

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

·XF

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, QEI, POR, PWM, WDT
Number of I/O	21
Program Memory Size	12KB (12K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj12mc202t-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.6.1 MULTIPLIER

The 17-bit x 17-bit multiplier is capable of signed or unsigned operation and can multiplex its output using a scaler to support either 1.31 fractional (Q31) or 32-bit integer results. Unsigned operands are zero-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. Signed to 40 bits. Integer data is inherently represented as a signed 2's complement value, where the Most Significant bit (MSb) is defined as a sign bit. The range of an N-bit 2's complement integer is -2^{N-1} to $2^{N-1} - 1$.

- For a 16-bit integer, the data range is -32768 (0x8000) to 32767 (0x7FFF) including 0.
- For a 32-bit integer, the data range is
 -2,147,483,648 (0x8000 0000) to 2,147,483,647 (0x7FFF FFFF).

When the multiplier is configured for fractional multiplication, the data is represented as a 2's complement fraction, where the MSb is defined as a sign bit and the radix point is implied to lie just after the sign bit (QX format). The range of an N-bit 2's complement fraction with this implied radix point is -1.0 to $(1 - 2^{1-N})$. For a 16-bit fraction, the Q15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF) including 0 and has a precision of 3.01518x10⁻⁵. In Fractional mode, the 16 x 16 multiply operation generates a 1.31 product that has a precision of 4.65661 x 10⁻¹⁰.

The same multiplier is used to support the MCU multiply instructions, which include integer 16-bit signed, unsigned and mixed sign multiply operations.

The MUL instruction can be directed to use byte- or word-sized operands. Byte operands will direct a 16-bit result, and word operands will direct a 32-bit result to the specified register(s) in the W array.

3.6.2 DATA ACCUMULATORS AND ADDER/SUBTRACTER

The data accumulator consists of a 40-bit adder/ subtracter with automatic sign extension logic. It can select one of two accumulators (A or B) as its preaccumulation source and post-accumulation destination. For the ADD and LAC instructions, the data to be accumulated or loaded can be optionally scaled using the barrel shifter prior to accumulation.

3.6.2.1 Adder/Subtracter, Overflow and Saturation

The adder/subtracter is a 40-bit adder with an optional zero input into one side, and either true or complement data into the other input.

- In the case of addition, the Carry/Borrow input is active-high and the other input is true data (not complemented).
- In the case of subtraction, the Carry/Borrow input is active-low and the other input is complemented.

The adder/subtracter generates Overflow Status bits, SA/SB and OA/OB, which are latched and reflected in the STATUS register:

- Overflow from bit 39: this is a catastrophic overflow in which the sign of the accumulator is destroyed.
- Overflow into guard bits 32 through 39: this is a recoverable overflow. This bit is set whenever all the guard bits are not identical to each other.

The adder has an additional saturation block that controls accumulator data saturation, if selected. It uses the result of the adder, the Overflow Status bits described previously and the SAT<A:B> (CORCON<7:6>) and ACCSAT (CORCON<4>) mode control bits to determine when and to what value, to saturate.

Six STATUS register bits support saturation and overflow:

- OA: ACCA overflowed into guard bits
- OB: ACCB overflowed into guard bits
- SA: ACCA saturated (bit 31 overflow and saturation)

ACCA overflowed into guard bits and saturated (bit 39 overflow and saturation)

- SB: ACCB saturated (bit 31 overflow and saturation)
- or

ACCB overflowed into guard bits and saturated (bit 39 overflow and saturation)

- OAB: Logical OR of OA and OB
- SAB: Logical OR of SA and SB

The OA and OB bits are modified each time data passes through the adder/subtracter. When set, they indicate that the most recent operation has overflowed into the accumulator guard bits (bits 32 through 39). The OA and OB bits can also optionally generate an arithmetic warning trap when OA and OB are set and the corresponding Overflow Trap Flag Enable bits (OVATE, OVBTE) in the INTCON1 register are set (refer to **Section 7.0 "Interrupt Controller"**). This allows the user application to take immediate action; for example, to correct system gain.

