

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

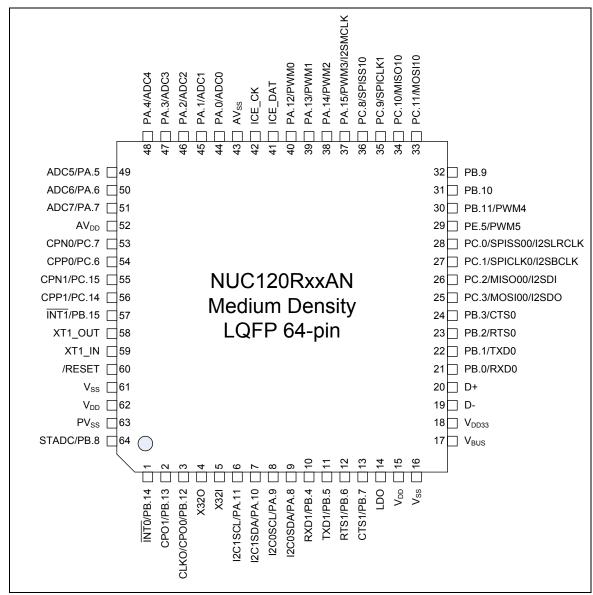
Details

E·XFl

Detalls	
Product Status	Obsolete
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LVD, POR, PS2, PWM, WDT
Number of I/O	31
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nuvoton-technology-corporation-america/nuc120ld3an

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


6

7

5.8	5.7.2 Features Real Time Clock (RTC)	
0.0	5.8.1 Overview	
	5.8.2 Features	
5.9	Serial Peripheral Interface (SPI)	
	5.9.1 Overview	45
	5.9.2 Features	
5.10	Timer Controller (TMR)	
	5.10.1 Overview	
F 44	5.10.2 Features	
5.11	Watchdog Timer (WDT)	
	5.11.1 Overview	
5.12	5.11.2 Features UART Interface Controller (UART)	
5.12	5.12.1 Overview	
	5.12.2 Features	
5.13	PS/2 Device Controller (PS2D)	-
	5.13.1 Overview	
	5.13.2 Features	
5.14	I ² S Controller (I ² S)	53
	5.14.1 Overview	53
	5.14.2 Features	53
5.15	Analog-to-Digital Converter (ADC)	
	5.15.1 Overview	54
	5.15.2 Features	
5.16	Analog Comparator (CMP)	55
	5.16.1 Overview	
F 47	5.16.2 Features	
5.17	PDMA Controller (PDMA)	
	5.17.1 Overview	
5.18	External Bus Interface (EBI)	
0.10	5.18.1 Overview	
	5.18.2 Features	
FLASH	H MEMORY CONTROLLER (FMC)	
6.1	Overview	
6.2	Features	
FI FC	TRICAL CHARACTERISTICS	
7.1	Absolute Maximum Ratings	
7.2	DC Electrical Characteristics	
	7.2.1 NuMicro [™] NUC100/NUC120 Medium Density DC Electrical Characteristics	
	7.2.2 NuMicro [™] NUC100/NUC120 Low Density DC Electrical Characteristics	
	Publication Release Date: Ja	
		rision V2.03

Figures

Figure 3-1 NuMicro™ NUC100 Series selection code	13
Figure 3-2 NuMicro™ NUC120 Medium Density LQFP 100-pin Pin Diagram	14
Figure 3-3 NuMicro™ NUC120 Medium Density LQFP 64-pin Pin Diagram	15
Figure 3-4 NuMicro™ NUC120 Medium Density LQFP 48-pin Pin Diagram	16
Figure 3-5 NuMicro™ NUC120 Low Density LQFP 64-pin Pin Diagram	17
Figure 3-6 NuMicro™ NUC120 Low Density LQFP 48-pin Pin Diagram	18
Figure 4-1 NuMicro™ NUC120 Medium Density Block Diagram	19
Figure 4-2 NuMicro™ NUC120 Low Density Block Diagram	20
Figure 5-1 Functional Controller Diagram	21
Figure 5-2 NuMicro™ NUC120 Power Distribution Diagram	24
Figure 5-4 Clock generator global view diagram	33
Figure 5-5 Clock generator block diagram	34
Figure 5-6 System Clock Block Diagram	35
Figure 5-7 SysTick Clock Control Block Diagram	35
Figure 5-8 Clock Source of Frequency Divider	37
Figure 5-9 Block Diagram of Frequency Divider	
Figure 5-10 I ² C Bus Timing	40
Figure 5-11 Timing of Interrupt and Reset Signal	48
Figure 7-1 Typical Crystal Application Circuit	76
Figure 7-2 SPI Master dynamic characteristics timing	84
Figure 7-3 SPI Slave dynamic characteristics timing	84

