

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, QEI, POR, PWM, WDT
Number of I/O	15
Program Memory Size	12KB (12K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj12mc201-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2009

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2007-2011, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-61341-368-5

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

High-Performance, 16-bit Digital Signal Controllers

Operating Range:

- Up to 40 MIPS operation (at 3.0-3.6V):
 - Industrial temperature range (-40°C to +85°C)
 - Extended temperature range (-40°C to +125°C)

High-Performance DSC CPU:

- · Modified Harvard architecture
- · C compiler optimized instruction set
- · 16-bit-wide data path
- · 24-bit-wide instructions
- Linear program memory addressing up to 4M instruction words
- · Linear data memory addressing up to 64 Kbytes
- · 83 base instructions: mostly one word/one cycle
- Two 40-bit accumulators with rounding and saturation options
- · Flexible and powerful addressing modes:
 - Indirect
 - Modulo
 - Bit-Reversed
- · Software stack
- 16 x 16 fractional/integer multiply operations
- 32/16 and 16/16 divide operations
- · Single-cycle multiply and accumulate:
 - Accumulator write back for DSP operations
 - Dual data fetch
- Up to ±16-bit shifts for up to 40-bit data

Timers/Capture/Compare/PWM:

- Timer/Counters, up to three 16-bit timers
 - Can pair up to make one 32-bit timer
 - One timer runs as Real-Time Clock with external 32.768 kHz oscillator
 - Programmable prescaler
- Input Capture (up to four channels):
 - Capture on up, down, or both edges
 - 16-bit capture input functions
 - 4-deep FIFO on each capture
- Output Compare (up to two channels):
 - Single or Dual 16-bit Compare mode
 - 16-bit Glitchless PWM mode

Interrupt Controller:

- 5-cycle latency
- · Up to 26 available interrupt sources
- Up to three external interrupts
- Seven programmable priority levels
- · Four processor exceptions

Digital I/O:

- · Peripheral pin Select functionality
- Up to 21 programmable digital I/O pins
- · Wake-up/Interrupt-on-Change for up to 21 pins
- · Output pins can drive from 3.0V to 3.6V
- Up to 5V output with open drain configurations on 5V tolerant pins
- 4 mA sink on all I/O pins

On-Chip Flash and SRAM:

- Flash program memory (12 Kbytes)
- Data SRAM (1024 bytes)
- · Boot and General Security for program Flash

System Management:

- · Flexible clock options:
 - External, crystal, resonator, internal RC
 - Fully integrated Phase-Locked Loop (PLL)
 - Extremely low-jitter PLL
- Power-up Timer
- Oscillator Start-up Timer/Stabilizer
- · Watchdog Timer with its own RC oscillator
- · Fail-Safe Clock Monitor
- · Reset by multiple sources

Power Management:

- On-chip 2.5V voltage regulator
- · Switch between clock sources in real time
- · Idle, Sleep, and Doze modes with fast wake-up

Pin Diagrams

Table of Contents

dsPIC	C33FJ12MC201/202 Product Families	5
1.0	Device Overview	9
2.0	Guidelines for Getting Started with 16-bit Digital Signal Controllers	15
3.0	CPU	19
4.0	Memory Organization	31
5.0	Flash Program Memory	57
6.0	Resets	63
7.0	Interrupt Controller	71
8.0	Oscillator Configuration	103
9.0	Power-Saving Features	113
10.0	I/O Ports	119
11.0	Timer1	141
12.0	Timer2/3 Feature	143
13.0	Input Capture	149
14.0	Output Compare	151
15.0	Motor Control PWM Module	155
16.0	Quadrature Encoder Interface (QEI) Module	169
17.0	Serial Peripheral Interface (SPI)	173
18.0	Inter-Integrated Circuit™ (I ² C™)	179
19.0	Universal Asynchronous Receiver Transmitter (UART)	187
20.0	10-bit/12-bit Analog-to-Digital Converter (ADC)	193
21.0	Special Features	205
22.0	Instruction Set Summary	211
23.0	Development Support	219
24.0	Electrical Characteristics	223
25.0	Packaging Information	271
Appe	ndix A: Revision History	287
Index	(297
The N	Vicrochip Web Site	301
Custo	omer Change Notification Service	301
Custo	omer Support	301
Read	Ier Response	302
Produ	uct Identification System	303

