

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, QEI, POR, PWM, WDT
Number of I/O	21
Program Memory Size	12KB (12K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj12mc202-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33FJ12MC201/202

NOTES:

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the dsPIC33FJ12MC201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 4. "Program Memory" (DS70202) of the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).

The dsPIC33FJ12MC201/202 architecture features separate program and data memory spaces and buses. This architecture also allows the direct access of program memory from the data space during code execution.

4.1 Program Address Space

The program address memory space of the dsPIC33FJ12MC201/202 devices is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping as described in Section 4.6 "Interfacing Program and Data Memory Spaces".

User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

The memory map for the dsPIC33FJ12MC201/202 family of devices is shown in Figure 4-1.

FIGURE 4-1: PROGRAM MEMORY MAP FOR dsPIC33FJ12MC201/202 DEVICES

dsPIC33FJ12MC201/202

TABLE 4-1: CPU CORE REGISTERS MAP (CONTINUED)

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
XMODSRT	0048		XS<15:1>								0	xxxx						
XMODEND	004A		XE<15:1>									1	xxxx					
YMODSRT	004C		YS<15:1>									0	xxxx					
YMODEND	004E							١	/E<15:1>								1	xxxx
XBREV	0050	BREN	BREN XB<14:0>									xxxx						
DISICNT	0052	Disable Interrupts Counter Register										xxxx						

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-2: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ12MC202

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE		—	—	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	_	CN30IE	CN29IE	_	CN27IE	_	_	CN24IE	CN23IE	CN22IE	CN21IE	_	_	_	_	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	_	_	_	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	_	CN30PUE	CN29PUE	_	CN27PUE	_	_	CN24PUE	CN23PUE	CN22PUE	CN21PUE	_	_	_	_	CN16PUE	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-3: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ12MC201

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	—	CN14IE	CN13IE	CN12IE	CN11IE	—		—	—	—	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	00C2	-	CN30IE	CN29IE	—	—	-	-		CN23IE	CN22IE	CN21IE	—	—	—	—	—	0000
CNPU1	0068	-	CN14PUE	CN13PUE	CN12PUE	CN11PUE	-		-	—	—	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	-	CN30PUE	CN29PUE	—	—	-	-		CN23PUE	CN22PUE	CN21PUE	—	—	—	—	—	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.4 Modulo Addressing

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either data or program space (since the data pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into program space) and Y data spaces. Modulo Addressing can operate on any W register pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction as there are certain restrictions on the buffer start address (for incrementing buffers), or end address (for decrementing buffers), based upon the direction of the circular buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

4.4.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT, and YMODEND (see Table 4-1).

Note:	Y space Modulo Addressing EA calcula-
	tions assume word-sized data (LSb of
	every EA is always clear).

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.4.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that will operate with Modulo Addressing:

- If XWM = 15, X RAGU and X WAGU Modulo Addressing is disabled.
- If YWM = 15, Y AGU Modulo Addressing is disabled.

FIGURE 4-5: MODULO ADDRESSING OPERATION EXAMPLE

4.6 Interfacing Program and Data Memory Spaces

The dsPIC33FJ12MC201/202 architecture uses a 24bit-wide program space and a 16-bit-wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the dsPIC33FJ12MC201/ 202 architecture provides two methods by which program space can be accessed during operation:

- Using table instructions to access individual bytes, or words, anywhere in the program space
- Remapping a portion of the program space into the data space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for lookups from a large table of static data. The application can only access the lsw of the program word.

4.6.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Page register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the MSb of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

For remapping operations, the 8-bit Program Space Visibility register (PSVPAG) is used to define a 16K word page in the program space. When the MSb of the EA is '1', PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike table operations, this limits remapping operations strictly to the user memory area.

Table 4-28 and Figure 4-7 show how the program EA is created for table operations and remapping accesses from the data EA.

