ed				
	0 = Timer2 n	nodule is enable	ed				
bit 11	T1MD: Time	r1 Module Disal	ole bit				
	1 = 1 imer1 n 0 = 1 imer1 n	nodule is disable nodule is enable	ed •d				
bit 10	QEIMD: QEI	Module Disable	e bit				
211 10	1 = QEI mod	lule is disabled					
	0 = QEI mod	lule is enabled					
bit 9	PWM1MD: F	PWM1 Module [Disable bit				
	1 = PWM1 m	nodule is disable	ed				
hit 40	0 = PWM1 m	nodule is enable	ed o'				
DIL 18		n ted: Read as	U Na hit				
DIL 7	$1 = l^2 C 1 more$	dule is disabled					
	$0 = I^2 C1 mod$	dule is enabled					
bit 6	Unimpleme	nted: Read as '	0'				
bit 5	U1MD: UAR	T1 Module Disa	ble bit				
	1 = UART1 r	nodule is disabl	ed				
	0 = UART1 r	nodule is enable	ed				
bit 4	Unimpleme	nted: Read as '	0'				
bit 3	SPI1MD: SP	11 Module Disa	ble bit				
	1 = SPI1 mo 0 = SPI1 mo	dule is disabled					
bit 2-1	Unimpleme	nted: Read as '	0'				
bit 0	AD1MD: AD	C1 Module Disa	able bit ⁽¹⁾				
	1 = ADC1 m	odule is disable	d				
	0 = ADC1 m	odule is enable	d				

Note 1: PCFGx bits have no effect if the ADC module is disabled by setting this bit. When the bit is set, all port pins that have been multiplexed with ANx will be in Digital mode.

18.0 INTER-INTEGRATED CIRCUIT™ (I²C™)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ12MC201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70195) of the "dsPIC33F/PIC24H Family Reference Manual", which is available on the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Inter-Integrated Circuit TM (I²CTM) module provides complete hardware support for both Slave and Multi-Master modes of the I²C serial communication standard, with a 16-bit interface.

The I²C module has a 2-pin interface:

- The SCLx pin is clock
- The SDAx pin is data

The I²C module offers the following key features:

- I²C interface supporting both Master and Slave modes of operation.
- I²C Slave mode supports 7-bit and 10-bit addresses
- I²C Master mode supports 7-bit and 10-bit addresses
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation, detects bus collision and arbitrates accordingly

18.1 Operating Modes

The hardware fully implements all the master and slave functions of the I^2C Standard and Fast mode specifications, as well as 7-bit and 10-bit addressing.

The l^2C module can operate either as a slave or a master on an l^2C bus.

The following types of I²C operation are supported:

- I²C slave operation with 7-bit address
- I²C slave operation with 10-bit address
- I²C master operation with 7-bit or 10-bit address

For details about the communication sequence in each of these modes, refer to the Microchip web site (www.microchip.com) for the latest *"dsPIC33F/PIC24H Family Reference Manual"* sections.

18.2 I²C Registers

I2CxCON and I2CxSTAT are control and status registers, respectively. The I2CxCON register is readable and writable. The lower six bits of I2CxSTAT are read-only. The remaining bits of the I2CSTAT are read/write:

- · I2CxRSR is the shift register used for shifting data
- I2CxRCV is the receive buffer and the register to which data bytes are written, or from which data bytes are read
- I2CxTRN is the transmit register to which bytes are written during a transmit operation
- I2CxADD register holds the slave address
- · ADD10 status bit indicates 10-bit Address mode
- I2CxBRG acts as the Baud Rate Generator (BRG) reload value

In receive operations, I2CxRSR and I2CxRCV together form a double-buffered receiver. When I2CxRSR receives a complete byte, it is transferred to I2CxRCV, and an interrupt pulse is generated.