3.2.1.2 NuMicro™ NUC120 Medium Density LQFP 64 pin

Figure 3-3 NuMicro™ NUC120 Medium Density LQFP 64-pin Pin Diagram

- Low power sleep mode entry using Wait For Interrupt (WFI), Wait For Event (WFE) instructions, or the return from interrupt sleep-on-exit feature
- NVIC that features:
 - 32 external interrupt inputs, each with four levels of priority
 - Dedicated Non-Maskable Interrupt (NMI) input.
 - Support for both level-sensitive and pulse-sensitive interrupt lines
 - Wake-up Interrupt Controller (WIC), providing ultra-low power sleep mode support.
- Debug support
 - Four hardware breakpoints.
 - Two watchpoints.
 - Program Counter Sampling Register (PCSR) for non-intrusive code profiling.
 - Single step and vector catch capabilities.
- Bus interfaces:
 - Single 32-bit AMBA-3 AHB-Lite system interface that provides simple integration to all system peripherals and memory.
 - Single 32-bit slave port that supports the DAP (Debug Access Port).

5.2 System Manager

5.2.1 Overview

System management includes these following sections:

- System Resets
- System Memory Map
- System management registers for Part Number ID, chip reset and on-chip controllers reset , multi-functional pin control
- System Timer (SysTick)
- Nested Vectored Interrupt Controller (NVIC)
- System Control registers

5.2.2 System Reset

The system reset can be issued by one of the below listed events. For these reset event flags can be read by RSTSRC register.

- The Power-On Reset
- The low level on the /RESET pin
- Watchdog Time Out Reset
- Low Voltage Reset
- Brown-Out Detector Reset
- CPU Reset
- System Reset

System Reset and Power-On Reset all reset the whole chip including all peripherals. The difference between System Reset and Power-On Reset is external crystal circuit and ISPCON.BS bit. System Reset doesn't reset external crystal circuit and ISPCON.BS bit, but Power-On Reset does.

5.2.3 System Power Distribution

In this chip, the power distribution is divided into three segments.

- Analog power from AV_{DD} and AV_{SS} provides the power for analog components operation.
- Digital power from V_{DD} and V_{SS} supplies the power to the internal regulator which provides a fixed 2.5 V power for digital operation and I/O pins.
- USB transceiver power from V_{BUS} offers the power for operating the USB transceiver.

The outputs of internal voltage regulators, LDO and V_{DD33}, require an external capacitor which should be located close to the corresponding pin. Analog power (AV_{DD}) should be the same voltage level of the digital power (V_{DD}). Figure 5-2 shows the power distribution of NuMicroTM NUC120.

