

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I²C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, QEI, POR, PWM, WDT
Number of I/O	21
Program Memory Size	12KB (12K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj12mc202t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.5 Arithmetic Logic Unit (ALU)

The dsPIC33FJ12MC201/202 ALU is 16 bits wide and is capable of addition, subtraction, bit shifts, and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV), and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157) for information on the SR bits affected by each instruction.

The dsPIC33FJ12MC201/202 CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit-divisor division.

3.5.1 MULTIPLIER

Using the high-speed 17-bit x 17-bit multiplier of the DSP engine, the ALU supports unsigned, signed or mixed-sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- · 8-bit unsigned x 8-bit unsigned

3.5.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 1. 32-bit signed/16-bit signed divide
- 2. 32-bit unsigned/16-bit unsigned divide
- 3. 16-bit signed/16-bit signed divide
- 4. 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.6 DSP Engine

The DSP engine consists of a high-speed 17-bit x 17-bit multiplier, a barrel shifter and a 40-bit adder/ subtracter (with two target accumulators, round and saturation logic).

The dsPIC33FJ12MC201/202 is a single-cycle instruction flow architecture; therefore, concurrent operation of the DSP engine with MCU instruction flow is not possible. However, some MCU ALU and DSP engine resources can be used concurrently by the same instruction (e.g., ED, EDAC).

The DSP engine can also perform inherent accumulator-to-accumulator operations that require no additional data. These instructions are ADD, SUB, and NEG.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON), as listed below:

- Fractional or integer DSP multiply (IF)
- Signed or unsigned DSP multiply (US)
- Conventional or convergent rounding (RND)
- Automatic saturation on/off for ACCA (SATA)
- Automatic saturation on/off for ACCB (SATB)
- Automatic saturation on/off for writes to data memory (SATDW)
- Accumulator Saturation mode selection (ACC-SAT)

A block diagram of the DSP engine is shown in Figure 3-3.

TABLE 3-1: DSP INSTRUCTIONS SUMMARY

Instruction	Algebraic Operation	ACC Write Back
CLR	A = 0	Yes
ED	$A = (x - y)^2$	No
EDAC	$A = A + (x - y)^2$	No
MAC	A = A + (x * y)	Yes
MAC	$A = A + x^2$	No
MOVSAC	No change in A	Yes
MPY	A = x * y	No
MPY	$A = x^2$	No
MPY.N	A = -x * y	No
MSC	A = A - x * y	Yes

3.6.3.1 Round Logic

The round logic is a combinational block that performs a conventional (biased) or convergent (unbiased) round function during an accumulator write (store). The Round mode is determined by the state of the RND bit in the CORCON register. It generates a 16-bit, 1.15 data value that is passed to the data space write saturation logic. If rounding is not indicated by the instruction, a truncated 1.15 data value is stored and the least significant word (lsw) is simply discarded.

Conventional rounding will zero-extend bit 15 of the accumulator and will add it to the ACCxH word (bits 16 through 31 of the accumulator).

- If the ACCxL word (bits 0 through 15 of the accumulator) is between 0x8000 and 0xFFFF (0x8000 included), ACCxH is incremented.
- If ACCxL is between 0x0000 and 0x7FFF, ACCxH is left unchanged.

A consequence of this algorithm is that over a succession of random rounding operations, the value tends to be biased slightly positive.

Convergent (or unbiased) rounding operates in the same manner as conventional rounding, except when ACCxL equals 0x8000. In this case, the Least Significant bit (LSb), bit 16 of the accumulator, of ACCxH is examined:

- If it is '1', ACCxH is incremented.
- If it is '0', ACCxH is not modified.

Assuming that bit 16 is effectively random in nature, this scheme removes any rounding bias that may accumulate.

The SAC and SAC.R instructions store either a truncated (SAC), or rounded (SAC.R) version of the contents of the target accumulator to data memory via the X bus, subject to data saturation (see **Section 3.6.3.2 "Data Space Write Saturation**"). For the MAC class of instructions, the accumulator writeback operation functions in the same manner, addressing combined MCU (X and Y) data space though the X bus. For this class of instructions, the data is always subject to rounding.