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

Microchip's Worldwide Web site; http://www.microchip.com

• Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

1.0 DEVICE OVERVIEW

- Note 1: This data sheet summarizes the features of the dsPIC33FJ12MC201/202 devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections.
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device specific information for the dsPIC33FJ12MC201/202 Digital Signal Controller (DSC) Devices. The dsPIC33F devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance, 16-bit microcontroller (MCU) architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules in the dsPIC33FJ12MC201/ 202 family of devices. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the dsPIC33FJ12MC201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 4. "Program Memory" (DS70202) of the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).

The dsPIC33FJ12MC201/202 architecture features separate program and data memory spaces and buses. This architecture also allows the direct access of program memory from the data space during code execution.

4.1 Program Address Space

The program address memory space of the dsPIC33FJ12MC201/202 devices is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping as described in Section 4.6 "Interfacing Program and Data Memory Spaces".

User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

The memory map for the dsPIC33FJ12MC201/202 family of devices is shown in Figure 4-1.

FIGURE 4-1: PROGRAM MEMORY MAP FOR dsPIC33FJ12MC201/202 DEVICES

TABLE 4-8: 6-OUTPUT PWM1 REGISTER MAP FOR dsPIC33FJ12MC202

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Sta	ate
P1TCON	01C0	PTEN	_	PTSIDL	—	_	—	_	—		PTOP	S<3:0>		PTCKF	PS<1:0>	PTMO	D<1:0>	0000 0000 000	00 0000
P1TMR	01C2	PTDIR		PWM Timer Count Value Register								0000 0000 000	00 0000						
P1TPER	01C4	—	PWM Time Base Period Register										0000 0000 000	00 0000					
P1SECMP	01C6	SEVTDIR						P	WM Special	Event Con	npare Reg	ister						0000 0000 000	00 0000
PWM1CON1	01C8	—		—	—	_	PMOD3	PMOD2	PMOD1		PEN3H	PEN2H	PEN1H	—	PEN3L	PEN2L	PEN1L	0000 0000 111	11 1111
PWM1CON2	01CA	—		—	—		SEVOF	PS<3:0>			_	—	_	_	IUE	0000 0000 000	00 0000		
P1DTCON1	01CC	DTBPS	<1:0>			DTB<5:0>				DTAPS	<1:0>			DTA	<5:0>			0000 0000 000	00 0000
P1DTCON2	01CE	_	_	—	—	_	—	_	—			DTS3A	DTS3I	DTS2A	DTS2I	DTS1A	DTS1I	0000 0000 000	00 0000
P1FLTACON	01D0	_	_	FAOV3H	FAOV3L	FAOV2H	FAOV2L	FAOV1H	FAOV1L	FLTAM		—		_	FAEN3	FAEN2	FAEN1	0000 0000 000	00 0000
P10VDCON	01D4	_	_	POVD3H	POVD3L	POVD2H	POVD2L	POVD1H	POVD1L			POUT3H	POUT3L	POUT2H	POUT2L	POUT1H	POUT1L	1111 1111 000	00 0000
P1DC1	01D6							P\	NM Duty Cy	cle 1 Regi	ster							0000 0000 000	00 0000
P1DC2	01D8							P\	NM Duty Cy	cle 2 Regi	ster							0000 0000 000	00 0000
P1DC3	01DA							P\	WM Duty Cy	cle 3 Regi	ster							0000 0000 000	00 0000

Legend: u = uninitialized bit, — = unimplemented, read as '0'