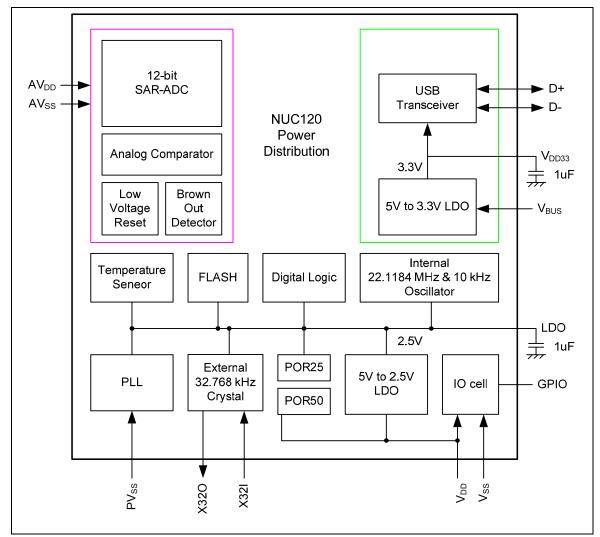


Figure 5-2 NuMicro™ NUC120 Power Distribution Diagram

Vector Number	Interrupt Number (Bit in Interrupt Registers)	Interrupt Name	Source IP	Interrupt description
26	10	TMR2_INT	TMR2	Timer 2 interrupt
27	11	TMR3_INT	TMR3	Timer 3 interrupt
28	12	UART02_INT	UART0/2	UART0 and UART2 interrupt
29	13	UART1_INT	UART1	UART1 interrupt
30	14	SPI0_INT	SPI0	SPI0 interrupt
31	15	SPI1_INT	SPI1	SPI1 interrupt
32	16	SPI2_INT	SPI2	SPI2 interrupt
33	17	SPI3_INT	SPI3	SPI3 interrupt
34	18	I2C0_INT	I ² C0	I ² C0 interrupt
35	19	I2C1_INT	I ² C1	I ² C1 interrupt
36	20	Reserved	Reserved	Reserved
37	21	Reserved	Reserved	Reserved
38	22	Reserved	Reserved	Reserved
39	23	USB_INT	USBD	USB 2.0 FS Device interrupt
40	24	PS2_INT	PS/2	PS/2 interrupt
41	25	ACMP_INT	ACMP	Analog Comparator-0 or Comaprator-1 interrupt
42	26	PDMA_INT	PDMA	PDMA interrupt
43	27	I2S_INT	I ² S	I ² S interrupt
44	28	PWRWU_INT	CLKC	Clock controller interrupt for chip wake-up from power down state
45	29	ADC_INT	ADC	ADC interrupt
46	30	Reserved	Reserved	Reserved
47	31	RTC_INT	RTC	Real time clock interrupt

Table 5-3 System Interrupt Map

5.2.6.2 Vector Table

When any interrupts is accepted, the processor will automatically fetch the starting address of the interrupt service routine (ISR) from a vector table in memory. For ARMv6-M, the vector table base address is fixed at 0x00000000. The vector table contains the initialization value for the stack pointer on reset, and the entry point addresses for all exception handlers. The vector number on previous page defines the order of entries in the vector table associated with exception handler entry as illustrated in previous section.

Vector Table Word Offset	Description
0	SP_main – The Main stack pointer
Vector Number	Exception Entry Pointer using that Vector Number

Table 5-4 Vector Table Format

5.2.6.3 Operation Description

NVIC interrupts can be enabled and disabled by writing to their corresponding Interrupt Set-Enable or Interrupt Clear-Enable register bit-field. The registers use a write-1-to-enable and write-1-to-clear policy, both registers reading back the current enabled state of the corresponding interrupts. When an interrupt is disabled, interrupt assertion will cause the interrupt to become Pending, however, the interrupt will not activate. If an interrupt is Active when it is disabled, it remains in its Active state until cleared by reset or an exception return. Clearing the enable bit prevents new activations of the associated interrupt.

NVIC interrupts can be pended/un-pended using a complementary pair of registers to those used to enable/disable the interrupts, named the Set-Pending Register and Clear-Pending Register respectively. The registers use a write-1-to-enable and write-1-to-clear policy, both registers reading back the current pended state of the corresponding interrupts. The Clear-Pending Register has no effect on the execution status of an Active interrupt.

NVIC interrupts are prioritized by updating an 8-bit field within a 32-bit register (each register supporting four interrupts).

The general registers associated with the NVIC are all accessible from a block of memory in the System Control Space and will be described in next section.

5.3.2 Clock Generator

The clock generator consists of 5 clock sources which are listed below:

- One external 32.768 kHz low speed crystal
- One external 4~24 MHz high speed crystal
- One programmable PLL FOUT(PLL source consists of external 4~24 MHz high speed crystal and internal 22.1184 MHz high speed oscillator)
- One internal 22.1184 MHz high speed oscillator
- One internal 10 kHz low speed oscillator

