

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, QEI, POR, PWM, WDT
Number of I/O	21
Program Memory Size	12KB (12K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj12mc202-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33FJ12MC201/202

Pin Diagrams

Table of Contents

dsPIC	C33FJ12MC201/202 Product Families	5
1.0	Device Overview	9
2.0	Guidelines for Getting Started with 16-bit Digital Signal Controllers	15
3.0	CPU	19
4.0	Memory Organization	
5.0	Flash Program Memory	57
6.0	Resets	63
7.0	Interrupt Controller	71
8.0	Oscillator Configuration	103
9.0	Power-Saving Features	113
10.0	I/O Ports	119
11.0	Timer1	
12.0	Timer2/3 Feature	143
13.0	Input Capture	149
14.0	Output Compare	151
15.0	Motor Control PWM Module	155
16.0	Quadrature Encoder Interface (QEI) Module	169
17.0	Serial Peripheral Interface (SPI)	173
18.0	Inter-Integrated Circuit™ (I ² C™)	179
19.0	Universal Asynchronous Receiver Transmitter (UART)	187
20.0	10-bit/12-bit Analog-to-Digital Converter (ADC)	193
21.0	Special Features	205
22.0	Instruction Set Summary	
23.0	Development Support	219
24.0	Electrical Characteristics	223
25.0	Packaging Information	
Appe	ndix A: Revision History	
Index	(297
The N	Vicrochip Web Site	301
Custo	omer Change Notification Service	301
Custo	omer Support	301
Read	ler Response	302
Produ	uct Identification System	303

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

• Microchip's Worldwide Web site; http://www.microchip.com

• Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

r							
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
		CNIP<2:0>				_	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		MI2C1IP<2:0>		<u> </u>		SI2C1IP<2:0>	
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
bit 15	Unimpleme	ented: Read as '	0'				
bit 14-12	CNIP<2:0>	: Change Notifica	ation Interrup	t Priority bits			
	111 = Interr	rupt is priority 7 (highest priori	ty interrupt)			
	•						
	•						
	001 = Interr	rupt is priority 1					
	000 = Interr	rupt source is dis	abled				
bit 11-7	Unimpleme	ented: Read as '	0'				
bit 6-4	MI2C1IP<2	:0>: I2C1 Master	r Events Inter	rupt Priority bit	S		
	111 = Interr	rupt is priority 7 (highest priori	ty interrupt)			
	•						
	•						
	001 = Interr	rupt is priority 1					
	000 = Interr	rupt source is dis	abled				
bit 3	Unimpleme	ented: Read as '	0'				
bit 2-0	SI2C1IP<2:	0>: I2C1 Slave E	Events Interru	pt Priority bits			
	111 = Interr	rupt is priority 7 (highest priori	ty interrupt)			
	•						
	•						
	001 = Interr	rupt is priority 1					
	000 = Interr	rupt source is dis	abled				

REGISTER 7-17: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3) (CONTINUED)

bit 3	CF: Clock Fail Detect bit (read/clear by application) 1 = FSCM has detected clock failure 0 = FSCM has not detected clock failure
bit 2	Unimplemented: Read as '0'
bit 1	LPOSCEN: Secondary (LP) Oscillator Enable bit 1 = Enable secondary oscillator 0 = Disable secondary oscillator
bit 0	OSWEN: Oscillator Switch Enable bit 1 = Request oscillator switch to selection specified by NOSC<2:0> bits 0 = Oscillator switch is complete

- **Note 1:** Writes to this register require an unlock sequence. Refer to **Section 7. "Oscillator"** (DS70186) in the *"dsPIC33F/PIC24H Family Reference Manual"* (available from the Microchip web site) for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - **3:** This register is reset only on a Power-on Reset (POR).

10.0 I/O PORTS

- Note 1: This data sheet summarizes the features of the dsPIC33FJ12MC201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 10.** "I/O Ports" (DS70193) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

All of the device pins (except VDD, VSS, MCLR, and OSC1/CLKI) are shared among the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

10.1 Parallel I/O (PIO) Ports

Generally a parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through," in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 10-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected.