TABLE 4-9: 4-OUTPUT PWM1 REGISTER MAP FOR dsPIC33FJ12MC201

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
P1TCON	01C0	PTEN	—	PTSIDL	_	_	_		_		PTOP	S<3:0>		PTCKF	PS<1:0>	PTMO	D<1:0>	0000 0000 0000 0000
P1TMR	01C2	PTDIR		PWM Timer Count Value Register								0000 0000 0000 0000						
P1TPER	01C4	_							PWM Tim	e Base Per	iod Regist	er						0000 0000 0000 0000
P1SECMP	01C6	SEVTDIR						F	WM Specia	al Event Cor	npare Reg	gister			0000 0000 0000 0000			
PWM1CON1	01C8	_	_	_	_	_	_	PMOD2	PMOD1	_	_	PEN2H	PEN1H	_	_	PEN2L	PEN1L	0000 0000 1111 1111
PWM1CON2	01CA	_	_	_	_		SEVO	⊃S<3:0>		_	_	IUE OSYNC UDIS					0000 0000 0000 0000	
P1DTCON1	01CC	DTBPS	<1:0>			DTE	3<5:0>			DTAPS	<1:0>			DTA	<5:0>			0000 0000 0000 0000
P1DTCON2	01CE	_	_	—		—	_		—				—	DTS2A	DTS2I	DTS1A	DTS1I	0000 0000 0000 0000
P1FLTACON	01D0	_	_	—		FAOV2H	FAOV2L	FAOV1H	FAOV1L	FLTAM			—	—	—	FAEN2	FAEN1	0000 0000 0000 0000
P10VDCON	01D4	_	_	—		POVD2H	POVD2L	POVD1H	POVD1L				—	POUT2H	POUT2L	POUT1H	POUT1L	1111 1111 0000 0000
P1DC1	01D6			PWM Duty Cycle 1 Register										0000 0000 0000 0000				
P1DC2	01D8			PWM Duty Cycle 2 Register											0000 0000 0000 0000			

Legend: u = uninitialized bit, - = unimplemented, read as '0'

Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
0300								ADC Da	ta Buffer 0								xxxx
0302								ADC Da	ta Buffer 1								xxxx
0304								ADC Da	ta Buffer 2								xxxx
0306		ADC Data Buffer 3 xxxx															
0308		ADC Data Buffer 4 xxxx															
030A		ADC Data Buffer 5 xxxx															
030C								ADC Da	ta Buffer 6								xxxx
030E								ADC Da	ta Buffer 7								xxxx
0310								ADC Da	ta Buffer 8								xxxx
0312								ADC Da	ta Buffer 9								xxxx
0314								ADC Dat	a Buffer 10								xxxx
0316								ADC Dat	a Buffer 11								xxxx
0318								ADC Dat	a Buffer 12								xxxx
031A								ADC Dat	a Buffer 13								xxxx
031C								ADC Dat	a Buffer 14								xxxx
031E								ADC Dat	a Buffer 15								xxxx
0320	ADON	—	ADSIDL	—	-	AD12B	FOR	M<1:0>	:	SSRC<2:0>	>	—	SIMSAM	ASAM	SAMP	DONE	0000
0322		VCFG<2:0	>	—	_	CSCNA	CHP	S<1:0>	BUFS	—		SMP	I<3:0>		BUFM	ALTS	0000
0324	ADRC		—			SAMC<4:0	>					ADC	S<7:0>				0000
0326	_				—	CH123N	NB<1:0>	CH123SB		_		—	—	CH123	NA<1:0>	CH123SA	0000
0328	CH0NB				(CH0SB<4:0)>		CH0NA	_			С	H0SA<4:0	>		0000
032C	—	—	—	—	_	-	—	—	—	—	-	—	PCFG3	PCFG2	PCFG1	PCFG0	0000
0330	—	—	-	—	—	-	—	—	—	—	—	—	CSS3	CSS2	CSS1	CSS0	0000
	Addr 0300 0302 0304 0306 0308 0308 0308 0308 0308 0308 0308 0308 0308 0308 0308 0308 0308 0308 0308 0308 0310 0312 0314 0316 0317 0318 0317 0318 0317 0318 0317 0318 0318 0320 0322 0324 0326 0320 0320 0322 03230	Addr Bit 15 0300	Addr Bit 15 Bit 14 0300	Addr Bit 15 Bit 14 Bit 13 0300	Addr Bit 15 Bit 14 Bit 13 Bit 12 0300	AddrBit 15Bit 14Bit 13Bit 12Bit 110300 $\begin{tikzed}{columnation (1000)}{0300} & $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 100300 3002 3002 3002 3002 3002 3002 3002 3002 0304 3003 3002 3002 3002 3002 3002 3002 3002 0302 3002 3002 3002 3002 3002 3002 3002 0302 3002 3002 3002 3002 3002 3002 0310 3002 3002 3002 3002 3002 3002 0312 3012 3012 3012 3012 3012 3012 0316 3012 3012 3012 3012 3012 3012 0317 3012 3012 3012 3012 3012 3012 0318 3012 3012 3012 3012 3012 3012 0319 3012 3012 3012 3012 3012 3012 0320ADON 3012 3012 3012 3012 3012 0321 3022 3022 3022 3022 3022 3022 0322 3022 3022 3022 3022 3022 3022 3022 0322 3022	AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 90300 3000	AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 80300 \cdots <	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 0300	Addr Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 0300	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 8 Bit 7 Bit 6 Bit 5 0300	Adr Bit 15 Bit 14 Bit 13 Bit 12 Bit 10 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 0300	Addr Bit 15 Bit 14 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 0300	Addr Bit 13 Bit 2 0300	Addr Bit 10 Bit 10 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 10 0300	Add Bit 1 Bit 1 Bit 0 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 1 Bit 0 0300