dsPIC33FJ12MC201/202

FIGURE 20-3: ADC CONVERSION CLOCK PERIOD BLOCK DIAGRAM

REGISTER 20-1: AD1CON1: ADC1 CONTROL REGISTER 1 (CONTINUED)

bit 2	ASAM: ADC Sample Auto-Start bit
	 1 = Sampling begins immediately after last conversion. SAMP bit is auto-set. 0 = Sampling begins when SAMP bit is set
bit 1	SAMP: ADC Sample Enable bit
	 1 = ADC sample-and-hold amplifiers are sampling 0 = ADC sample-and-hold amplifiers are holding If ASAM = 0, software can write '1' to begin sampling. Automatically set by hardware if ASAM = 1. If SSRC = 000, software can write '0' to end sampling and start conversion. If SSRC ≠ 000, automatically cleared by hardware to end sampling and start conversion.
bit 0	DONE: ADC Conversion Status bit
	 1 = ADC conversion cycle is completed 0 = ADC conversion not started or in progress Automatically set by hardware when ADC conversion is complete. Software can write '0' to clear

Automatically set by hardware when ADC conversion is complete. Software can write '0' to clear DONE status (software not allowed to write '1'). Clearing this bit will NOT affect any operation in progress. Automatically cleared by hardware at start of a new conversion.

dsPIC33FJ12MC201/202

REGISTER 20-3: AD1CON3: ADC1 CONTROL REGISTER 3

R/W-0) U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRO	- 2	—			SAMC<4:0>	1)	
bit 15	·						bit 8
R/W-0	0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ADCS	<7:0> (2)			
bit 7							bit 0
Legend:							
R = Read	able bit	W = Writable b	bit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	ADRC: ADC	Conversion Clo	ck Source bit				
	1 = ADC inter	rnal RC clock					
	0 = Clock der	rived from syster	m clock				
bit 14-13	Unimplemen	ted: Read as '0	,				
bit 12-8	SAMC<4:0>:	Auto Sample Ti	ime bits ⁽¹⁾				
	11111 = 31 1	Γad					
	•						
	•						
	•						
	00001 = 1 TA	ND					
	00000 = 0 TA	ND					
bit 7-0	ADCS<7:0>:	ADC Conversio	n Clock Sele	ct bits ⁽²⁾			
	11111111 =	Reserved					
	•						
	•						
	•						
	•						
	01000000 =	Reserved					
	00111111 =	$ICY \cdot (ADCS < 7$:0> + 1) = 64	\cdot ICY = IAD			
	•						
	•						
	•						
	00000010 =	TCY · (ADCS<7	(20> + 1) = 3	• TCY = TAD			
		TCY . (ADCS </td <td>.∪2 + 1) = 2 · '·∩> + 1) = 1</td> <td>$T_{CY} = T_{AD}$</td> <td></td> <td></td> <td></td>	.∪2 + 1) = 2 · '·∩> + 1) = 1	$ T_{CY} = T_{AD} $			
	- 0000000 -		.0- 1) - 1				
Note 1:	These bits are use	ed only if the SS	RC<2:0> bits	(AD1CON1<7:	:5>) = 111.		

2: These bits are not used if the ADRC bit (AD1CON3<15>) = 1.