	Access	Program Space Address								
	Space	<23>	<22:16>	<15>	<14:1>	<0>				
Instruction Access	User	0	0 PC<22:1>							
(Code Execution)			0xx xxxx xxxx xxxx xxxx xxx0							
TBLRD/TBLWT	User	TB	LPAG<7:0>		Data EA<15:0>					
(Byte/Word Read/Write)		0xxx xxxx xxxx xxxx xxxx xxxx								
	Configuration	TB	LPAG<7:0>							
		1	xxx xxxx	xxxx xxxx xxxx xxxx						
Program Space Visibility	User	0	PSVPAG<7	7:0> Data EA<14:0> ⁽¹⁾						
(Block Remap/Read)		0 xxxx xxxx			XXX XXXX XXXX XXXX					

TABLE 4-28: PROGRAM SPACE ADDRESS CONSTRUCTION

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	—	—	
bit 15							bit 8	
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	
	NVMKEY<7:0>							

REGISTER 5-2: NVMKEY: NONVOLATILE MEMORY KEY REGISTER

Legend:SO = Settable only bit				
	R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
	-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7

bit 7-0 NVMKEY<7:0>: Key Register (write-only) bits

bit 0

R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0	
ALTIVT	DISI			_	_	_	_	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
—	—		—	_	INT2EP	INT1EP	INT0EP	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable I	bit	U = Unimple	mented bit, read	d as '0'		
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown	
bit 15	15 ALTIVT: Enable Alternate Interrupt Vector Table bit							
	1 = Use alterr	nate vector tabl	e					
	0 = Use stand	lard (default) ve	ector table					
bit 14	DISI: DISI In	struction Status	s bit					
	1 = DISI inst	ruction is active	etivo					
bit 12 2		tod. Dood oo '	ouve					
bit 13-3		ieu. Redu as (J L Edae Detect		4 h :4			
DIL Z	INIZEP: EXIC	emai interrupt 2	Eage Delect	Polarity Selec				
	1 = Interrupt 0	on positive edg	je e					
bit 1	INT1EP: External Interrupt 1 Edge Detect Polarity Select bit							
	1 = Interrupt of	on negative edd	 ae					
	0 = Interrupt o	on positive edge	e					
bit 0	INT0EP: External Interrupt 0 Edge Detect Polarity Select bit							
	1 = Interrupt on negative edge							
	0 = Interrupt o	on positive edge	е					

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

dsPIC33FJ12MC201/202

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0				
—	—	—	—	—	FLTA2IF	PWM2IF	—				
bit 15							bit 8				
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0				
—	—	—	—	—	—	U1EIF	—				
bit 7	-			-			bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own				
bit 15-11	Unimplemen	ted: Read as '	0'								
bit 10	FLTA2IF: PW	/M2 Fault A Inte	errupt Flag St	atus bit							
	1 = Interrupt i	request has oc	curred								
	0 = Interrupt i	request has not	occurred								
bit 9	PWM2IF: PW	/M2 Error Interi	upt Enable b	it							
	1 = Interrupt i	request has oc	curred								
	0 = Interrupt i	request has not	occurred								
bit 8-2	Unimplemen	ted: Read as '	0'								
bit 1	U1EIF: UART	T1 Error Interru	pt Flag Status	s bit							
	1 = Interrupt I	request has oc	curred								
	0 = Interrupt I	request has not	toccurred								
bit 0	Unimplemen	ted: Read as '	0'								

