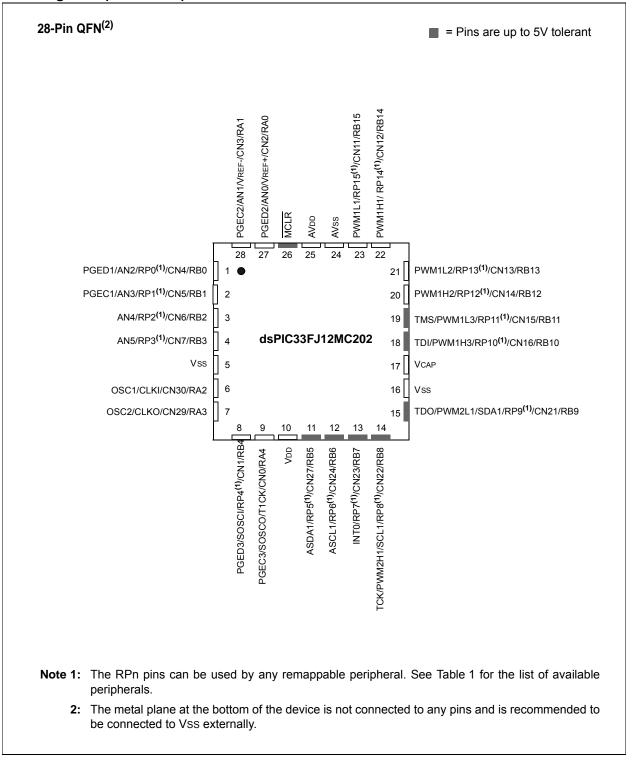


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, QEI, POR, PWM, WDT
Number of I/O	21
Program Memory Size	12KB (12K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj12mc202-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

dsPIC33FJ12MC201/202

3.4 CPU Control Registers

REGISTER 3-1: SR: CPU STATUS REGISTER

R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R -0	R/W-0			
OA	OB	SA ⁽¹⁾	SB ⁽¹⁾	OAB	SAB	DA	DC			
bit 15							bit 8			
R/W-0 ⁽²⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0			
R/W-0	IPL<2:0> ⁽²⁾	K/W-0`'	R-0 RA	N	OV	Z	C			
bit 7	IFL~2.0×()		RA	IN	00	2	bit (
DIL 7										
Legend:										
C = Clear on	ly bit	R = Readable	e bit	U = Unimple	mented bit, read	as '0'				
S = Set only	bit	W = Writable	bit	-n = Value at	POR					
'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unk	nown					
bit 15		ator A Overflov	v Statua bit							
DIL 15		tor A overflow								
		tor A has not o								
bit 14	OB: Accumula	ator B Overflow	v Status bit							
	- ///	1 = Accumulator B overflowed0 = Accumulator B has not overflowed								
bit 13	SA: Accumula	ator A Saturatio	on 'Sticky' Sta	tus bit ⁽¹⁾						
	1 = Accumula		ted or has bee	en saturated at	some time					
bit 12		ator B Saturatio		tus bit ⁽¹⁾						
	1 = Accumula		ted or has bee	en saturated at	some time					
bit 11				verflow Status	bit					
	1 = Accumula	tors A or B have ccumulators A	ve overflowed							
bit 10	SAB: SA SI	3 Combined A	ccumulator 'St	ticky' Status bit	I					
	1 = Accumula 0 = Neither A	tors A or B are ccumulator A c	e saturated or or B are satura	have been sat	urated at some		t			
h # 0	-		rea (not set).	Clearing this b	it will clear SA a	na SB.				
bit 9	DA: DO Loop 1 = DO loop in									
	0 = D0 loop in									
bit 8	DC: MCU AL	J Half Carry/B	orrow bit							
	•	ut from the 4th sult occurred	low-order bit (for byte-sized of	data) or 8th low-o	order bit (for wo	ord-sized data			
		out from the 4 he result occur		oit (for byte-siz	ed data) or 8th	low-order bit (1	for word-sized			
Note 1: Th	nis bit can be rea	d or cleared (n	ot set).							
Le	ne IPL<2:0> bits evel. The value in L<3> = 1.									