TABLE 4-16: ADC1 REGISTER MAP FOR dsPIC33FJ12MC201

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

EXAMPLE 5-2: LOADING THE WRITE BUFFERS

;	Set up NVMCO	N for row programming opera	ıti	ons
	MOV	#0x4001, W0	;	
	MOV	W0, NVMCON	;	Initialize NVMCON
;	Set up a poir	nter to the first program m	nem	nory location to be written
;	program memor	ry selected, and writes ena	ıbl	ed
	MOV	#0x0000, W0	;	
	MOV	W0, TBLPAG	;	Initialize PM Page Boundary SFR
	MOV	#0x6000, W0	;	An example program memory address
;	Perform the	TBLWT instructions to write	e t	the latches
;	0th_program_	word		
	MOV	#LOW_WORD_0, W2	;	
	MOV	<pre>#HIGH_BYTE_0, W3</pre>	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
;	lst_program_	word		
	MOV	#LOW_WORD_1, W2	;	
	MOV	#HIGH_BYTE_1, W3	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
;	2nd_program	_word		
	MOV	#LOW_WORD_2, W2	;	
	MOV	#HIGH_BYTE_2, W3	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
	•			
	•			
	•			
;	63rd_program	_word		
	MOV	#LOW_WORD_31, W2	;	
	MOV	#HIGH_BYTE_31, W3	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch

EXAMPLE 5-3: INITIATING A PROGRAMMING SEQUENCE

DISI	#5	; Block all interrupts with priority <7 ; for next 5 instructions
MOV	#0x55, W0	
MOV	W0, NVMKEY	; Write the 55 key
MOV	#0xAA, W1	;
MOV	W1, NVMKEY	; Write the AA key
BSET	NVMCON, #WR	; Start the erase sequence
NOP		; Insert two NOPs after the
NOP		; erase command is asserted

9.0 POWER-SAVING FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33FJ12MC201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog Timer and Power-Saving Modes" (DS70196) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ12MC201/202 devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. dsPIC33FJ12MC201/202 devices can manage power consumption in four different ways:

- Clock frequency
- Instruction-based Sleep and Idle modes
- Software-controlled Doze mode
- Selective peripheral control in software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

9.1 Clock Frequency and Clock Switching

dsPIC33FJ12MC201/202 devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in Section 8.0 "Oscillator Configuration".