dsPIC33FJ12MC201/202

R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
TRAPR	IOPUWR		_			CM	VREGS
bit 15						•	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7	_	1					bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	TRAPR: Trap	Reset Flag bit					
	1 = A Trap Co	onflict Reset has	s occurred				
	0 = A Trap Co	onflict Reset has	s not occurre	d			
bit 14	IOPUWR: Ille	gal Opcode or I	Uninitialized	W Access Rese	et Flag bit		
	1 = An illega	I opcode detec	ction, an illeg	gal address mo	ode or uninitial	ized W registe	er used as an
	Address	Pointer caused	a Reset				
	0 = An illegal	l opcode or unir	nitialized W R	Reset has not o	ccurred		
bit 13-10	Unimplemen	ted: Read as '0)'				
bit 9	CM: Configur	ation Mismatch	Flag bit				
	$\perp = A configure$	ration mismatcr	n Reset has c n Reset has r	occurred			
hit 8	VREGS: Volta	age Regulator S	tandby Durir	ng Sleen hit			
bit o	1 = Voltage r	equilator is activ	e durina Slee	en			
	0 = Voltage r	egulator goes ir	nto Standby r	node during Sle	еер		
bit 7	EXTR: Extern	nal Reset (MCLI	R) Pin bit				
	1 = A Master	Clear (pin) Res	et has occuri	red			
	0 = A Master	Clear (pin) Res	et has not oc	curred			
bit 6	SWR: Softwa	re Reset (Instru	iction) Flag b	it			
	1 = A RESET	instruction has	been execute	ed			
	$0 = \mathbf{A} \text{ RESET}$	Instruction has	not been exe				
bit 5	SWDTEN: So	oftware Enable/I	Disable of WI	DI bit ⁽²⁾			
	1 = WDT is ei	nabled					
hit 4		bdog Timor Tim	o out Elaa bi	+			
DIL 4	1 = WDT time		e-out riay bi ed	i t			
	0 = WDT time	e-out has occur	curred				
bit 3	SLEEP: Wake	e-up from Sleer	o Flag bit				
	1 = Device ha	as been in Sleer	o mode				
	0 = Device ha	as not been in S	leep mode				
bit 2	IDLE: Wake-u	up from Idle Fla	g bit				
	1 = Device wa	as in Idle mode					
	0 = Device wa	as not in Idle mo	ode				
Note 1: All	of the Reset sta	atus bits can be	set or cleared	d in software. S	etting one of the	ese bits in softw	vare does not

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

cause a device Reset.

2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

r							
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
		CNIP<2:0>				_	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		MI2C1IP<2:0>		<u> </u>		SI2C1IP<2:0>	
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
bit 15	Unimpleme	ented: Read as '	0'				
bit 14-12	CNIP<2:0>	: Change Notifica	ation Interrup	t Priority bits			
	111 = Interr	rupt is priority 7 (highest priori	ty interrupt)			
	•						
	•						
	001 = Interr	rupt is priority 1					
	000 = Interr	rupt source is dis	abled				
bit 11-7	Unimpleme	ented: Read as '	0'				
bit 6-4	MI2C1IP<2	:0>: I2C1 Master	r Events Inter	rupt Priority bit	S		
	111 = Interr	rupt is priority 7 (highest priori	ty interrupt)			
	•						
	•						
	001 = Interr	rupt is priority 1					
	000 = Interr	rupt source is dis	abled				
bit 3	Unimpleme	ented: Read as '	0'				
bit 2-0	SI2C1IP<2:	0>: I2C1 Slave E	Events Interru	pt Priority bits			
	111 = Interr	rupt is priority 7 (highest priori	ty interrupt)			
	•						
	•						
	001 = Interr	rupt is priority 1					
	000 = Interr	rupt source is dis	abled				