3: The IPL<2:0> Status bits are read-only when NSTDIS = 1 (INTCON1<15>).

TABLE 4-19: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ12MC201

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	06C0	_	_	—			RP1R<4:0>	•		—	_	—			RP0R<4:0>			0000
RPOR2	06C4	_	_	_	_	_	_	_	_	_	_	_			RP4R<4:0>			0000
RPOR3	06C6	_	_	_			RP7R<4:0>	•		_	_	_	_	_	_	_	_	0000
RPOR4	06C8	_	_	_			RP9R<4:0>	•		_	_	_			RP8R<4:0>			0000
RPOR6	06CC	_	_	_		RP13R<4:0>				_	_	_	RP12R<4:0>				0000	
RPOR7	06CE	_	_	_		RP15R<4:0>				_	—	_		F	RP14R<4:0>			0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-20: PORTA REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	-	_		_	_	_	-	_			_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	001F
PORTA	02C2	_	_	-		_	_	-	-	-	-	_	RA4	RA3	RA2	RA1	RA0	xxxx
LATA	02C4	-	_	_	_	_	_	_	_	_	_	_	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
ODCA	02C6	_	—	_	_	_	_	_	_	_	_	_	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-21: PORTB REGISTER MAP FOR dsPIC33FJ12MC202

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	02CA	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	02CC	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	02CE	ODCB15	ODCB14	ODCB13	ODCB12	ODCB11	ODCB10	ODCB9	ODCB8	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-22: PORTB REGISTER MAP FOR dsPIC33FJ12MC201

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8	TRISB15	TRISB14	TRISB13	TRISB12	_	_	TRISB9	TRISB8	TRISB7	—	—	TRISB4	_	_	TRISB1	TRISB0	F393
PORTB	02CA	RB15	RB14	RB13	RB12	-	_	RB9	RB8	RB7	—	—	RB4	_	—	RB1	RB0	xxxx
LATB	02CC	LATB15	LATB14	LATB13	LATB12	-	_	LATB9	LATB8	LATB7	—	—	LATB4	_	—	LATB1	LATB0	xxxx
ODCB	02CE	ODCB15	ODCB14	ODCB13	ODCB12	_	_	ODCB9	ODCB8	ODCB7	_	_	ODCB4	—	_	ODCB1	ODCB0	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 1 BOR: Brown-out Reset Flag bit
 - 1 = A Brown-out Reset has occurred 0 = A Brown-out Reset has not occurred
- bit 0 **POR:** Power-on Reset Flag bit
 - 1 = A Power-on Reset has occurred
 - 0 = A Power-on Reset has not occurred
- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

dsPIC33FJ12MC201/202

REGISTER 7-1: SR: CPU STATUS REGISTER⁽¹⁾

R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R -0	R/W-0
OA	OB	SA	SB	OAB	SAB	DA	DC
bit 15							bit 8

R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С
bit 7							bit 0

Legend:			
C = Clear only bit	R = Readable bit	U = Unimplemented bit, read as '0'	
S = Set only bit	W = Writable bit	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits⁽¹⁾

111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled

- 110 = CPU Interrupt Priority Level is 6 (14)
- 101 = CPU Interrupt Priority Level is 5 (13)
- 100 = CPU Interrupt Priority Level is 4 (12)
- 011 = CPU Interrupt Priority Level is 3 (11)
- 010 = CPU Interrupt Priority Level is 2 (10)
- 001 = CPU Interrupt Priority Level is 1 (9)
- 000 = CPU Interrupt Priority Level is 0 (8)

Note 1: For complete register details, see Register 3-1: "SR: CPU Status Register".