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. This means the corresponding LATx and TRISx registers and the port pin will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

© 2007-2011 Microchip Technology Inc.

Input Name Function N		Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R<4:0>
External Interrupt 2	INT2	RPINR1	INT2R<4:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<4:0>
Timer3 External Clock	T3CK	RPINR3	T3CKR<4:0>
Input Capture 1	IC1	RPINR7	IC1R<4:0>
Input Capture 2	IC2	RPINR7	IC2R<4:0>
Input Capture 7	IC7	RPINR10	IC7R<4:0>
Input Capture 8	IC8	RPINR10	IC8R<4:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<4:0>
PWM1 Fault	FLTA1	RPINR12	FLTA1R<4:0>
PWM2 Fault	FLTA2	RPINR13	FLTA2R<4:0>
QEI1 Phase A	QEA	RPINR14	QEA1R<4:0>
QEI1 Phase B	QEB	RPINR14	QEB1R<4:0>
QEI1 Index	INDX	RPINR15	INDX1R<4:0>
UART1 Receive	U1RX	RPINR18	U1RXR<4:0>
UART1 Clear To Send	U1CTS	RPINR18	U1CTSR<4:0>
SPI1 Data Input	SDI1	RPINR20	SDI1R<4:0>
SPI1 Clock Input	SCK1	RPINR20	SCK1R<4:0>
SPI1 Slave Select Input	SS1	RPINR21	SS1R<4:0>

TABLE 10-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)⁽¹⁾

Note 1: Unless otherwise noted, all inputs use the Schmitt input buffers.

10.4.2.2 Output Mapping

In contrast to inputs, the outputs of the peripheral pin select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains sets of 5-bit fields, with each set associated with one RPn pin (see Register 10-14 through Register 10-21). The value of the bit field corresponds to one of the peripherals, and that peripheral's output is mapped to the pin (see Table 10-2 and Figure 10-3).

The list of peripherals for output mapping also includes a null value of '00000' because of the mapping technique. This permits any given pin to remain unconnected from the output of any of the pin selectable peripherals.

FIGURE 10-3:

MULTIPLEXING OF REMAPPABLE OUTPUT

REGISTER 10-9: RPINR14: PERIPHERAL PIN SELECT INPUT REGISTER 14

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—			QEB1R<4:0	>	
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—				QEA1R<4:0	>	
bit 7							bit 0
Γ							
Legend:							
R = Readable	bit	W = Writable	oit	U = Unimpler	mented bit, rea	id as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13 bit 12-8 bit 7-5	Unimplement QEB1R<4:0> 11111 = Inpu 01111 = Inpu	ted: Read as 'd : Assign B (QE t tied Vss t tied to RP15 t tied to RP1 t tied to RP1 t tied to RP0 ted: Read as 'd)' B) to the corr	responding pin			
bit 4-0	QEA1R<4:0> 11111 = Inpu 01111 = Inpu 00001 = Inpu 00000 = Inpu	: Assign A (QE t tied Vss t tied to RP15 t tied to RP1 t tied to RP0	A) to the corr	responding pin			

REGISTER 10-10: RPINR15: PERIPHERAL PIN SELECT INPUT REGISTER 15

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	_	—	—	—
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—			INDX1R<4:0>		
bit 7							bit 0
Legend:							
R = Readable I	oit	W = Writable	W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-5	Unimplemen	ted: Read as '	0'				
bit 4-0	INDX1R<4:0>	Assign QEI1	INDEX (INDX	(1) to the corre	esponding RPn p	pin	
	11111 = Inpu	t tied Vss					
	01111 = Inpu	t tied to RP15					
	•						
	•	t tipd to PD1					
	00000 = Inpu	t tied to RP0					