REGISTER 7-17: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0			
	_		—		ILR	<3:0>				
bit 15							bit 8			
L										
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
	VECNUM<6:0>									
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable b	bit	U = Unimple	mented bit, rea	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown			
bit 15-12	Unimplemen	ted: Read as '0	,							
bit 11-8	ILR<3:0>: Ne	w CPU Interrup	ot Priority Lev	el bits						
	1111 = CPU	Interrupt Priority	/ Level is 15							
	•									
	•									
	0001 = CPU	Interrupt Priority	/ Level is 1							
	0000 = CPU	Interrupt Priority	/Level is 0							
bit 7	Unimplemen	ted: Read as '0	,							
bit 6-0	VECNUM<6:0	>: Vector Num	ber of Pendir	ng Interrupt bit	S					
	0111111 = In	terrupt Vector p	ending is nu	mber 135						
	•									
	•									
	0000001 = In	terrupt Vector p	ending is nu	mber 9						
	0000000 = In	terrupt Vector p	ending is nu	mber 8						

REGISTER 7-24: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3) (CONTINUED)

bit 3	CF: Clock Fail Detect bit (read/clear by application) 1 = FSCM has detected clock failure 0 = FSCM has not detected clock failure
bit 2	Unimplemented: Read as '0'
bit 1	LPOSCEN: Secondary (LP) Oscillator Enable bit 1 = Enable secondary oscillator 0 = Disable secondary oscillator
bit 0	OSWEN: Oscillator Switch Enable bit 1 = Request oscillator switch to selection specified by NOSC<2:0> bits 0 = Oscillator switch is complete

- **Note 1:** Writes to this register require an unlock sequence. Refer to **Section 7. "Oscillator"** (DS70186) in the *"dsPIC33F/PIC24H Family Reference Manual"* (available from the Microchip web site) for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - **3:** This register is reset only on a Power-on Reset (POR).

dsPIC33FJ12MC201/202

REGISTER	8 9-2: PMD2	2: PERIPHER	AL MODULE	E DISABLE C		EGISTER 2				
R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0			
IC8MD	IC7MD	—		—	_	IC2MD	IC1MD			
bit 15										
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0			
_	—	—		—		OC2MD	OC1MD			
bit 7							bit 0			
Legend:										
R = Readab	ole bit	W = Writable I	bit	U = Unimplen	nented bit, rea	ad as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15	IC8MD: Input	Capture 8 Mod	lule Disable bi	t						
	1 = Input Cap	oture 8 module i	s disabled							
	0 = Input Cap	oture 8 module i	s enabled							
bit 14	IC7MD: Input	Capture 2 Mod	lule Disable bi	t						
	1 = Input Cap	oture 7 module i oture 7 module i	s disabled							
bit 13_10		ted: Pead as '	3 CHADICU							
bit Q		Capture 2 Mod	, Iule Disable bi	+						
DIL 9	1 = Input Car	ture 2 module i	s disabled	ι						
	0 = Input Cap	oture 2 module i	s enabled							
bit 8	IC1MD: Input	Capture 1 Mod	lule Disable bi	t						
	1 = Input Cap	1 = Input Capture 1 module is disabled								
	0 = Input Cap	oture 1 module i	s enabled							
bit 7-2	Unimplemen	ted: Read as 'o)'							
bit 1	OC2MD: Out	put Compare 2	Module Disab	le bit						
	1 = Output Co	ompare 2 modu	le is disabled							
	0 = Output Co	ompare 2 modu	le is enabled							
bit 0	OC1MD: Out	put Compare 1	Module Disab	le bit						
	1 = Output Co 0 = Output Co	ompare 1 modu ompare 1 modu	le is disabled							