3.6.3.2 Data Space Write Saturation

In addition to adder/subtracter saturation, writes to data space can also be saturated, but without affecting the contents of the source accumulator. The data space write saturation logic block accepts a 16-bit, 1.15 fractional value from the round logic block as its input, together with overflow status from the original source (accumulator) and the 16-bit round adder. These inputs are combined and used to select the appropriate 1.15 fractional value as output to write to data space memory.

If the SATDW bit in the CORCON register is set, data (after rounding or truncation) is tested for overflow and adjusted accordingly:

- For input data greater than 0x007FFF, data written to memory is forced to the maximum positive 1.15 value, 0x7FFF.
- For input data less than 0xFF8000, data written to memory is forced to the maximum negative 1.15 value, 0x8000.

The MSb of the source (bit 39) is used to determine the sign of the operand being tested.

If the SATDW bit in the CORCON register is not set, the input data is always passed through unmodified under all conditions.

3.6.4 BARREL SHIFTER

The barrel shifter can perform up to 16-bit arithmetic or logic right shifts, or up to 16-bit left shifts, in a single cycle. The source can be either of the two DSP accumulators or the X bus (to support multi-bit shifts of register or memory data).

The shifter requires a signed binary value to determine both the magnitude (number of bits) and direction of the shift operation. A positive value shifts the operand right. A negative value shifts the operand left. A value of '0' does not modify the operand.

The barrel shifter is 40 bits wide, thereby obtaining a 40-bit result for DSP shift operations and a 16-bit result for MCU shift operations. Data from the X bus is presented to the barrel shifter between bit positions 16 and 31 for right shifts, and between bit positions 0 and 16 for left shifts.

NOTES:

R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0				
TRAPR	IOPUWR		_			CM	VREGS				
bit 15						•	bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1				
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR				
bit 7	_	1					bit 0				
Legend:											
R = Readable	bit	W = Writable b	oit	U = Unimpler	nented bit, read	l as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15	TRAPR: Trap	Reset Flag bit									
	1 = A Trap Co	onflict Reset has	s occurred								
	0 = A Trap Co	onflict Reset has	s not occurre	d							
bit 14	IOPUWR: Ille	gal Opcode or I	Uninitialized	W Access Rese	et Flag bit						
	1 = An illega	I opcode detec	ction, an illeg	gal address mo	ode or uninitial	ized W registe	er used as an				
	Address	Pointer caused	a Reset								
	0 = An illegal	l opcode or unir	nitialized W R	Reset has not o	ccurred						
bit 13-10	Unimplemen	ted: Read as '0)'								
bit 9	CM: Configur	ation Mismatch	Flag bit								
	$\perp = A configure$	= A configuration mismatch Reset has not occurred									
hit 8	VREGS: Volta	age Regulator S	tandby Durir	ng Sleen hit							
bit 0	1 = Voltage r	equilator is activ	e durina Slee	en							
	0 = Voltage r	egulator goes ir	nto Standby r	node during Sle	еер						
bit 7	EXTR: Extern	nal Reset (MCLI	R) Pin bit								
	1 = A Master	Clear (pin) Res	et has occuri	red							
	0 = A Master	Clear (pin) Res	et has not oc	curred							
bit 6	SWR: Softwa	re Reset (Instru	iction) Flag b	it							
	1 = A RESET	instruction has	been execute	ed							
	$0 = \mathbf{A} \text{ RESET}$	Instruction has	not been exe								
bit 5	SWDTEN: So	oftware Enable/I	Disable of WI	DI bit ⁽²⁾							
	1 = WDT is enabled										
hit 4		bdog Timor Tim	o out Elaa bi	+							
DIL 4	1 = WDT time		e-out riay bi ed	i t							
	0 = WDT time	e-out has occur	curred								
bit 3	SLEEP: Wake	e-up from Sleer	o Flag bit								
	1 = Device ha	as been in Sleer	o mode								
	0 = Device ha	as not been in S	leep mode								
bit 2	IDLE: Wake-u	up from Idle Fla	g bit								
	1 = Device wa	as in Idle mode									
	0 = Device wa	as not in Idle mo	ode								
Note 1: All	of the Reset sta	atus bits can be	set or cleared	d in software. S	etting one of the	ese bits in softw	vare does not				

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

cause a device Reset.

2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

6.2 POR

A POR circuit ensures the device is reset from poweron. The POR circuit is active until VDD crosses the VPOR threshold and the delay TPOR has elapsed. The delay TPOR ensures the internal device bias circuits become stable.