Bit Field	Register	RTSP Effect	Description
BWRP	FBS	Immediate	Boot Segment Program Flash Write Protection 1 = Boot segment can be written 0 = Boot segment is write-protected
BSS<2:0>	FBS	Immediate	Boot Segment Program Flash Code Protection Size x11 = No Boot program Flash segment
			Boot space is 256 Instruction Words (except interrupt vectors) 110 = Standard security; boot program Flash segment ends at 0x0003FE 010 = High security; boot program Flash segment ends at 0x0003FE
			Boot space is 768 Instruction Words (except interrupt vectors) 101 = Standard security; boot program Flash segment, ends at 0x0007FE 001 = High security; boot program Flash segment ends at 0x0007FE
			Boot space is 1792 Instruction Words (except interrupt vectors) 100 = Standard security; boot program Flash segment ends at 0x000FFE 000 = High security; boot program Flash segment ends at 0x000FFE
GSS<1:0>	FGS	Immediate	General Segment Code-Protect bit 11 = User program memory is not code-protected 10 = Standard security 0x = High security
GWRP	FGS	Immediate	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected
IESO	FOSCSEL	Immediate	 Two-speed Oscillator Start-up Enable bit 1 = Start-up device with FRC, then automatically switch to the user-selected oscillator source when ready 0 = Start-up device with user-selected oscillator source
FNOSC<2:0>	FOSCSEL	If clock switch is enabled, RTSP effect is on any device Reset; otherwise, Immediate	Initial Oscillator Source Selection bits 111 = Internal Fast RC (FRC) oscillator with postscaler 110 = Internal Fast RC (FRC) oscillator with divide-by-16 101 = LPRC oscillator 100 = Secondary (LP) oscillator 011 = Primary (XT, HS, EC) oscillator with PLL 010 = Primary (XT, HS, EC) oscillator 001 = Internal Fast RC (FRC) oscillator with PLL 000 = FRC oscillator
FCKSM<1:0>	FOSC	Immediate	Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
IOL1WAY	FOSC	Immediate	Peripheral pin select configuration 1 = Allow only one reconfiguration 0 = Allow multiple reconfigurations
OSCIOFNC	FOSC	Immediate	OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is clock output 0 = OSC2 is general purpose digital I/O pin
POSCMD<1:0>	FOSC	Immediate	Primary Oscillator Mode Select bits 11 = Primary oscillator disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode

TABLE 21-2: dsPIC33F CONFIGURATION BITS DESCRIPTION

Bit Field	Register	RTSP Effect	Description		
FWDTEN	FWDT	Immediate	 Watchdog Timer Enable bit 1 = Watchdog Timer always enabled (LPRC oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register will have no effect.) 0 = Watchdog Timer enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register) 		
WINDIS	FWDT	Immediate	Watchdog Timer Window Enable bit 1 = Watchdog Timer in Non-Window mode 0 = Watchdog Timer in Window mode		
WDTPRE	FWDT	Immediate	Watchdog Timer Prescaler bit 1 = 1:128 0 = 1:32		
WDTPOST<3:0>	FWDT	Immediate	<pre>Watchdog Timer Postscaler bits 1111 = 1:32,768 1110 = 1:16,384</pre>		
PWMPIN	FPOR	Immediate	 Motor Control PWM Module Pin Mode bit 1 = PWM module pins controlled by PORT register at device Reset (tri-stated) 0 = PWM module pins controlled by PWM module at device Reset (configured as output pins) 		
HPOL	FPOR	Immediate	Motor Control PWM High Side Polarity bit 1 = PWM module high side output pins have active-high output polarity 0 = PWM module high side output pins have active-low output polarity		
LPOL	FPOR	Immediate	Motor Control PWM Low Side Polarity bit 1 = PWM module low side output pins have active-high output polarity 0 = PWM module low side output pins have active-low output polarity		
FPWRT<2:0>	FPOR	Immediate	Power-on Reset Timer Value Select bits 111 = PWRT = 128 ms 110 = PWRT = 64 ms 101 = PWRT = 32 ms 100 = PWRT = 16 ms 011 = PWRT = 8 ms 010 = PWRT = 4 ms 001 = PWRT = 2 ms 000 = PWRT = Disabled		
ALTI2C	FPOR	Immediate	Alternate I ² C pins 1 = I ² C mapped to SDA1/SCL1 pins 0 = I ² C mapped to ASDA1/ASCL1 pins		
JTAGEN	FICD	Immediate	JTAG Enable bit 1 = JTAG enabled 0 = JTAG disabled		
ICS<1:0>	FICD	Immediate	ICD Communication Channel Select bits 11 = Communicate on PGEC1 and PGED1 10 = Communicate on PGEC2 and PGED2 01 = Communicate on PGEC3 and PGED3 00 = Reserved, do not use		