REGISTER 10-4: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

U-0	<u>U-0</u>	<u> </u>	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
_	—	—			IC2R<4:0>						
bit 15							bit 8				
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
_	_	_			IC1R<4:0>						
bit 7		•					bit 0				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimplei	mented bit, rea	ad as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 15-13	Unimpleme	ented: Read as '	0'								
hit 12_8	IC2R-4.05	Assian Input Ca	\sim	to the correspo	ondina RPn nij	n					
bit 12-0	111111 - Inr	11111 = 1000000000000000000000000000000									
	01111 = lnr	but tied to RP15									
	-										
	00001 = Input tied to RP1										
	00000 = In p	out tied to RP0									
bit 7-5	Unimpleme	ented: Read as '	0'								
bit 4-0	IC1R<4:0>:	Assign Input Ca	apture 1 (IC1)	to the correspo	onding RPn pir	า					
	11111 = Inr	out tied Vss	,	•	0 1						
	01111 = Inp	out tied to RP15									
	00001 = In p	out tied to RP1									
	00000 = In p	out tied to RP0									

REGISTER 10-6: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
—	—	—			OCFAR<4:0>			
bit 7 bit 0								
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15-5	Unimplemen	ted: Read as '	0'					
bit 4-0	OCFAR<4:0>	: Assign Outpu	it Capture A (OCFA) to the c	corresponding R	Pn pin		
	11111 = Inpu	t tied Vss						
	01111 = Inpu	t tied to RP15						

. 00001 = Input tied to RP1 00000 = Input tied to RP0

REGISTER 10-7: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—			—	—	—		—
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—			FLTA1R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-5	Unimplemented: Read as '0'
bit 4-0	FLTA1R<4:0>: Assign PWM1 Fault (FLTA1) to the corresponding RPn pin
	11111 = Input tied Vss
	01111 = Input tied to RP15
	•
	00001 = Input tied to RP1
	00000 = Input tied to RP0

REGISTER 10-9: RPINR14: PERIPHERAL PIN SELECT INPUT REGISTER 14

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—			QEB1R<4:0	>	
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—				QEA1R<4:0	>	
bit 7							bit 0
Γ							
Legend:							
R = Readable	bit	W = Writable	oit	U = Unimpler	mented bit, rea	id as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13 bit 12-8 bit 7-5	Unimplement QEB1R<4:0> 11111 = Inpu 01111 = Inpu	ted: Read as 'd : Assign B (QE t tied Vss t tied to RP15 t tied to RP1 t tied to RP1 t tied to RP0 ted: Read as 'd)' B) to the corr	responding pin			
bit 4-0	QEA1R<4:0> 11111 = Inpu 01111 = Inpu 00001 = Inpu 00000 = Inpu	: Assign A (QE t tied Vss t tied to RP15 t tied to RP1 t tied to RP0	A) to the corr	responding pin			

14.0 OUTPUT COMPARE

- Note 1: This data sheet summarizes the features of the dsPIC33FJ12MC201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 13. "Output Compare" (DS70209) of the "dsPIC33F/ PIC24H Family Reference Manual", which is available on the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Output Compare module can select either Timer2 or Timer3 for its time base. The module compares the value of the timer with the value of one or two compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the compare register value. The Output Compare module generates either a single output pulse or a sequence of output pulses, by changing the state of the output pin on the compare match events. The Output Compare module can also generate interrupts on compare match events.

The Output Compare module has multiple operating modes:

- Active-Low One-Shot mode
- Active-High One-Shot mode
- Toggle mode
- · Delayed One-Shot mode
- Continuous Pulse mode
- PWM mode without fault protection
- · PWM mode with fault protection

FIGURE 14-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM

18.0 INTER-INTEGRATED CIRCUIT™ (I²C™)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ12MC201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70195) of the "dsPIC33F/PIC24H Family Reference Manual", which is available on the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Inter-Integrated Circuit TM (I²CTM) module provides complete hardware support for both Slave and Multi-Master modes of the I²C serial communication standard, with a 16-bit interface.

The I²C module has a 2-pin interface:

- The SCLx pin is clock
- The SDAx pin is data

The I²C module offers the following key features:

- I²C interface supporting both Master and Slave modes of operation.
- I²C Slave mode supports 7-bit and 10-bit addresses
- I²C Master mode supports 7-bit and 10-bit addresses
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation, detects bus collision and arbitrates accordingly

18.1 Operating Modes

The hardware fully implements all the master and slave functions of the I^2C Standard and Fast mode specifications, as well as 7-bit and 10-bit addressing.