REGISTER 7-8: IFS4: INTERRUPT FLAG STATUS REGISTER 4

REGISTER 8-2: CLKDIV: CLOCK DIVISOR REGISTER⁽²⁾

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	
ROI		DOZE<2:0>		DOZEN ⁽¹⁾		FRCDIV<2:0>		
bit 15							bit 8	
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
PLLPOS	ST<1:0>	—			PLLPRE<4:0	>		
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable b	bit	U = Unimplem	ented bit, rea	id as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkn	own	
bit 15 bit 14-12	ROI: Recove 1 = Interrupts 0 = Interrupts DOZE<2:0>:	r on Interrupt bit s will clear the E s have no effect Processor Cloc	DOZEN bit ar on the DOZ k Reduction	id the processor EN bit Select bits	clock/periphe	eral clock ratio is	set to 1:1	
	111 = $Fcy/128$ 110 = $Fcy/64$ 101 = $Fcy/32$ 100 = $Fcy/16$ 011 = $Fcy/8$ (default) 010 = $Fcy/4$ 001 = $Fcy/2$ 000 = $Fcy/1$ DOZEN: DOZE Mode Enable bit ⁽¹⁾							
bit 11	DOZEN: DOZ 1 = DOZE<2 0 = Processo	ZE Mode Enable 2:0> field specifie or clock/periphe	e bit ⁽¹⁾ es the ratio b ral clock ratio	etween the perip forced to 1:1	oheral clocks	and the process	or clocks	
bit 10-8	<pre>0 = Processor clock/peripheral clock ratio forced to 1:1 FRCDIV<2:0>: Internal Fast RC Oscillator Postscaler bits 111 = FRC divide by 256 110 = FRC divide by 64 101 = FRC divide by 32 100 = FRC divide by 16 011 = FRC divide by 16 011 = FRC divide by 8 010 = FRC divide by 4 001 = FRC divide by 2</pre>							
bit 7-6	PLLPOST<1:0>: PLL VCO Output Divider Select bits (also denoted as 'N2', PLL postscaler) 11 = Output/8 10 = Reserved 01 = Output/4 (default) 00 = Output/2							
bit 5 bit 4-0	Unimplemented: Read as '0' PLLPRE<4:0>: PLL Phase Detector Input Divider bits (also denoted as 'N1', PLL prescaler) 00000 = Input/2 (default) 00001 = Input/3 • 11111 = Input/33							

- Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.
 - 2: This register is reset only on a Power-on Reset (POR).

Function	RPnR<4:0>	Output Name
NULL	00000	RPn tied to default port pin
U1TX	00011	RPn tied to UART1 Transmit
U1RTS	00100	RPn tied to UART1 Ready To Send
SDO1	00111	RPn tied to SPI1 Data Output
SCK1OUT	01000	RPn tied to SPI1 Clock Output
SS1OUT	01001	RPn tied to SPI1 Slave Select Output
OC1	10010	RPn tied to Output Compare 1
OC2	10011	RPn tied to Output Compare 2
UPDN	11010	RPn tied to QEI direction (UPDN) status

TABLE 10-2: OUTPUT SELECTION FOR REMAPPABLE PIN (RPn)

10.4.3 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. dsPIC33FJ12MC201/202 devices include three features to prevent alterations to the peripheral map:

- Control register lock sequence
- · Continuous state monitoring
- Configuration bit pin select lock

10.4.3.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, a specific command sequence must be executed:

- 1. Write 0x46 to OSCCON<7:0>.
- 2. Write 0x57 to OSCCON<7:0>.
- 3. Clear (or set) IOLOCK as a single operation.

Note:	MPLAB [®] C30 provides built-in C language functions for unlocking the OSCCON register:
	builtin_write_OSCCONL(value) builtin_write_OSCCONH(value)
	See MPLAB IDE Help for more information.

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the peripheral pin selects to be configured with a single unlock sequence followed by an update to all control registers, then locked with a second lock sequence.

10.4.3.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a configuration mismatch Reset will be triggered.

10.4.3.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY (FOSC<IOL1WAY>) configuration bit blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure will not execute, and the peripheral pin select control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows user applications unlimited access (with the proper use of the unlock sequence) to the peripheral pin select registers.

10.5 Peripheral Pin Select Registers

The dsPIC33FJ12MC201/202 family of devices implement 21 registers for remappable peripheral configuration:

- Input Remappable Peripheral Registers (13)
- Output Remappable Peripheral Registers (8)

Note: Input and Output Register values can only be changed if OSCCON<IOLOCK> = 0. See Section 10.4.3.1 "Control Register Lock" for a specific command sequence.

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
—	—	—			INT1R<4:0>			
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—		_	—	—	—	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
bit 15-13	Unimplemen	ted: Read as ')'					
bit 12-8	INT1R<4:0>:	Assign Externa	al Interrupt 1	(INTR1) to the	corresponding	RPn pin		
	11111 = Inpu	t tied Vss						
	01111 = Inpu	t tied to RP15						
	•							
	•							
	00001 = Inpu	t tied to RP1						
	00000 = Inpu	t tied to RP0						
bit 7-0	Unimplemen	ted: Read as 'd)'					

REGISTER 10-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

REGISTER 10-6: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
—	—	—			OCFAR<4:0>			
bit 7		•	•				bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15-5	Unimplemen	ted: Read as '	0'					
bit 4-0	OCFAR<4:0>	: Assign Outpu	it Capture A (OCFA) to the c	corresponding R	Pn pin		
	11111 = Inpu	t tied Vss						
	01111 = Input tied to RP15							