- 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
- **3:** The IPL<2:0> Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0
_	—	_	US	EDT		DL<2:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF
bit 7							bit 0
Legend:		C = Clear only	y bit				
R = Readable	bit	W = Writable	bit	-n = Value at	POR	'1' = Bit is set	
0' = Bit is clea	red	'x = Bit is unk	nown	U = Unimple	mented bit, rea	d as '0'	
bit 3	IPL3: CPU In	terrupt Priority	Level Status	bit 3 ⁽²⁾			
	1 = CPU inter	rupt priority lev	el is greater t	han 7			
	0 = CPU inter	rupt priority lev	el is 7 or less	6			

Note 1: For complete register details, see Register 3-2: "CORCON: Core Control Register".

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE
bit 15							bit 8
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
SFTACERR	DIV0ERR		MATHERR	ADDRERR	STKERR	OSCFAIL	_
bit 7							bit 0
Logondi							
Legend: R = Readable	hit	W = Writable	hit	II = I Inimpler	nented bit, read	l as '0'	
-n = Value at F		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own
					uicu		own
bit 15	NSTDIS: Inte	rrupt Nesting D	isable bit				
		nesting is disab					
	0 = Interrupt r	nesting is enab	led				
bit 14		cumulator A O	•	•			
		caused by ove not caused by					
bit 13	•	cumulator B O					
		caused by ove	•	•			
	0 = Trap was	not caused by	overflow of Ac	cumulator B			
bit 12		Accumulator A	-	-	-		
		caused by cata not caused by					
bit 11	-	Accumulator B	-				
		caused by cata	-	•	•		
	0 = Trap was	not caused by	catastrophic o	verflow of Acc			
bit 10		imulator A Ove	=	able bit			
	1 = Trap over 0 = Trap disal	flow of Accumu bled	ulator A				
bit 9		umulator B Ove	•	able bit			
	1 = Trap over 0 = Trap disal	flow of Accumu bled	ulator B				
bit 8	COVTE: Cata	strophic Overf	low Trap Enab	le bit			
	1 = Trap on c 0 = Trap disal	atastrophic ove bled	erflow of Accun	nulator A or B	enabled		
bit 7	SFTACERR:	Shift Accumula	ator Error Statu	s bit			
		r trap was caus r trap was not o					
bit 6	DIVOERR: Ar	ithmetic Error 8	Status bit				
		r trap was caus					
1.1.E		r trap was not	-	vide by zero			
bit 5	•	ted: Read as '					
		Arithmetic Error					
bit 4							
bit 4		r trap has occu r trap has not c					
bit 4 bit 3	0 = Math erro		occurred				

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3) (CONTINUED)

bit 3	CF: Clock Fail Detect bit (read/clear by application) 1 = FSCM has detected clock failure 0 = FSCM has not detected clock failure
bit 2	Unimplemented: Read as '0'
bit 1	LPOSCEN: Secondary (LP) Oscillator Enable bit 1 = Enable secondary oscillator 0 = Disable secondary oscillator
bit 0	OSWEN: Oscillator Switch Enable bit 1 = Request oscillator switch to selection specified by NOSC<2:0> bits 0 = Oscillator switch is complete

- **Note 1:** Writes to this register require an unlock sequence. Refer to **Section 7. "Oscillator"** (DS70186) in the *"dsPIC33F/PIC24H Family Reference Manual"* (available from the Microchip web site) for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - **3:** This register is reset only on a Power-on Reset (POR).

9.0 POWER-SAVING FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33FJ12MC201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog Timer and Power-Saving Modes" (DS70196) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The dsPIC33FJ12MC201/202 devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. dsPIC33FJ12MC201/202 devices can manage power consumption in four different ways:

- Clock frequency
- Instruction-based Sleep and Idle modes
- Software-controlled Doze mode
- Selective peripheral control in software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

9.1 Clock Frequency and Clock Switching

dsPIC33FJ12MC201/202 devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 8.0 "Oscillator Configuration"**.