The device supply voltage characteristics must meet the specified starting voltage and rise rate requirements to generate the POR. Refer to Section 24.0 "Electrical Characteristics" for details.

The POR status (POR) bit in the Reset Control (RCON<0>) register is set to indicate the Power-on Reset.

BOR and PWRT 6.3

The on-chip regulator has a BOR circuit that resets the device when the VDD is too low (VDD < VBOR) for proper device operation. The BOR circuit keeps the device in Reset until VDD crosses the VBOR threshold and the delay TBOR has elapsed. The delay TBOR ensures the voltage regulator output becomes stable.

The BOR status (BOR) bit in the Reset Control (RCON<1>) register is set to indicate the Brown-out Reset.

The device will not run at full speed after a BOR as the VDD should rise to acceptable levels for full-speed operation. The PWRT provides power-up time delay (TPWRT) to ensure that the system power supplies have stabilized at the appropriate levels for full-speed operation before the SYSRST is released.

The power-up timer delay (TPWRT) is programmed by Power-on Reset Value the Timer Select (FPWRT<2:0>) bits in the POR Configuration (FPOR<2:0>) register, which provides eight settings (from 0 ms to 128 ms). Refer to Section 21.0 "Special Features" for further details.

Figure 6-3 shows the typical brown-out scenarios. The Reset delay (TBOR + TPWRT) is initiated each time VDD rises above the VBOR trip point.

BROWN-OUT SITUATIONS

R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0			
ALTIVT	DISI			_	_	_	_			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
—	—		—	_	INT2EP	INT1EP	INT0EP			
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit U = Unimplemented bit				mented bit, read	d as '0'					
-n = Value at POR '1' = Bit is				'0' = Bit is cle	eared	x = Bit is unknown				
bit 15	ALTIVT: Enat	ole Alternate Int	terrupt Vector	Table bit						
	1 = Use alterr	nate vector tabl	e							
	0 = Use stand	lard (default) ve	ector table							
bit 14	DISI: DISI In	struction Status	s bit							
	1 = DISI inst	ruction is active	etivo							
bit 12 2		tod. Dood on '	ouve							
bit 13-3		ieu. Redu as (J L Edae Detect		4 h :4					
DIL Z	INIZEP: EXIC	emai interrupt 2	Eage Delect	Polarity Selec						
	1 = Interrupt 0	on positive edg	je e							
bit 1	INT1EP: Exte	ernal Interrupt 1	Edae Detect	Polarity Selec	t bit					
	1 = Interrupt on negative edge									
	0 = Interrupt o	on positive edge	e							
bit 0	INT0EP: Exte	ernal Interrupt 0	Edge Detect	Polarity Selec	t bit					
	1 = Interrupt o	on negative edg	ge							
	0 = Interrupt o	on positive edge	е							

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

		D 444.0	D (A ()	D 444 0	DAMA	D /// 0	DAMA
0-0	0-0				R/W-U		R/W-U
	_	ADTIF	UTIXIF	UIRAIF	SPITIF	SPITEIF	I JIF bit 9
bit 15							Dit O
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IF	OC2IF	IC2IF		T1IF	OC1IF	IC1IF	INT0IF
bit 7	1						bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
	Unimalaman	tod: Dood oo (0'				
DIT 15-14		Conversion C	U Complete Inter	rupt Flog Statu	a hit		
DIL 13	1 = Interrupt r	equest has oc	curred	rupi riag Siaiu	SDI		
	0 = Interrupt r	equest has no	t occurred				
bit 12	U1TXIF: UAR	T1 Transmitte	r Interrupt Flag	g Status bit			
	1 = Interrupt r	equest has oc	curred				
hit 11		equest has no	t occurred	Statua hit			
DICTI	1 = Interrupt r	request has on	curred	Sidius Dii			
	0 = Interrupt r	equest has no	t occurred				
bit 10	SPI1IF: SPI1	Event Interrup	t Flag Status I	bit			
	1 = Interrupt r	equest has oc	curred				
h # 0		equest has no	t occurred	h:+			
DIL 9	1 = Interrupt r	request has on	or Flag Status	DIL			
	0 = Interrupt r	equest has no	t occurred				
bit 8	T3IF: Timer3	Interrupt Flag	Status bit				
	1 = Interrupt r	equest has oc	curred				
L # 7	0 = Interrupt r	equest has no	t occurred				
DIT /	1 = Interrupt r	interrupt Flag	Status dit				
	0 = Interrupt r	equest has no	t occurred				
bit 6	OC2IF: Outpu	ut Compare Ch	annel 2 Interr	upt Flag Status	s bit		
	1 = Interrupt r	equest has oc	curred				
	0 = Interrupt r	equest has no	t occurred				
DIT 5	1 = Interrupt c	capture Chann	el 2 Interrupt I	Flag Status bit			
	0 = Interrupt r	equest has oc equest has no	t occurred				
bit 4	Unimplemen	ted: Read as '	0'				
bit 3	T1IF: Timer1	Interrupt Flag	Status bit				
	1 = Interrupt r	equest has oc	curred				
hit 0		equest has no	t occurred	unt Elea Otat	, hit		
DIT 2	1 = Interrupt r	at Compare Ch	annei 1 Interr curred	upt riag Status	SUIT		
	0 = Interrupt r	request has no	t occurred				