. 00001 = Input tied to RP1 00000 = Input tied to RP0

REGISTER 10-7: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—			—	—	—		—
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—			FLTA1R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-5	Unimplemented: Read as '0'
bit 4-0	FLTA1R<4:0>: Assign PWM1 Fault (FLTA1) to the corresponding RPn pin 11111 = Input tied Vss 01111 = Input tied to RP15
	•
	- 00001 = Input tied to RP1 00000 = Input tied to RP0

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	—			SCK1R<4:0	>	
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—			SDI1R<4:0>	>	
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	ıd as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15-13	Unimplemen	ted: Read as 'o)'				
bit 12-8	SCK1R<4:0>	Assign SPI1 (Clock Input (S	SCK1IN) to the	corresponding	RPn pin	
	11111 = I npu	ut tied Vss					
	01111 = Inp u	ut tied to RP15					
	•						
	00001 = Inp u	ut tied to RP1					
	00000 = Inp u	ut tied to RP0					
bit 7-5	Unimplemen	ted: Read as ')'				
bit 4-0	SDI1R<4:0>:	Assign SPI1 D	ata Input (SD	I1) to the corre	esponding RPr	pin	
	11111 = I npu	ut tied Vss					
	01111 = Inp u	ut tied to RP15					
	•						
	00001 = Inp u	ut tied to RP1					
	00000 = Inp u	ut tied to RP0					

REGISTER 10-12: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

REGISTER 20-5: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NB	—				CH0SB<4:0>		
bit 15	L						bit 8
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NA	—	_			CH0SA<4:0>		
bit 7			·				bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	CHONB: Char	nnel 0 Negative	e Input Select	for Sample B b	bit		
	0 = Channel C) negative inpu	it is VREF-				
bit 14-13	Unimplement	ted: Read as '	0'				
bit 12-8	CH0SB<4:0>	: Channel 0 Po	sitive Input Se	elect for Sampl	e B bits		
	dsPIC33FJ12	MC201 devic	es only:	· · · · · ·			
	00011 = Cha	nnel 0 positive	input is AN3				
	00010 = Cha	nnel 0 positive	input is AN2				
	00001 = Chai	nnel 0 positive	input is AN1				
	dsPIC33FJ12	MC202 devic	es only:				
	00101 = Cha	nnel 0 positive	input is AN5				
	00100 = Chai	nnel U positive	input is AN4				
	00011 = Chai	nnel 0 positive	input is AN2				
	00001 = Cha	nnel 0 positive	input is AN1				
	00000 = Cha	nnel 0 positive	input is AN0				
bit 7	CH0NA: Char	nnel 0 Negativ	e Input Select	for Sample A b	bit		
	1 = Channel 0 0 = Channel 0) negative inpu) negative inpu	it is AN1 it is VREF-				
bit 6-5	Unimplement	ted: Read as '	0'				
bit 4-0	CH0SA<4:0>	: Channel 0 Po	sitive Input Se	elect for Sample	e A bits		
	dsPIC33FJ12	MC201 devic	es only:	· · · · · ·			
	00011 = Cha	nnel 0 positive	input is AN3				
	00010 = Cha	nnel 0 positive	input is AN2				
	00001 = Cha	nnel 0 positive	input is AN1				
	00000 = Cha	nnei o positive	input is ANU				
	dsPIC33FJ12	MC202 devic	es only:				
	00101 = Cha	nnel 0 positive	input is AN5				
	00100 = Cha	nnel 0 positive	input is AN4				
	00011 = Chai	nnel 0 positive	input is AN3 input is $\Delta N2$				
	00001 = Cha	nnel 0 positive	input is AN1				
	00000 = Cha	nnel 0 positive	input is AN0				

AC CHARACTERISTICS			Standard Oper (unless otherw Operating temp	rating Co vise state perature	nditions: ed) -40°C ≤ -40°C ≤	3.0V to Ta ≤ +85° Гa ≤+125°	3.6V °C for Inc °C for Ex	dustrial tended
Param No.	Symbol	Characteristic ⁽²⁾		Min	Typ ⁽¹⁾	Max	Units	Conditions
DO31	TIOR	Port Output Rise Tim	e		10	25	ns	
DO32	TIOF	Port Output Fall Time	9		10	25	ns	_
DI35	TINP	INTx Pin High or Low Time (input)		25	—		ns	
DI40	TRBP	CNx High or Low Tim	ne (input)	2	—	_	TCY	_

TABLE 24-20: I/O TIMING REQUIREMENTS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: These parameters are characterized, but are not tested in manufacturing.