9.2 Instruction-Based Power-Saving Modes

dsPIC33FJ12MC201/202 devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 9-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to wake-up.

9.2.1 SLEEP MODE

The following occur in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled
- The LPRC clock continues to run in Sleep mode if the WDT is enabled
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode
- Some device features or peripherals may continue to operate. This includes items such as the input change notification on the I/O ports, or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled

The device will wake-up from Sleep mode on any of the these events:

- · Any interrupt source that is individually enabled
- · Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

EXAMPLE 9-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV#SLEEP_MODE; Put the device into Sleep modePWRSAV#IDLE_MODE; Put the device into Idle mode

REGISTER 9)-3: PMD3	PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3						
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	
—	—	—		—		—	—	
bit 15							bit 8	
U-0	U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	
—	—	—	PWM2MD	—	—	—	—	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown		

bit 15-5 Unimplemented: Read as '0'

bit 4 PWM2MD: PWM2 Module Disable bit

1 = PWM2 module is disabled

0 = PWM2 module is enabled

bit 3-0 Unimplemented: Read as '0'

REGISTER 10-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	_	—	_	—	—	—	_	
bit 15	·						bit 8	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
_	—	—			INT2R<4:0>			
bit 7	·		•				bit 0	
Legend:								
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'					
-n = Value at	t POR	'1' = Bit is se	t	'0' = Bit is cleared		x = Bit is unknown		
bit 15-5	Unimpleme	nted: Read as	0'					
bit 4-0	INT2R<4:0>	: Assign Extern	al Interrupt 2	(INTR2) to the	corresponding	RPn pin		
	11111 = Inp	ut tied Vss						
	01111 = Inp	ut tied to RP15						
	•							
	00001 = Inp	ut tied to RP1						

00000 = Input tied to RP0

dsPIC33FJ12MC201/202

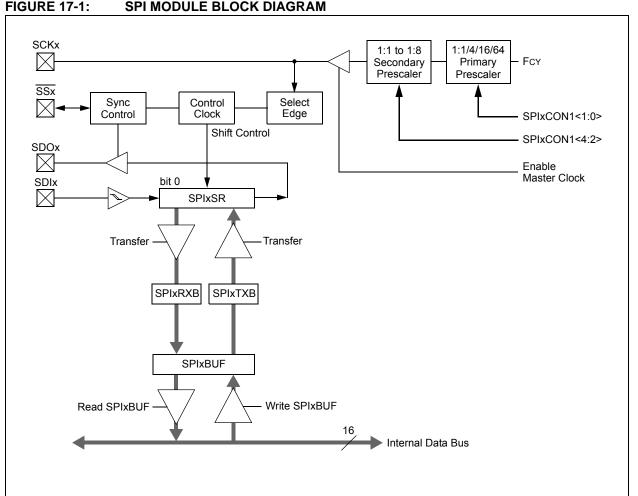
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
TON		TSIDL		_	—	—	_				
bit 15							bit				
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0				
	TGATE	TCKP	S<1:0>		TSYNC	TCS					
bit 7							bit				
Legend:											
-		W = Writable	bit	U = Unimple	mented bit, read	d as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unknown					
bit 15	TON: Timer1	On bit									
	1 = Starts 16										
	0 = Stops 16										
bit 14	-	nted: Read as '									
bit 13	=	in Idle Mode bi									
		ue module ope module operat			ale mode						
bit 12-7		 0 = Continue module operation in Idle mode Unimplemented: Read as '0' 									
bit 6	-	TGATE: Timer1 Gated Time Accumulation Enable bit									
	When TCS =										
	This bit is ign	ored.									
	When TCS =										
		ne accumulatio									
bit 5-4		 0 = Gated time accumulation disabled TCKPS<1:0>: Timer1 Input Clock Prescale Select bits 									
	11 = 1:256										
	10 = 1:64										
	01 = 1:8 00 = 1:1										
bit 3		nted: Read as '	0'								
bit 2	•	er1 External Cl		chronization S	elect hit						
	When TCS =		ook input oyi								
	1 = Synchror	1 = Synchronize external clock input									
	-	nchronize exte	ernal clock inp	out							
	When TCS = This bit is ign										
bit 1	-	Clock Source	Select bit								
		clock from pin		rising edge)							
	0 = Internal o		(* ····	0 0 - /							
bit 0	Unimplomor	nted: Read as '	o'								