REGISTER 15-2: PxTMR: PWM TIMER COUNT VALUE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0 R/W-0		R/W-0	R/W-0				
bit 15 bit 8											
PTDIR	PTMR<14:8>										
R-0	R/W-0	R/W-0	R/W-0	R/W-0 R/W-0		R/W-0	R/W-0				

PTMR<7:0>

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 **PTDIR:** PWM Time Base Count Direction Status bit (read-only) 1 = PWM time base is counting down 0 = PWM time base is counting up

bit 14-0 PTMR <14:0>: PWM Time Base Register Count Value bits

REGISTER 15-3: PxTPER: PWM TIME BASE PERIOD REGISTER

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
—		PTPER<14:8>										
bit 15							bit 8					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
			PTPE	R<7:0>								
bit 7							bit 0					
Legend:												
R = Readable	R = Readable bit $W = Writable bit$ $U = Unimplemented bit, read as '0'$											
-n = Value at P	n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown											

bit 15 Unimplemented: Read as '0'

bit 7

bit 14-0 **PTPER<14:0>:** PWM Time Base Period Value bits

bit 0

REGISTER 15-7: PxDTCON1: DEAD-TIME CONTROL REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
DTBF	PS<1:0>			DTE	3<5:0>			
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
DTAF	PS<1:0>			DTA	<5:0>			
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unk			nown	
bit 15-14 bit 13-8 bit 7-6	DTBPS<1:0> 11 = Clock pe 10 = Clock pe 01 = Clock pe 00 = Clock pe DTB<5:0>: U DTAPS<1:0> 11 = Clock pe 10 = Clock pe 01 = Clock pe 01 = Clock pe 00 = Clock pe	: Dead-Time U eriod for Dead- eriod for Dead- eriod for Dead- eriod for Dead- nsigned 6-bit E : Dead-Time U eriod for Dead- eriod for Dead- eriod for Dead- eriod for Dead- eriod for Dead-	nit B Prescale Time Unit B is Time Unit B is Time Unit B is Time Unit B is Dead-Time Val nit A Prescale Time Unit A is Time Unit A is Time Unit A is	e Select bits 8 Tcy 4 Tcy 2 Tcy Tcy ue for Dead-Ti e Select bits 8 Tcy 4 Tcy 2 Tcy 7 Cy	me Unit B bits			
bit 5-0	DTA<5:0>: U	nsigned 6-bit D	ead-Time Val	ue for Dead-Ti	me Unit A bits			

dsPIC33FJ12MC201/202

NOTES:

dsPIC33FJ12MC201/202

TABLE 24-25: QEI MODULE EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS			Standa (unles Opera	ard Operating s otherwise s ting temperatu	Conditi tated) re -40 -40	'i ons: 3.0' °C ≤ Ta ≤ °C ≤Ta ≤+	V to 3.6∖ +85°C fi ∙125°C fi	/ or Industrial or Extended	
Param No.	Symbol	Characteri		Min	Тур	Max	Units	Conditions	
TQ10	TtQH	TQCK High Time	Synchronous, with prescaler		Тсү + 20		_	ns	Must also meet parameter TQ15
TQ11	TtQL	TQCK Low Time	Synchro with pre	onous, scaler	Tcy + 20		_	ns	Must also meet parameter TQ15
TQ15	TtQP	TQCP Input Period	Synchronous, with prescaler		2 * Tcy + 40		_	ns	
TQ20	TCKEXTMRL	Delay from External Edge to Timer Increi	TxCK C ment	lock	0.5 TCY		1.5 TCY	—	—

Note 1: These parameters are characterized by similarity, but are not tested in manufacturing.