TABLE 24-40: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

AC CHA	RACTER	ISTICS		Standard Operatin (unless otherwise Operating tempera	ng Condit stated) ture -40 -40	ions: 3.0)°C ≤ TA ≤)°C ≤TA ≤+	V to 3.6V +85°C for Industrial 125°C for Extended	
Param No.	Symbol	Characte	eristic ⁽³⁾	Min ⁽¹⁾	Max	Units	Conditions	
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	—	
			400 kHz mode	Tcy/2 (BRG + 1)		μs	_	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μs	—	
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)		μs	—	
			400 kHz mode	Tcy/2 (BRG + 1)		μs	—	
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 1)	_	μs	—	
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾	—	100	ns		
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾	—	300	ns		
IM25	TSU:DAT	Data Input	100 kHz mode	250	_	ns	—	
		Setup Time	400 kHz mode	100	—	ns		
			1 MHz mode ⁽²⁾	40	—	ns		
IM26	THD:DAT	Data Input	100 kHz mode	0	_	μs	—	
		Hold Time	400 kHz mode	0	0.9	μs		
			1 MHz mode ⁽²⁾	0.2	_	μs		
IM30	TSU:STA	Start Condition	100 kHz mode	TCY/2 (BRG + 1)		μs	Only relevant for	
		Setup Time	400 kHz mode	TCY/2 (BRG + 1)		μs	Repeated Start	
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 1)		μs	condition	
IM31	THD:STA	Start Condition	100 kHz mode	TCY/2 (BRG + 1)		μs	After this period the	
		Hold Time	400 kHz mode	TCY/2 (BRG + 1)		μs	first clock pulse is	
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 1)		μs	generated	
IM33	Tsu:sto	Stop Condition	100 kHz mode	TCY/2 (BRG + 1)		μs	—	
		Setup Time	400 kHz mode	TCY/2 (BRG + 1)		μs		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs		
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	ns	—	
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	ns		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	ns		
IM40	TAA:SCL	Output Valid	100 kHz mode	_	3500	ns	—	
		From Clock	400 kHz mode		1000	ns	—	
			1 MHz mode ⁽²⁾	_	400	ns	—	
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μs	Time the bus must be	
			400 kHz mode	1.3	_	μs	free before a new	
			1 MHz mode ⁽²⁾	0.5	_	μs	transmission can start	
IM50	Св	Bus Capacitive L	oading		400	pF		
IM51	Pgd	Pulse Gobbler De	elay	65	390	ns	See Note 4	

Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to Section 19. "Inter-Integrated Circuit (I²C[™])" (DS70195) in the "*dsPIC33F/PIC24H Family Reference Manual*". Please see the Microchip web site (www.microchip.com) for the latest family reference manual sections.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: These parameters are characterized by similarity, but are not tested in manufacturing.

4: Typical value for this parameter is 130 ns.

25.2 Package Details

20-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units INCHI			
Dimension	n Limits	MIN	NOM	MAX
Number of Pins	N		20	
Pitch	е		.100 BSC	
Top to Seating Plane	Α	—	-	.210
Molded Package Thickness	A2	.115	.130	.195
Base to Seating Plane	A1	.015	—	-
Shoulder to Shoulder Width	E	.300	.310	.325
Molded Package Width	E1	.240	.250	.280
Overall Length	D	.980	1.030	1.060
Tip to Seating Plane	L	.115	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.045	.060	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eВ	_	—	.430

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-019B

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	N	ILLIMETER	S		
Dimension	MIN	NOM	MAX		
Contact Pitch	E	1.27 BSC			
Contact Pad Spacing	С		9.40		
Contact Pad Width (X20)	Х			0.60	
Contact Pad Length (X20)	Y			1.95	
Distance Between Pads	Gx	0.67			
Distance Between Pads	G	7.45			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2094A