The l^2C module can operate either as a slave or a master on an l^2C bus.

The following types of I²C operation are supported:

- I²C slave operation with 7-bit address
- I²C slave operation with 10-bit address
- I²C master operation with 7-bit or 10-bit address

For details about the communication sequence in each of these modes, refer to the Microchip web site (www.microchip.com) for the latest *"dsPIC33F/PIC24H Family Reference Manual"* sections.

18.2 I²C Registers

I2CxCON and I2CxSTAT are control and status registers, respectively. The I2CxCON register is readable and writable. The lower six bits of I2CxSTAT are read-only. The remaining bits of the I2CSTAT are read/write:

- · I2CxRSR is the shift register used for shifting data
- I2CxRCV is the receive buffer and the register to which data bytes are written, or from which data bytes are read
- I2CxTRN is the transmit register to which bytes are written during a transmit operation
- I2CxADD register holds the slave address
- · ADD10 status bit indicates 10-bit Address mode
- I2CxBRG acts as the Baud Rate Generator (BRG) reload value

In receive operations, I2CxRSR and I2CxRCV together form a double-buffered receiver. When I2CxRSR receives a complete byte, it is transferred to I2CxRCV, and an interrupt pulse is generated.

19.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ12MC201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 17. "UART" (DS70188) of the *"dsPIC33F/PIC24H Family Reference Manual"*, which is available on the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33FJ12MC201/202 device family. The UART is a full-duplex asynchronous system that can communicate with peripheral devices, such as personal computers, LIN, and RS-232, and RS-485 interfaces. The module <u>also supports a hardware flow</u> control option with the UxCTS and UxRTS pins and also includes an IrDA[®] encoder and decoder.

The primary features of the UART module are:

- Full-Duplex, 8-bit or 9-bit Data Transmission through the UxTX and UxRX pins
- Even, Odd, or No Parity Options (for 8-bit data)
- · One or two stop bits
- Hardware flow control option with UxCTS and UxRTS pins
- Fully integrated Baud Rate Generator with 16-bit prescaler
- Baud rates ranging from 10 Mbps to 38 bps at 40 MIPS
- 4-deep First-In First-Out (FIFO) Transmit Data buffer
- 4-deep FIFO Receive Data buffer
- Parity, framing and buffer overrun error detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive interrupts
- · A separate interrupt for all UART error conditions
- · Loopback mode for diagnostic support
- Support for sync and break characters
- · Support for automatic baud rate detection
- IrDA[®] encoder and decoder logic
- 16x baud clock output for IrDA[®] support

A simplified block diagram of the UART module is shown in Figure 19-1. The UART module consists of these key hardware elements:

- Baud Rate Generator
- Asynchronous Transmitter
- · Asynchronous Receiver

FIGURE 19-1: UART SIMPLIFIED BLOCK DIAGRAM

REGISTER 20-4: AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	—	—	_	_	CH123NB<1:0>		CH123SB
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	—	—		—	CH123N	NA<1:0>	CH123SA
bit 7							bit 0
Legend:			.,				
R = Readable	e bit	W = Writable t	Dit		nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
bit 15-11	Unimplemer	nted: Read as '0	,				
bit 10-9	CH123NB<1	:0>: Channel 1.	2, 3 Negative	Input Select fo	or Sample B bit	S	
bit 8	If AD12B = 1 11 = Reserve 10 = Reserve 01 = Reserve 00 = Reserve I1 = Reserve If AD12B = 1 I = Reserve I = CH1 posi I = Reserve I = CH1 posi I = CH1 posi I = CH1 posi I = CH1 posi		re input is VRE re input is VRE ositive Input S s only: 3, CH2 and Cl), CH2 positiv s only: 3, CH2 positiv	EF- EF- Select for Samp H3 positive inp e input is AN1, e input is AN4,	ole B bit uts are not con CH3 positive i CH3 positive i	nected nput is AN2	
bit 7-3	U = CH1 posi	nive input is ANC	, CHZ positiv	e input is AN1,	CH3 positive i	nput is AN2	