FIGURE 24-7: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended				
Param No.	Symbol	Characteristic ⁽¹⁾		Тур ⁽²⁾	Max	Units	Conditions
TQ30	TQUL	Quadrature Input Low Time		6 Tcy		ns	_
TQ31	ΤουΗ	Quadrature Input High Time		6 Tcy	—	ns	—
TQ35	ΤουΙΝ	Quadrature Input Period		12 TCY	—	ns	—
TQ36	ΤουΡ	Quadrature Phase Period		3 TCY	—	ns	—
TQ40	TQUFL	Filter Time to Recognize Low, with Digital Filter		3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)
TQ41	TqufH	Filter Time to Recognize High, with Digital Filter		3 * N * Tcy	_	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)

TABLE 24-30: QUADRATURE DECODER TIMING REQUIREMENTS

Note 1: These parameters are characterized by similarity, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: N = Index Channel Digital Filter Clock Divide Select bits. Refer to **Section 15. "Quadrature Encoder** Interface (QEI)" (DS70208) in the *dsPIC33F/PIC24H Family Reference Manual*. Please see the Microchip (www.microchip.com) web site for the latest family reference manual chapters.

FIGURE 24-13: QEI MODULE INDEX PULSE TIMING CHARACTERISTICS

TABLE 24-37:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING
REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscP	Maximum SCK Input Frequency	—	_	11	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	—	_	_	ns	See parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—		_	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—		_	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	_
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30			ns	_
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120		—	ns	_
SP51	TssH2doZ	SSx	10		50	ns	—
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40			ns	See Note 4
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	_	_	50	ns	—

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

TABLE 24-46: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	ool Characteristic Min. Typ ⁽¹⁾ Max. Units Conditions			Conditions		
		Clock	Paramet	ers ⁽²⁾			
AD50	TAD	ADC Clock Period	76		_	ns	—
AD51	tRC	ADC Internal RC Oscillator Period	RC Oscillator Period — 250 — ns —				—
Conversion Rate							
AD55	tCONV	Conversion Time		12 Tad	—		—
AD56	FCNV	Throughput Rate			1.1	Msps	—
AD57	TSAMP Sample Time 2		2.0 TAD		—	_	_
		Timin	g Paramo	eters			
AD60	tPCS	Conversion Start from Sample Trigger ⁽¹⁾	2.0 Tad	—	3.0 Tad		Auto-Convert Trigger (SSRC<2:0> = 111) not selected
AD61	tpss	Sample Start from Setting Sample (SAMP) bit ⁽¹⁾	2.0 Tad		3.0 Tad		
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽¹⁾	_	0.5 TAD	—		_
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽¹⁾		_	20	μs	—

Note 1: These parameters are characterized but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	Е		0.65 BSC	
Contact Pad Spacing	С		7.20	
Contact Pad Width (X20)	X1			0.45
Contact Pad Length (X20)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2072A

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Number of Pins	Z	28				
Pitch	е	1.27 BSC				
Overall Height	A	-	-	2.65		
Molded Package Thickness	A2	2.05	-	-		
Standoff §	A1	0.10	-	0.30		
Overall Width	E		10.30 BSC			
Molded Package Width	E1	7.50 BSC				
Overall Length	D	17.90 BSC				
Chamfer (Optional)	h	0.25	-	0.75		
Foot Length	L	0.40	-	1.27		
Footprint	L1	1.40 REF				
Lead Angle	Θ	0°	-	I		
Foot Angle	φ	0°	-	8°		
Lead Thickness	С	0.18	-	0.33		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	-	15°		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units			MILLIMETERS			
Dimension Limits			MAX			
Contact Pitch E		0.65 BSC				
W2			4.25			
Optional Center Pad Length T2			4.25			
Contact Pad Spacing C1						
C2		5.70				
X1			0.37			
Contact Pad Length (X28) Y1			1.00			
Distance Between Pads G						
	Units Limits E W2 T2 C1 C2 X1 Y1 G	Units Limits MIN E W2 T2 C1 C2 X1 Y1 G 0.20	UnitsMINNOMLimitsMINNOME 0.65 BSCW2T2C15.70C25.70X1Y1G0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A