9.2 Instruction-Based Power-Saving Modes

dsPIC33FJ12MC201/202 devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 9-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to wake-up.

9.2.1 SLEEP MODE

The following occur in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled
- The LPRC clock continues to run in Sleep mode if the WDT is enabled
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode
- Some device features or peripherals may continue to operate. This includes items such as the input change notification on the I/O ports, or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled

The device will wake-up from Sleep mode on any of the these events:

- · Any interrupt source that is individually enabled
- · Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

EXAMPLE 9-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV#SLEEP_MODE; Put the device into Sleep modePWRSAV#IDLE_MODE; Put the device into Idle mode

REGISTER 10-11:	RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18
-----------------	---

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	—			U1CTSR<4:0)>	
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	—			U1RXR<4:0	>	
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	oit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15-13	Unimplemen	ted: Read as '0	,				
bit 12-8	U1CTSR<4:0	>: Assign UAR	T1 Clear to S	end (U1CTS) to	o the correspo	nding RPn pin	
	11111 = Inpu	t tied Vss					
	01111 = Inpu	t tied to RP15					
	00001 = Inpu	t tied to RP1					
	00000 = Inpu	t tied to RP0					
bit 7-5	Unimplemen	ted: Read as '0	,				
bit 4-0	U1RXR<4:0>	: Assign UART	I Receive (U	1RX) to the cor	responding R	Pn pin	
	11111 = Inpu	t tied Vss					
	$0 \perp \perp \perp = inpu$	t tied to RP15					
	00001 = Inpu	t tied to RP1					
	00000 = Inpu	t tied to RP0					

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0					
TON ⁽²⁾		TSIDL ⁽¹⁾	_	_	_	_	_					
bit 15							bit 8					
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0					
_	TGATE ⁽²⁾	TCKPS	<1:0> (2)	_	_	TCS ⁽²⁾						
bit 7							bit 0					
Legend:												
R = Readable	e bit	W = Writable I	oit	U = Unimple	mented bit, read	l as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown					
bit 15	TON: Timer3 1 = Starts 16- 0 = Stops 16-	On bit ⁽²⁾ bit Timer3 bit Timer3										
bit 14	Unimplemen	ted: Read as 'd)'									
bit 13	TSIDL: Stop in Idle Mode bit ⁽¹⁾											
	1 = Discontinu 0 = Continue	ue timer operat timer operation	ion when dev in Idle mode	vice enters Idle	mode							
bit 12-7	Unimplemen	ted: Read as 'd)'									
bit 6	Unimplemented: Read as '0' TGATE: Timer3 Gated Time Accumulation Enable bit ⁽²⁾ <u>When TCS = 1:</u> This bit is ignored. <u>When TCS = 0:</u> 1 = Gated time accumulation enabled 0 = Cated time accumulation disabled											
bit 5-4	TCKPS<1:0>	: Timer3 Input	Clock Presca	ale Select bits ⁽²)							
	11 = 1:256 pr 10 = 1:64 pre 01 = 1:8 pres 00 = 1:1 pres	escale value scale value cale value cale value										
bit 3-2	Unimplemen	ted: Read as 'd)'									
bit 1	TCS: Timer3	Clock Source S	elect bit ⁽²⁾									
	1 = External c	clock from T3CI	< pin									
	0 = Internal cl	lock (Fosc/2)	_									
bit 0	Unimplemen	ted: Read as '0)´									
Note 1: W	/hen 32-hit timer	operation is en	abled (T32 =	1) in the Timer	Control register	(T2CON<3>)	the TSIDL hit					

REGISTER 12-2: T3CON CONTROL REGISTER

Note 1: When 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (T2CON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.

2: When the 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (T2CON<3>), these bits have no effect.