TABLE 21-2: dsPIC33F CONFIGURATION BITS DESCRIPTION (CONTINUED)

24.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJ12MC201/202 electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33FJ12MC201/202 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽⁴⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $V_{DD} \ge 3.0V^{(4)}$	0.3V to +5.6V
Voltage on any 5V tolerant pin with respect to Vss when $V_{DD} < 3.0V^{(4)}$	0.3V to (VDD + 0.3V)
Maximum current out of Vss pin	
Maximum current into VDD pin ⁽²⁾	250 mA
Maximum output current sunk by any I/O pin ⁽³⁾	4 mA
Maximum output current sourced by any I/O pin ⁽³⁾	4 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports ⁽²⁾	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 24-2).
 - **3:** Exceptions are CLKOUT, which is able to sink/source 25 mA, and the VREF+, VREF-, SCLx, SDAx, PGECx, and PGEDx pins, which are able to sink/source 12 mA.
 - 4: See the "Pin Diagrams" section for 5V tolerant pins.

TABLE 24-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHA	ARACTER	ISTICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic	Min	Тур ⁽¹⁾	Max	Units	Conditions	
Operati	ng Voltag	9						
DC10	Supply V	/oltage						
	Vdd		3.0	—	3.6	V	Industrial and Extended	
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.8	—	—	V	—	
DC16	VPOR	VDD Start Voltage⁽³⁾ to ensure internal Power-on Reset signal	_	—	Vss	V	_	
DC17	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.03	_		V/ms	0-3.0V in 0.1s	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: This is the limit to which VDD may be lowered without losing RAM data.

3: VDD voltage must remain at Vss for a minimum of 200 µs to ensure POR.

AC CHARACTERISTICS			Standard Oper (unless otherw Operating temp	rating Co vise state perature	nditions: ed) -40°C ≤ -40°C ≤	3.0V to Ta ≤ +85° Гa ≤+125°	3.6V °C for Inc °C for Ex	dustrial tended
Param No.	Symbol	Characteri	Min	Typ ⁽¹⁾	Max	Units	Conditions	
DO31	TIOR	Port Output Rise Tim	e		10	25	ns	
DO32	TIOF	Port Output Fall Time	9		10	25	ns	_
DI35	TINP	TINP INTx Pin High or Low Time (input			—		ns	
DI40 TRBP CNx High or Low Tim			ne (input)	2	—	_	TCY	_

TABLE 24-20: I/O TIMING REQUIREMENTS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: These parameters are characterized, but are not tested in manufacturing.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2

TABLE 25-1: MAJOR SECTION UPDATES

Section Name	Update Description
Section 19.0 "10-bit/12-bit Analog-to-Digital Converter (ADC)"	Updated ADC Conversion Clock Select bits in the AD1CON3 register from ADCS< 5 :0> to ADCS< 7 :0>. Any references to these bits have also been updated throughout this data sheet (Register 19-3).
	Replaced Figure 19-1 (ADC1 Module Block Diagram for dsPIC33FJ12MC201) and added Figure 19-2 (ADC1 Block Diagram for dsPIC33FJ12MC202).
	Removed Equation 19-1: ADC Conversion Clock Period and Figure 19-2: ADC Transfer Function (10-Bit Example).
	Added Note 2 to Figure 19-2: ADC Conversion Clock Period Block Diagram.
	Updated ADC1 Input Channel 1, 2, 3 Select Register (see Register 19-4) as follows:
	 Changed bit 10-9 (CH123NB - dsPIC33FJ12MC201 devices only) description for bit value of 10 (if AD12B = 0).
	 Updated bit 8 (CH123SB) to reflect device-specific information. Updated bit 0 (CH123SA) to reflect device-specific information. Changed bit 2-1 (CH123NA - dsPIC33FJ12MC201 devices only) description for bit value of 10 (if AD12B = 0).
	 Updated ADC1 Input Channel 0 Select Register (see Register 19-5) as follows: Changed bit value descriptions for bits 12-8 Changed bit value descriptions for bits 4-0 (dsPIC33FJ12MC201 devices)
	Modified Notes 1 and 2 in the ADC1 Input Scan Select Register Low (see Register 19-6)
	Modified Notes 1 and 2 in the ADC1 Port Configuration Register Low (see Register 19-7)
Section 20.0 "Special Features"	Added FICD register information for address 0xF8000E in the Device Configuration Register Map (see Table 20-1).
	Added FICD register content (BKBUG, COE, JTAGEN, and ICS<1:0> to the dsPIC33FJ12MC201/202 Configuration Bits Description (see Table 20-2).
	Added a note regarding the placement of low-ESR capacitors, after the second paragraph of Section 20.2 " On-Chip Voltage Regulator " and to Figure 20-2.
	Removed the words "if enabled" from the second sentence in the fifth paragraph of Section 20.3 " BOR: Brown-out Reset "