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

REGISTER 7-9: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)

- bit 1 IC1IE: Input Capture Channel 1 Interrupt Enable bit
 - 1 = Interrupt request enabled0 = Interrupt request not enabled
- bit 0 **INTOIE:** External Interrupt 0 Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled

NOTES:

REGISTER 16-1: QEIXCON: QEI CONTROL REGISTER

R/W-0	U-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0			
CNTERR	_	QEISIDL	INDEX	UPDN		QEIM<2:0>				
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
SWPAB	PCDOUT	TQGATE	TQCK	PS<1:0>	POSRES	TQCS	UPDN_SRC			
bit 7	•	•					bit 0			
Legend:										
R = Readable	bit	W = Writable	oit	U = Unimple	mented bit, read	d as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown			
bit 15	CNTERR: Co	unt Error Statu	s Flag bit							
	1 = Position c	ount error has	occurred							
	0 = No positio	on count error h	as occurred		, . ,					
	Note: C	NTERR flag on	ly applies wh	en QEIM<2:0>	• = '110' or '100)'.				
bit 14	Unimplement	ted: Read as ')'							
bit 13	1 = Discontinu 0 = Continue	p in Idle Mode ue module opei module operati	bit ration when d on in Idle mo	levice enters lo de	lle mode					
bit 12	INDEX: Index 1 = Index pin	r Pin State Statu is High	us bit (Read-0	Only)						
	0 = Index pin	is Low								
bit 11	UPDN: Position 1 = Position C 0 = Position C (Read-only (Read/Wri	on Counter Dire Counter Directic Counter Directic y bit when QEI ite bit when QE	ection Status on is positive on is negative M<2:0> = '1x IM<2:0> = '0	bit (+) (-) (x') 01')						
bit 10-8	QEIM<2:0>: (Quadrature End	oder Interfac	e Mode Select	bits					
	111 = Quadra (MAXC	ature Encoder I	nterface enat	oled (x4 mode)	with position c	ounter reset by	match			
	110 = Quadra 101 = Quadra (MAXC	ature Encoder I ature Encoder I NT)	nterface enat nterface enat	oled (x4 mode) oled (x2 mode)	with Index Puls with position c	se reset of posi ounter reset by	tion counter match			
	100 = Quadra 011 = Unused	ature Encoder I d (Module disal	nterface enat	oled (x2 mode)	with Index Puls	se reset of posi	tion counter			
	010 = Unused 001 = Starts 1	010 = Unused (Module disabled) 001 = Starts 16-bit Timer								
bit 7			nterrace/ rime	er Oll on Soloot hit						
	1 = Phase A a	and Phase B in	e o input Swa nute swanner							
	0 = Phase A a	and Phase B in	puts swapped	oped						
bit 6	PCDOUT: Por	sition Counter I	Direction Stat	e Output Fnah	le bit					
Sit 0	1 = Position C	Counter Direction	on Status Out	put Enable (QI	El logic controls	state of I/O pir	ı)			
	0 = Position C	Counter Direction	on Status Out	put Disabled (I	Normal I/O pin o	operation)	,			
bit 5	TQGATE: Tim	ner Gated Time	Accumulatio	n Enable bit		. ,				
	1 = Timer gate	ed time accum	ulation enable	ed						
	0 = Timer gate	ed time accum	ulation disable	ed						