dsPIC33FJ12MC201/202

TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
29	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm , Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm , Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV
30	DIVF	DIVF	Wm,Wn	Signed 16/16-bit Fractional Divide	1	18	N,Z,C,OV
31	DO	DO	<pre>#lit14,Expr</pre>	Do code to PC + Expr, lit14 + 1 times	2	2	None
		DO	Wn,Expr	Do code to PC + Expr, (Wn) + 1 times	2	2	None
32	ED	ED	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance (no accumulate)		1	OA,OB,OAB, SA,SB,SAB
33	EDAC	EDAC	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance	1	1	OA,OB,OAB, SA,SB,SAB
34	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
35	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С
36	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
37	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С
38	GOTO	GOTO	Expr	Go to address	2	2	None
		GOTO	Wn	Go to indirect	1	2	None
39	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
40	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
41	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
42	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
43	LNK	LNK	#lit14	Link Frame Pointer	1	1	None
44	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
45	MAC	MAC	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd , AWB	Multiply and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
		MAC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
46	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	N,Z
		MOV	f,WREG	Move f to WREG	1	1	None
		MOV	#lit16,Wn	Move 16-bit literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
47	MOVSAC	MOVSAC	Acc,Wx,Wxd,Wy,Wyd,AWB	Prefetch and store accumulator	1	1	None

24.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJ12MC201/202 electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33FJ12MC201/202 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽⁴⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $V_{DD} \ge 3.0V^{(4)}$	0.3V to +5.6V
Voltage on any 5V tolerant pin with respect to Vss when $V_{DD} < 3.0V^{(4)}$	0.3V to (VDD + 0.3V)
Maximum current out of Vss pin	
Maximum current into VDD pin ⁽²⁾	250 mA
Maximum output current sunk by any I/O pin ⁽³⁾	4 mA
Maximum output current sourced by any I/O pin ⁽³⁾	4 mA
Maximum current sunk by all ports	
Maximum current sourced by all ports ⁽²⁾	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 24-2).
 - **3:** Exceptions are CLKOUT, which is able to sink/source 25 mA, and the VREF+, VREF-, SCLx, SDAx, PGECx, and PGEDx pins, which are able to sink/source 12 mA.
 - 4: See the "Pin Diagrams" section for 5V tolerant pins.

TABLE 24-28: SIMPLE OC/PWM MODE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param No.	Param No. Symbol Characteristic ⁽¹⁾		Min	Тур	Max	Units	Conditions
OC15	Tfd	Fault Input to PWM I/O Change	_		Tcy + 20	ns	_
OC20	TFLT	Fault Input Pulse Width	Tcy + 20	_	—	ns	—

Note 1: These parameters are characterized by similarity, but are not tested in manufacturing.

FIGURE 24-10: MOTOR CONTROL PWM MODULE FAULT TIMING CHARACTERISTICS

FIGURE 24-11: MOTOR CONTROL PWM MODULE TIMING CHARACTERISTICS

TABLE 24-35:SPIX MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING
REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended				
Param No.	ram Symbol Characteristic ⁽¹⁾			Тур ⁽²⁾	Max	Units	Conditions
SP10	TscP	Maximum SCK Frequency		—	9	MHz	-40°C to +125°C and see Note 3
SP20	TscF	SCKx Output Fall Time	_	_	_	ns	See parameter DO32 and Note 4
SP21	TscR	SCKx Output Rise Time	_	_	_	ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	_	—	_	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	_	_	_	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns	_
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns	_
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—		ns	_
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—		ns	—