REGISTER 16-1: QEIXCON: QEI CONTROL REGISTER

R/W-0	U-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
CNTERR		QEISIDL	INDEX	UPDN		QEIM<2:0>	
bit 15				1			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SWPAB	PCDOUT	TQGATE	TQCK	PS<1:0>	POSRES	TQCS	UPDN_SRC
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unl	known
bit 15		ount Error Statu	•				
		count error has on count error h					
					- (110 ² or (100	,	
bit 14		-	• • • •	en QEIIVI<2:02	• = '110' or '100		
bit 14	-	ted: Read as '					
bit 13	1 = Discontin	op in Idle Mode ue module ope module operat	ration when d		lle mode		
bit 12		c Pin State Stat is High					
bit 11	1 = Position (0 = Position ((Read-onl	on Counter Dir Counter Directio Counter Directio ly bit when QEI ite bit when QE	on is positive on is negative M<2:0> = '1x	(+) (-) X')			
bit 10-8	•	Quadrature En			t bits		
	(MAXC	CNT)			with position co with Index Puls		
	101 = Quadra (MAXC	ature Encoder NT)	nterface enab	oled (x2 mode)	with position co	ounter reset by	y match
	011 = Unuse	d (Module disa d (Module disa	bled)	bled (x2 mode)	with Index Puls	e reset of pos	sition counter
	000 = Quadra	ature Encoder	nterface/Time	er off			
bit 7		ise A and Phas	-	-			
		and Phase B ir					
		and Phase B ir	•	•			
bit 6		sition Counter		•			
					El logic controls	•	n)
5.4 C					Normal I/O pin o	peration)	
bit 5		ner Gated Time					
	•	ed time accum					
	v = 1 imer gat	ed time accum	uiation disable	eu			

17.0 SERIAL PERIPHERAL **INTERFACE (SPI)**

- Note 1: This data sheet summarizes the features of the dsPIC33FJ12MC201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 18. "Serial Peripheral Interface (SPI)" (DS70206) of the "dsPIC33F/PIC24H Family Reference Manual", which is available on the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, analog-to-digital converters, etc. The SPI module is compatible with SPI and SIOP from Motorola[®].

Each SPI module consists of a 16-bit shift register. SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates status conditions.

The serial interface consists of four pins:

- SDIx (serial data input)
- SDOx (serial data output)
- SCKx (shift clock input or output)
- SSx (active low slave select).

In Master mode operation, SCK is a clock output. In Slave mode, it is a clock input.

SPI MODULE BLOCK DIAGRAM

REGISTER 17-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

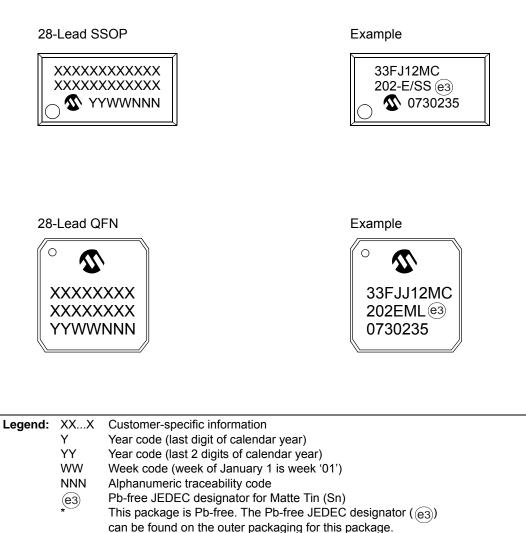
- **Note 1:** The CKE bit is not used in the Framed SPI modes. Program this bit to '0' for the Framed SPI modes (FRMEN = 1).
 - 2: This bit must be cleared when FRMEN = 1.
 - 3: Do not set both Primary and Secondary prescalers to a value of 1:1.

TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
66	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
67	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None
		SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None
68	SE	SE	Ws,Wnd	Wnd = sign-extended Ws	1	1	C,N,Z
69	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
70	SFTAC	SFTAC	Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB SA,SB,SAB
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB SA,SB,SAB
71	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
72	SUB	SUB	Асс	Subtract Accumulators	1	1	OA,OB,OAB SA,SB,SAB
		SUB	f	f = f – WREG	1	1	C,DC,N,OV,2
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,
		SUB	#lit10,Wn	Wn = Wn - Iit10	1	1	C,DC,N,OV,
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,
		SUB	Wb,#lit5,Wd	Wd = Wb – lit5	1	1	C,DC,N,OV,
73	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,2
		SUBB	f,WREG	WREG = f – WREG – (\overline{C})	1	1	C,DC,N,OV,
		SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C,DC,N,OV,
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,
74	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,
75	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,
		SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C,DC,N,OV,
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,
76	SWAP	SWAP.b	Wn	Wn = nibble swap Wn	1	1	None
		SWAP	Wn	Wn = byte swap Wn	1	1	None
77	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
78	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
79	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
80	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
81	ULNK	ULNK		Unlink Frame Pointer	1	1	None
82	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
83	ZE	ZE	Ws,Wnd	Wnd = Zero-extend Ws	1	1	C,Z,N

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Parameter No.	Typical ⁽¹⁾	Max	Units	Conditions				
Idle Current (I	DLE): Core OF	F Clock ON	Base Curren	t ⁽²⁾				
DC40d	3	25	mA	-40°C				
DC40a	3	25	mA	+25°C		10 MIPS ⁽³⁾		
DC40b	3	25	mA	+85°C	3.3V			
DC40c	3	25	mA	+125°C				
DC41d	4	25	mA	-40°C				
DC41a	4	25	mA	+25°C	- 3.3V	16 MIPS ⁽³⁾		
DC41b	5	25	mA	+85°C		10 MIPS(*/		
DC41c	5	25	mA	+125°C				
DC42d	6	25	mA	-40°C				
DC42a	6	25	mA	+25°C	2.21/	20 MIPS ⁽³⁾		
DC42b	7	25	mA	+85°C	- 3.3V	20 MIPS(*)		
DC42c	7	25	mA	+125°C				
DC43a	9	25	mA	+25°C				
DC43d	9	25	mA	-40°C	2.2)/	30 MIPS ⁽³⁾		
DC43b	9	25	mA	+85°C	- 3.3V	30 MIPS(%)		
DC43c	9	25	mA	+125°C]			
DC44d	10	25	mA	-40°C				
DC44a	10	25	mA	+25°C	2.2)/			
DC44b	10	25	mA	+85°C	- 3.3V	40 MIPS		
DC44c	10	25	mA	+125°C	1			

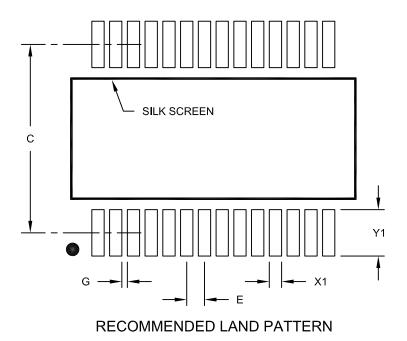
TABLE 24-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)


Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: Base IIDLE current is measured with core off, clock on and all modules turned off. Peripheral Module Disable SFR registers are zeroed. All I/O pins are configured as inputs and pulled to Vss.