TABLE 25-1: MAJOR SECTION UPDATES

Section Name	Update Description
Section 23.0 "Electrical Characteristics"	Updated Max MIPS value for -40°C to +125°C temperature range in Operating MIPS vs. Voltage (see Table 23-1).
	Added 20-pin SOIC and 28-pin SSOP package information to Thermal Packaging Characteristics and updated Typical values for all devices (see Table 23-3).
	Removed Typ value for parameter DC12 (see Table 23-4).
	Updated Note 2 in Table 23-7: DC Characteristics: Power-Down Current (IPD).
	Updated MIPS conditions for parameters DC24c, DC44c, DC72a, DC72f, and DC72g (see Table 23-5, Table 23-6, and Table 23-8).
	Added Note 4 (reference to new table containing digital-only and analog pin information to I/O Pin Input Specifications (see Table 23-9).
	Updated Program Memory parameters (D136a, D136b, D137a, D137b, D138a, and D138b) and added Note 2 (see Table 23-12).
	Updated Max value for Internal RC Accuracy parameter F21 for -40°C \leq TA \leq +125°C condition and added Note 2 (see Table 23-19).
	Removed all values for Reset, Watchdog Timer, Oscillator Start-up Timer, and Power-up Timer parameter SY20 and updated conditions, which now refers to Section 20.4 " Watchdog Timer (WDT) " and LPRC parameter F21 (Table 23-21).
	Updated Min value for Input Capture Timing Requirements parameter IC15 (see Table 23-26).
	The following changes were made to the ADC Module Specifications (Table 23-38):
	Updated Min value for ADC Module Specification parameter AD07.
	Updated Typ value for parameter AD08 Added references to Note 1 for parameters AD12 and AD13
	Removed Note 2.
	The following changes were made to the ADC Module Specifications (12-bit Mode) (Table 23-39):
	• Updated Min and Max values for both AD21a parameters (measurements with <i>internal</i> and <i>external</i> VREF+/VREF-).
	Updated Min, Typ, and Max values for parameter AD24a.
	Updated Max value for parameter AD32a. Removed Note 1
	Removed VREFL from Conditions for parameters AD21a, AD22a, AD23a,
	and AD24a (measurements with <i>internal</i> VREF+/VREF-).
	The following changes were made to the ADC Module Specifications (10-bit Mode) (Table 23-40):
	 Updated Min and Max values for parameter AD21b (measurements with external VREF+/VREF-).
	 Removed ± symbol from Min, Typ, and Max values for parameters AD23b and AD24b (measurements with <i>internal</i> VREF+/VREF-).
	Updated Typ and Max values for parameter AD32b.Removed Note 1.
	 Removed VREFL from Conditions for parameters AD21a, AD22a, AD23a, and AD24a (measurements with <i>internal</i> VREF+/VREF-).
	Updated Min and Typ values for parameters AD60, AD61, AD62, and AD63 and removed Note 3 (see Table 23-41 and Table 23-42).

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3180 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-213-7830 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

05/02/11