REGISTER 15-5: PWMxCON1: PWM CONTROL REGISTER 1⁽²⁾

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	—	—		—	PMOD3	PMOD2	PMOD1
bit 15							bit 8

U-0	R/W-1	R/W-1	R/W-1	U-0	R/W-1	R/W-1	R/W-1
—	PEN3H ⁽¹⁾	PEN2H ⁽¹⁾	PEN1H ⁽¹⁾	—	PEN3L ⁽¹⁾	PEN2L ⁽¹⁾	PEN1L ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11 bit 10-8	Unimplemented: Read as '0' PMOD4:PMOD1: PWM I/O Pair Mode bits
	1 = PWM I/O pin pair is in the Independent PWM Output mode0 = PWM I/O pin pair is in the Complementary Output mode
bit 7	Unimplemented: Read as '0'
bit 6-4	PEN3H:PEN1H: PWMxH I/O Enable bits ⁽¹⁾
	1 = PWMxH pin is enabled for PWM output0 = PWMxH pin disabled, I/O pin becomes general purpose I/O
bit 3	Unimplemented: Read as '0'
bit 2-0	PEN3L:PEN1L: PWMxL I/O Enable bits ⁽¹⁾
	 1 = PWMxL pin is enabled for PWM output 0 = PWMxL pin disabled, I/O pin becomes general purpose I/O

- **Note 1:** Reset condition of the PENxH and PENxL bits depends on the value of the PWMPIN Configuration bit in the FPOR Configuration register.
 - 2: PWM2 supports only one PWM I/O pin pair. PWM1 on dsPIC33FJ12MC201 devices supports only two PWM I/O pin pairs.

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	_		SEVO	PS<3:0>	
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_		—	—		IUE	OSYNC	UDIS
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15-12	Unimplemen	ted: Read as '	0'				
bit 11-8	SEVOPS<3:0	>: PWM Spec	ial Event Trig	ger Output Post	scale Select b	its	
	1111 = 1:16 p	oostscale					
	•						
	•						
	•						
	0001 = 1.2 pc 0000 = 1.1 pc	ostscale					
bit 7-3	Unimplement	ted: Read as '	0'				
bit 2	IUF: Immedia	te Update Ena	o Ible bit				
5.12	1 = Updates t	o the active P	DC registers	are immediate			
	0 = Updates t	o the active P	DC registers	are synchroniz	ed to the PWM	l time base	
bit 1	OSYNC: Outp	out Override S	ynchronizatio	n bit			
	1 = Output ov	errides via the	PxOVDCON	register are sy	nchronized to t	he PWM time ba	ase
	0 = Output ov	errides via the	PxOVDCON	register occur o	on next Toy bo	undary	
bit 0	UDIS: PWM L	Jpdate Disable	e bit				
	1 = Updates f	rom Duty Cycl	e and Period	Buffer registers	are disabled		
	0 = Updates f	rom Duty Cycl	e and Period	Buffer registers	are enabled		

REGISTER 15-6: PWMxCON2: PWM CONTROL REGISTER 2

REGISTER 16-1: QEIXCON: QEI CONTROL REGISTER (CONTINUED)

bit 4-3	TQCKPS<1:0>: Timer Input Clock Prescale Select bits					
	10 = 1:64	prescale value				
	01 = 1:8 p	rescale value				
	00 = 1:1 p	rescale value				
	(Prescaler utilized for 16-bit Timer mode only)					
bit 2	POSRES: Position Counter Reset Enable bit					
	1 = Index Pulse resets Position Counter					
	0 = Index Pulse does not reset Position Counter					
	Note:	Bit applies only when QEIM<2:0> = 100 or 110.				
bit 1	TQCS: Tim	ner Clock Source Select bit				
	1 = External clock from pin QEA (on the rising edge)					
	0 = Internal clock (TCY)					
bit 0	UPDN_SRC: Position Counter Direction Selection Control bit 1 = QEB pin state defines position counter direction 0 = Control/Status bit, UPDN (QEICON<11>), defines timer counter (POSCNT) direction					
	Note:	When configured for QEI mode, control bit is a 'don't care'.				