3: These parameters are characterized, but not tested in manufacturing.

dsPIC33FJ12MC201/202


25.1 Package Marking Information (Continued)

Note: If the full Microchip part number cannot be marked on one line, it is carried over to the next line, thus limiting the number of available characters for customer-specific information.

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Ν	ILLIMETER:	S	
Dimension	Dimension Limits			MAX
Contact Pitch	E		0.65 BSC	
Contact Pad Spacing	С		7.20	
Contact Pad Width (X28)	X1			0.45
Contact Pad Length (X28)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2

INDEX

Α	
AC Characteristics	
Internal RC Accuracy	
Load Conditions	
ADC	
Initialization	193
Key Features	193
ADC Module	
ADC1 Register Map	
ADC11 Register Map	
Alternate Interrupt Vector Table (AIVT)	71
Analog-to-Digital Converter (ADC)	193
Arithmetic Logic Unit (ALU)	
MPASM Assembler	

В

Barrel Shifter	
Bit-Reversed Addressing	51
Example	
Implementation	51
Sequence Table (16-Entry)	
Block Diagrams	
16-bit Timer1 Module	
Connections for On-Chip Voltage Regulator	208
Device Clock	. 103, 105
DSP Engine	
dsPIC33FJ12MC201/202	10
dsPIC33FJ12MC201/202 CPU Core	
Input Capture	
Output Compare	151
PLL	105
PWM Module	. 156, 157
Quadrature Encoder Interface	
Reset System	63
Shared Port Structure	119
SPI	173
Timer2 (16-bit)	
Timer2/3 (32-bit)	
UART	
Watchdog Timer (WDT)	

С

C Compilers	
MPLAB C18	
Clock Switching	112
Enabling	112
Sequence	
Code Examples	
Erasing a Program Memory Page	61
Initiating a Programming Sequence	62
Loading Write Buffers	62
Port Write/Read	120
PWRSAV Instruction Syntax	113
Code Protection	205, 210
Configuration Bits	
	~~-
Configuration Register Map	
Configuration Register Map Configuring Analog Port Pins	
Configuring Analog Port Pins	120
Configuring Analog Port Pins CPU Control Register	
Configuring Analog Port Pins CPU	
Configuring Analog Port Pins CPU Control Register CPU Clocking System	
Configuring Analog Port Pins CPU Control Register CPU Clocking System PLL Configuration	

Customer Change Notification Service	
Customer Notification Service	
Customer Support	301
D	
-	
Data Accumulators and Adder/Subtracter	
Data Space Write Saturation	
Overflow and Saturation	
Round Logic	
Write Back	
Data Address Space	
Alignment	
Memory Map for dsPIC33FJ12MC201/202 Devices	
1 KB RAM	
Near Data Space	
Software Stack	
Width	
DC Characteristics	
I/O Pin Input Specifications	
I/O Pin Output Specifications	
Idle Current (IDOZE)	
Idle Current (IIDLE)	
Operating Current (IDD)	
Power-Down Current (IPD)	
Program Memory	
Temperature and Voltage Specifications	
Development Support	
Doze Mode	
DSP Engine	. 25
Multiplier	. 27
E	
—	
Electrical Characteristics	
AC	234
Equations	
Device Operating Frequency	
Errata	8
F	
•	
Flash Program Memory	
Control Registers	
Operations	
Programming Algorithm	
RTSP Operation	
Table Instructions	~~-
Flexible Configuration	205
- I/O Borto	110
I/O Ports	
Parallel I/O (PIO)	
Write/Read Timing	120
Addresses	100
Operating Modes	
Registers	179
I ² C Module	14
I2C1 Register Map	
In-Circuit Debugger	
In-Circuit Emulation	
In-Circuit Serial Programming (ICSP) 205,	
Input Capture	
Registers	
Input Change Notification	
Instruction Addressing Modes	
File Register Instructions	. 48

© 2007-2011 Microchip Technology Inc.