REGISTER 20-5: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CH0NB	—				CH0SB<4:0>					
bit 15	L						bit 8			
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CH0NA	—	_			CH0SA<4:0>					
bit 7			·				bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown			
bit 15	CHONB: Char	nnel 0 Negative	e Input Select	for Sample B b	bit					
	0 = Channel C) negative inpu	it is VREF-							
bit 14-13	Unimplement	ted: Read as '	0'							
bit 12-8	CH0SB<4:0>	: Channel 0 Po	sitive Input Se	elect for Sample	e B bits					
	dsPIC33FJ12	MC201 devic	es only:	· · · · · ·						
	00011 = Cha	nnel 0 positive	input is AN3							
	00010 = Cha	nnel 0 positive	input is AN2							
	00001 = Chai	nnel 0 positive	input is AN1							
	our on anner o positive input is Ario									
	dsPIC33FJ12	MC202 devic	es only:							
	00101 = Cha	nnel 0 positive	input is AN5							
	00100 = Chai	nnel U positive	input is AN4							
	00011 = Chai	nnel 0 positive	input is AN2							
	00001 = Cha	nnel 0 positive	input is AN1							
	00000 = Cha	nnel 0 positive	input is AN0							
bit 7	CH0NA: Char	nnel 0 Negativ	e Input Select	for Sample A b	bit					
	1 = Channel 0 0 = Channel 0) negative inpu) negative inpu	it is AN1 it is VREF-							
bit 6-5	Unimplement	ted: Read as '	0'							
bit 4-0	CH0SA<4:0>	: Channel 0 Po	sitive Input Se	elect for Sample	e A bits					
	dsPIC33FJ12	MC201 devic	es only:	· · · · · ·						
	00011 = Cha	nnel 0 positive	input is AN3							
	00010 = Cha	nnel 0 positive	input is AN2							
	00001 = Cha	nnel 0 positive	input is AN1							
	00000 = Channel 0 positive input is AN0									
	dsPIC33FJ12	MC202 devic	es only:							
	00101 = Cha	nnel 0 positive	input is AN5							
	00100 = Cha	nnel 0 positive	input is AN4							
	00011 = Chai	nnel 0 positive	input is AN3 input is $\Delta N2$							
	00001 = Cha	nnel 0 positive	input is AN1							
	00000 = Cha	nnel 0 positive	input is AN0							

DC CHARACT	ERISTICS		Standard Op (unless other Operating te	perating Condition erwise stated) mperature -40°C -40°C	s: 3.0V to 3.6V ≤ TA ≤+85°C for Indu ≤TA ≤+125°C for Exte	ustrial ended				
Parameter No.	Typical ⁽¹⁾	Мах	Units	Conditions						
Idle Current (IIDLE): Core OFF Clock ON Base Current ⁽²⁾										
DC40d	3	25	mA	-40°C						
DC40a	3	25	mA	+25°C		10 MIDe(3)				
DC40b	3	25	mA	+85°C	3.3V	10 MIFS'				
DC40c	3	25	mA	+125°C						
DC41d	4	25	mA	-40°C		16 MIPS(3)				
DC41a	4	25	mA	+25°C	- 3.3V					
DC41b	5	25	mA	+85°C		10 1011-51				
DC41c	5	25	mA	+125°C						
DC42d	6	25	mA	-40°C		20 MIDE(3)				
DC42a	6	25	mA	+25°C	2 21/					
DC42b	7	25	mA	+85°C	5.5V	20 MIF3 7				
DC42c	7	25	mA	+125°C						
DC43a	9	25	mA	+25°C						
DC43d	9	25	mA	-40°C	2 21/	20 MIDe(3)				
DC43b	9	25	mA	+85°C	5.5V	30 MIF 3 7				
DC43c	9	25	mA	+125°C						
DC44d	10	25	mA	-40°C						
DC44a	10	25	mA	+25°C	2 2)/					
DC44b	10	25	mA	+85°C	3.3V	40 101175				
DC44c	10	25	mA	+125°C]					

TABLE 24-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: Base IIDLE current is measured with core off, clock on and all modules turned off. Peripheral Module Disable SFR registers are zeroed. All I/O pins are configured as inputs and pulled to Vss.