TABLE 25-1: MAJOR SECTION UPDATES

Section Name	Update Description
Section 19.0 "10-bit/12-bit Analog-to-Digital Converter (ADC)"	Updated ADC Conversion Clock Select bits in the AD1CON3 register from ADCS< 5 :0> to ADCS< 7 :0>. Any references to these bits have also been updated throughout this data sheet (Register 19-3).
	Replaced Figure 19-1 (ADC1 Module Block Diagram for dsPIC33FJ12MC201) and added Figure 19-2 (ADC1 Block Diagram for dsPIC33FJ12MC202).
	Removed Equation 19-1: ADC Conversion Clock Period and Figure 19-2: ADC Transfer Function (10-Bit Example).
	Added Note 2 to Figure 19-2: ADC Conversion Clock Period Block Diagram.
	Updated ADC1 Input Channel 1, 2, 3 Select Register (see Register 19-4) as follows:
	 Changed bit 10-9 (CH123NB - dsPIC33FJ12MC201 devices only) description for bit value of 10 (if AD12B = 0).
	 Updated bit 8 (CH123SB) to reflect device-specific information. Updated bit 0 (CH123SA) to reflect device-specific information. Changed bit 2-1 (CH123NA - dsPIC33FJ12MC201 devices only) description for bit value of 10 (if AD12B = 0).
	 Updated ADC1 Input Channel 0 Select Register (see Register 19-5) as follows: Changed bit value descriptions for bits 12-8 Changed bit value descriptions for bits 4-0 (dsPIC33FJ12MC201 devices)
	Modified Notes 1 and 2 in the ADC1 Input Scan Select Register Low (see Register 19-6)
	Modified Notes 1 and 2 in the ADC1 Port Configuration Register Low (see Register 19-7)
Section 20.0 "Special Features"	Added FICD register information for address 0xF8000E in the Device Configuration Register Map (see Table 20-1).
	Added FICD register content (BKBUG, COE, JTAGEN, and ICS<1:0> to the dsPIC33FJ12MC201/202 Configuration Bits Description (see Table 20-2).
	Added a note regarding the placement of low-ESR capacitors, after the second paragraph of Section 20.2 " On-Chip Voltage Regulator " and to Figure 20-2.
	Removed the words "if enabled" from the second sentence in the fifth paragraph of Section 20.3 " BOR: Brown-out Reset "

Revision E (July 2011)

This revision includes formatting changes and minor typographical throughout the data sheet text.

Global changes include:

- Removed Preliminary marking from the footer
- Updated all family reference manual information in the note boxes located at the beginning of most chapters
- Changed all instances of VCAP/VDDCORE to VCAP

All other major changes are referenced by their respective section in the following table.

Section Name	Update Description
Section 2.0 "Guidelines for Getting Started with 16-bit Digital Signal Controllers"	Changed the title of section 2.3 to Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)".
	Updated the second paragraph in Section 2.9 "Unused I/Os".
Section 4.0 "Memory Organization"	Revised the data memory implementation value in the third paragraph of Section 4.2 " Data Address Space ".
	Updated the All Resets values for TMR1, TMR2, and TMR3 in the Timer Register Map (see Table 4-5).
Section 8.0 "Oscillator Configuration"	Added Note 3 to the Oscillator Control Register (see Register 8-1).
	Added Note 2 to the Clock Divisor Register (see Register 8-2).
	Added Note 1 to the PLL Feedback Divisor Register (see Register 8-3).
	Added Note 2 to the FRC Oscillator Tuning Register (see Register 8-4).
Section 10.0 "I/O Ports"	Revised the second paragraph in Section 10.1.1 "Open-Drain Configuration ".
Section 14.0 "Output Compare"	Updated the Output Compare Module Block Diagram (see Figure 14-1).
Section 19.0 "Universal Asynchronous Receiver Transmitter (UART)"	Revised the UART module Baud Rate features, replacing both items with "Baud rates ranging from 10 Mbps to 38 bps at 40 MIPS".
Section 21.0 "Special Features"	Revised all paragraphs in Section 21.1 "Configuration Bits".
	Updated the Device Configuration Register Map (see Table 21-1).
	Added the RTSP Effect column in the Configuration Bits Description (see Table 21-2).