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES			
Dimension	n Limits	MIN	NOM	MAX	
Number of Pins	Ν	28			
Pitch	е	.100 BSC			
Top to Seating Plane	А	—	-	.200	
Molded Package Thickness	A2	.120	.135	.150	
Base to Seating Plane	A1	.015	—	—	
Shoulder to Shoulder Width	E	.290	.310	.335	
Molded Package Width	E1	.240	.285	.295	
Overall Length	D	1.345	1.365	1.400	
Tip to Seating Plane	L	.110	.130	.150	
Lead Thickness	С	.008	.010	.015	
Upper Lead Width	b1	.040	.050	.070	
Lower Lead Width	b	.014	.018	.022	
Overall Row Spacing §	eB	_	_	.430	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units			MILLIMETERS			
Dimension Limits			MAX			
Contact Pitch E			0.65 BSC			
W2			4.25			
T2			4.25			
C1		5.70				
C2		5.70				
X1			0.37			
Y1			1.00			
G	0.20					
	Units Limits E W2 T2 C1 C2 X1 Y1 G	Units Limits MIN E W2 T2 C1 C2 X1 Y1 G 0.20	UnitsMINNOMLimitsMINNOME 0.65 BSCW2T2C15.70C25.70X1Y1G0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A

APPENDIX A: REVISION HISTORY

Revision A (January 2007)

This is the initial released version of this document.

Revision B (May 2007)

This revision includes the following corrections and updates:

- Minor typographical and formatting corrections throughout the data sheet text.
- New content:
 - Addition of bullet item (16-word conversion result buffer) (see Section 19.1 "Key Features")
- Figure update:
 - Oscillator System Diagram (see Figure 7-1)
 - WDT Block Diagram (see Figure 20-2)
- · Equation update:
 - Serial Clock Rate (see Equation 17-1)
- Register updates:
 - Clock Divisor Register (see Register 7-2)
 - PLL Feedback Divisor Register (see Register 7-3)
 - Peripheral Pin Select Input Registers (see Register 9-1 through Register 9-13)
 - Note 2 in PWM Control Register 1 (see Register 14-5)
 - ADC1 Input Channel 1, 2, 3 Select Register (see Register 19-4)
 - ADC1 Input Channel 0 Select Register (see Register 19-5)
- Table updates:
 - AD1CON3 (see Table 3-15 and Table 3-16)
 - RPINR15 (see Table 3-17)
 - TRISA (see Table 3-20)
 - TRISB (see Table 3-22)
 - Reset Flag Bit Operation (see Table 5-1)
 - Configuration Bit Values for Clock Operation (see Table 7-1)
- · Operation value update:
 - IOLOCK set/clear operation (see Section 9.4.3.1 "Control Register Lock")

- The following tables in Section 23.0 "Electrical Characteristics" have been updated with preliminary values:
 - Updated Max MIPS for -40°C to +125°C Temp Range (see Table 23-1)
 - Updated parameter DC18 (see Table 23-4)
 - Added new parameters for +125°C, and updated Typical and Max values for most parameters (see Table 23-5)
 - Added new parameters for +125°C, and updated Typical and Max values for most parameters (see Table 23-6)
 - Added new parameters for +125°C, and updated Typical and Max values for most parameters (see Table 23-7)
 - Added new parameters for +125°C, and updated Typical and Max values for most parameters (see Table 23-8)
 - Updated parameter DI51, added parameters DI51a, DI51b, and DI51c (see Table 23-9)
 - Added Note 1 (see Table 23-11)
 - Updated parameter OS30 (see Table 23-16)
 - Updated parameter OS52 (see Table 23-17)
 - Updated parameter F20, added Note 2 (see Table 23-18)
 - Updated parameter F21 (see Table 23-19)
 - Updated parameter TA15 (see Table 23-22)
 - Updated parameter TB15 (see Table 23-23)
 - Updated parameter TC15 (see Table 23-24)
 - Updated parameter IC15 (see Table 23-26)
 - Updated parameters AD05, AD06, AD07, AD08, AD10, and AD11; added parameters AD05a and AD06a; added Note 2; modified ADC Accuracy headings to include measurement information (see Table 23-38)
 - Separated the ADC Module Specifications table into three tables (see Table 23-38, Table 23-39, and Table 23-40)
 - Updated parameter AD50 (see Table 23-41)
 - Updated parameters AD50 and AD57 (see Table 23-42)