3: These parameters are characterized, but not tested in manufacturing.

DC CHARACTERISTICS			Standard Operating Co (unless otherwise state Operating temperature			nditions: 3.0V to 3.6V ed) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended		
Param No.	Symbol	Characteristic ⁽³⁾	Min	Typ ⁽¹⁾	yp ⁽¹⁾ Max L		Conditions	
		Program Flash Memory						
D130a	Eр	Cell Endurance	10,000	—	—	E/W	-40° C to +125° C	
D131	Vpr	VDD for Read	VMIN	_	3.6	V	VMIN = Minimum operating voltage	
D132B	VPEW	VDD for Self-Timed Write	VMIN	_	3.6	V	VMIN = Minimum operating voltage	
D134	TRETD	Characteristic Retention	20	—	_	Year	Provided no other specifications are violated	
D135	IDDP	Supply Current during Programming	—	10	_	mA		
D136a	Trw	Row Write Time	1.32	—	1.74	ms	Trw = 11064 FRC cycles, Ta = +85°C, See Note 2	
D136b	Trw	Row Write Time	1.28	—	1.79	ms	Trw = 11064 FRC cycles, Ta = +125°C, See Note 2	
D137a	TPE	Page Erase Time	20.1	—	26.5	ms	TPE = 168517 FRC cycles, TA = +85°C, See Note 2	
D137b	Тре	Page Erase Time	19.5	_	27.3	ms	TPE = 168517 FRC cycles, TA = +125°C, See Note 2	
D138a	Tww	Word Write Cycle Time	42.3	_	55.9	μs	Tww = 355 FRC cycles, TA = +85°C, See Note 2	
D138b	Tww	Word Write Cycle Time	41.1	—	57.6	μs	Tww = 355 FRC cycles, TA = +125°C, See Note 2	

TABLE 24-12: DC CHARACTERISTICS: PROGRAM MEMORY

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: Other conditions: FRC = 7.37 MHz, TUN<5:0> = b '011111 (for Min), TUN<5:0> = b '100000 (for Max). This parameter depends on the FRC accuracy (see Table 24-18) and the value of the FRC Oscillator Tuning register (see Register 8-4). For complete details on calculating the Minimum and Maximum time see Section 5.3 "Programming Operations".

3: These parameters are ensured by design, but are not characterized or tested in manufacturing.

TABLE 24-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature-40°C ≤TA ≤ +85°C for Industrial-40°C ≤TA ≤+125°C for Extended				
Param No.	Symbol	Characteristics	Min Typ Max Units Comments				Comments
	Cefc	External Filter Capacitor Value ⁽¹⁾	4.7	10	_	μF	Capacitor must be low series resistance (< 5 ohms)

Note 1: Typical VCAP pin voltage = 2.5V when VDD \geq VDDMIN.

TABLE 24-35:SPIX MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING
REQUIREMENTS

АС СНА	RACTERIST	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Max	Units	Conditions
SP10	TscP	Maximum SCK Frequency		—	9	MHz	-40°C to +125°C and see Note 3
SP20	TscF	SCKx Output Fall Time	_	-	_	ns	See parameter DO32 and Note 4
SP21	TscR	SCKx Output Rise Time	_	—	_	ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	_	—	_	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	_	-	_	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns	_
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	_
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	_	ns	_
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30			ns	_

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

TABLE 24-37:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING
REQUIREMENTS

AC CHA	AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP70	TscP	Maximum SCK Input Frequency	—	_	11	MHz	See Note 3	
SP72	TscF	SCKx Input Fall Time	—	_	_	ns	See parameter DO32 and Note 4	
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	_		_	ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	_		_	ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns	_	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30			ns	_	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120		—	ns	_	
SP51	TssH2doZ	SSx	10		50	ns	—	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40			ns	See Note 4	
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	_	_	50	ns	—	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

25.1 Package Marking Information (Continued)

Note: If the full Microchip part number cannot be marked on one line, it is carried over to the next line, thus limiting the number of available characters for customer-specific information.

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	Е	0.65 BSC		
Contact Pad Spacing	С		7.20	
Contact Pad Width (X20)	X1			0.45
Contact Pad Length (X20)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2072A

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support