REGISTER 20-2: AD1	CON2: ADC1	CONTROL F	REGISTER 2
--------------------	------------	-----------	------------

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	VCFG<2:0>			—	CSCNA	CHPS	<1:0>
bit 15						•	bit 8
R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUFS	—		SMPI	<3:0>		BUFM	ALTS
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	e bit	U = Unimple	emented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is se	t	'0' = Bit is cl	eared	x = Bit is unkr	iown
bit 15-13	VCFG<2:0>: (Converter Vol	tage Reference	Configuratior	n bits		
	AI	DREF+	ADREF-	7			
	000	AVdd	AVss				
	001 Exter	nal VREF+	AVss				
	010	AVdd	External VREF-				
	011 Exter	nal VREF+	External VREF-				
	1xx A	AVdd	AVss				
bit 12-11	Unimplement	ted: Read as	'0'				
bit 10	CSCNA: Scar	n Input Select	ions for CH0+ du	uring Sample	A bit		
	1 = Scan inpu	uts					
	0 = Do not so	an inputs					
bit 9-8	CHPS<1:0>: Select Channels Utilized bits						
	$1_{x} = Convert$	s CH0_CH1	1: 0> is: 0-0, 0n CH2 and CH3	Implemente	d, Read as "0"		
	01 = Convert	s CH0 and Cl	H1				
	00 = Convert	s CH0					
bit 7	BUFS: Buffer	Fill Status bit	(valid only when	n BUFM = 1)			
	1 = ADC is cu	urrently filling	second half of b	uffer, user sh	ould access data	a in the first hal	f
bit 6				i, usei applic			Second nam
bit 5_2		ample/Conve	u V	or Intorrunt S	election hits		
bit 3-2	1111 = Intern	unts at the co	mpletion of conv	ersion for ea	ch 16th sample/	convert sequer	ICE
	1110 = Interr	upts at the co	mpletion of conv	ersion for ea	ch 15th sample/	convert sequer	ice
	•						
	•						
	•						
	0001 = Interro 0000 = Interro	upts at the co upts at the co	mpletion of conv mpletion of conv	ersion for ea ersion for ea	ch 2nd sample/c ch sample/conve	convert sequen ert sequence	ce
bit 1	BUFM: Buffer	Fill Mode Se	lect bit				
	1 = Starts fillin0 = Always st	ng first half of arts filling buf	buffer on first in fer from the beg	terrupt and th inning	ne second half of	f buffer on next	interrupt
bit 0	ALTS: Alterna	te Input Sam	ple Mode Select	bit			
	1 = Uses cha 0 = Always us	nnel input sel ses channel i	ects for Sample	A on first sar Sample A	mple and Sample	e B on next sar	nple
	-						

Bit Field	Register	RTSP Effect	Description
BWRP	FBS	Immediate	Boot Segment Program Flash Write Protection 1 = Boot segment can be written 0 = Boot segment is write-protected
BSS<2:0>	FBS	Immediate	Boot Segment Program Flash Code Protection Size x11 = No Boot program Flash segment
			Boot space is 256 Instruction Words (except interrupt vectors) 110 = Standard security; boot program Flash segment ends at 0x0003FE 010 = High security; boot program Flash segment ends at 0x0003FE
			Boot space is 768 Instruction Words (except interrupt vectors) 101 = Standard security; boot program Flash segment, ends at 0x0007FE 001 = High security; boot program Flash segment ends at 0x0007FE
			Boot space is 1792 Instruction Words (except interrupt vectors) 100 = Standard security; boot program Flash segment ends at 0x000FFE 000 = High security; boot program Flash segment ends at 0x000FFE
GSS<1:0>	FGS	Immediate	General Segment Code-Protect bit 11 = User program memory is not code-protected 10 = Standard security 0x = High security
GWRP	FGS	Immediate	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected
IESO	FOSCSEL	Immediate	 Two-speed Oscillator Start-up Enable bit 1 = Start-up device with FRC, then automatically switch to the user-selected oscillator source when ready 0 = Start-up device with user-selected oscillator source
FNOSC<2:0>	FOSCSEL	If clock switch is enabled, RTSP effect is on any device Reset; otherwise, Immediate	Initial Oscillator Source Selection bits 111 = Internal Fast RC (FRC) oscillator with postscaler 110 = Internal Fast RC (FRC) oscillator with divide-by-16 101 = LPRC oscillator 100 = Secondary (LP) oscillator 011 = Primary (XT, HS, EC) oscillator with PLL 010 = Primary (XT, HS, EC) oscillator 001 = Internal Fast RC (FRC) oscillator with PLL 000 = FRC oscillator
FCKSM<1:0>	FOSC	Immediate	Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
IOL1WAY	FOSC	Immediate	Peripheral pin select configuration 1 = Allow only one reconfiguration 0 = Allow multiple reconfigurations
OSCIOFNC	FOSC	Immediate	OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is clock output 0 = OSC2 is general purpose digital I/O pin
POSCMD<1:0>	FOSC	Immediate	Primary Oscillator Mode Select bits 11 = Primary oscillator disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode

TABLE 21-2: dsPIC33F CONFIGURATION BITS DESCRIPTION

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$			
Param.	Symbol	Characte	Min	Max	Units	Conditions	
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	—	μs	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	—	μs	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5		μs	_
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μs	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	—	μs	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5		μs	_
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be from
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	—	100	ns	
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from
	Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	—	300	ns	
IS25	IS25 TSU:DAT	Data Input	100 kHz mode	250		ns	—
	Setup Time	400 kHz mode	100		ns		
		1 MHz mode ⁽¹⁾	100		ns		
IS26	26 THD:DAT	Data Input	100 kHz mode	0		μs	—
	Hold Time	400 kHz mode	0	0.9	μs		
			1 MHz mode ⁽¹⁾	0	0.3	μs	
IS30	TSU:STA	Start Condition	100 kHz mode	4.7		μs	Only relevant for Repeated
		Setup Time	400 kHz mode	0.6		μs	Start condition
			1 MHz mode ⁽¹⁾	0.25		μs	
IS31	THD:STA	Start Condition	100 kHz mode	4.0		μs	After this period, the first
		Hold Time	400 kHz mode	0.6		μs	clock pulse is generated
			1 MHz mode ⁽¹⁾	0.25		μs	
IS33	Tsu:sto	Stop Condition	100 kHz mode	4.7		μs	
		Setup Time	400 kHz mode	0.6		μs	
			1 MHz mode ⁽¹⁾	0.6	—	μs	
IS34	THD:ST	Stop Condition	100 kHz mode	4000	—	ns	
	0	Hold Time	400 kHz mode	600	—	ns	
			1 MHz mode ⁽¹⁾	250		ns	
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns	
		From Clock	400 kHz mode	0	1000	ns	
			1 MHz mode ⁽¹⁾	0	350	ns	
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be free
			400 kHz mode	1.3		μs	before a new transmission
			1 MHz mode ⁽¹⁾	0.5	—	μs	Can Start
IS50	Св	Bus Capacitive Lo	—	400	pF	—	

TABLE 24-41: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

2: These parameters are characterized by similarity, but are not tested in manufacturing.

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimensior	n Limits	MIN	NOM	MAX	
Number of Pins	28				
Pitch	е	0.65 BSC			
Overall Height	А	-	—	2.00	
Molded Package Thickness	A2	1.65	1.75	1.85	
Standoff	A1	0.05	—	-	
Overall Width	E	7.40	7.80	8.20	
Molded Package Width	E1	5.00	5.30	5.60	
Overall Length	D	9.90	10.20	10.50	
Foot Length	L	0.55	0.75	0.95	
Footprint	L1	1.25 REF			
Lead Thickness	С	0.09	—	0.25	
Foot Angle	¢	0°	4°	8°	
Lead Width	b	0.22	_	0.38	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B