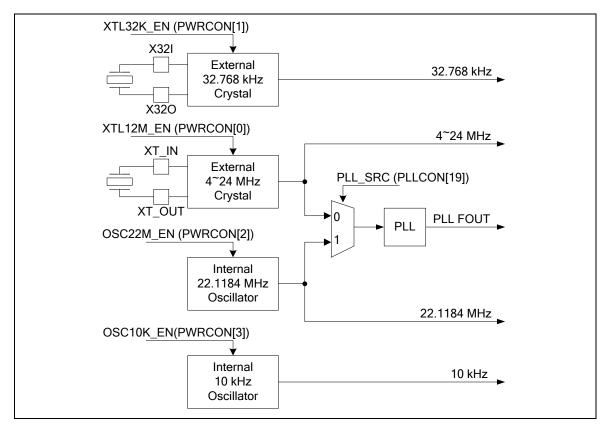


Figure 5-4 Clock generator block diagram

5.3.6 Frequency Divider Output

This device is equipped a power-of-2 frequency divider which is composed by16 chained divideby-2 shift registers. One of the 16 shift register outputs selected by a sixteen to one multiplexer is reflected to CLKO function pin. Therefore there are 16 options of power-of-2 divided clocks with the frequency from $F_{in}/2^{16}$ where Fin is input clock frequency to the clock divider.

The output formula is $F_{out} = F_{in}/2^{(N+1)}$, where F_{in} is the input clock frequency, F_{out} is the clock divider output frequency and N is the 4-bit value in FSEL (FRQDIV[3:0]).

When write 1 to DIVIDER_EN (FRQDIV[4]), the chained counter starts to count. When write 0 to DIVIDER_EN (FRQDIV[4]), the chained counter continuously runs till divided clock reaches low state and stay in low state.

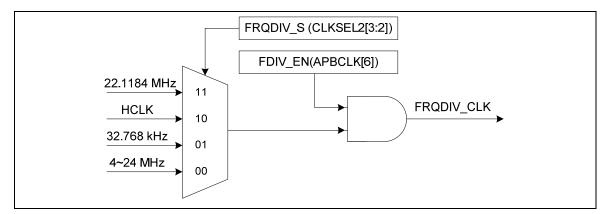


Figure 5-7 Clock Source of Frequency Divider

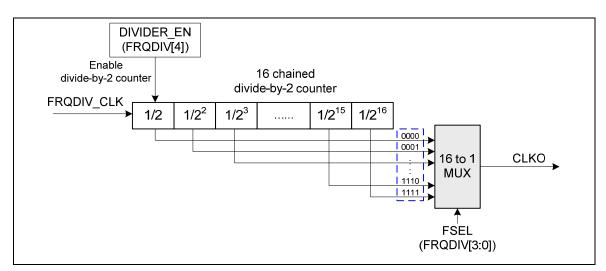


Figure 5-8 Block Diagram of Frequency Divider

5.4 USB Device Controller (USB)

5.4.1 Overview

There is one set of USB 2.0 full-speed device controller and transceiver in this device. It is compliant with USB 2.0 full-speed device specification and support control/bulk/interrupt/ isochronous transfer types.

In this device controller, there are two main interfaces: the APB bus and USB bus which comes from the USB PHY transceiver. For the APB bus, the CPU can program control registers through it. There are 512 bytes internal SRAM as data buffer in this controller. For IN or OUT transfer, it is necessary to write data to SRAM or read data from SRAM through the APB interface or SIE. Users need to set the effective starting address of SRAM for each endpoint buffer through "buffer segmentation register (USB_BUFSEGx)".

There are 6 endpoints in this controller. Each of the endpoint can be configured as IN or OUT endpoint. All the operations including Control, Bulk, Interrupt and Isochronous transfer are implemented in this block. The block of ENDPOINT CONTROL is also used to manage the data sequential synchronization, endpoint states, current start address, transaction status, and data buffer status for each endpoint.

There are four different interrupt events in this controller. They are the wake-up function, device plug-in or plug-out event, USB events, like IN ACK, OUT ACK etc, and BUS events, like suspend and resume, etc. Any event will cause an interrupt, and users just need to check the related event flags in interrupt event status register (USB_INTSTS) to acknowledge what kind of interrupt occurring, and then check the related USB Endpoint Status Register (USB_EPSTS) to acknowledge what kind of event occurring in this endpoint.

A software-disable function is also supported for this USB controller. It is used to simulate the disconnection of this device from the host. If user enables DRVSE0 bit (USB_DRVSE0), the USB controller will force the output of USB_DP and USB_DM to level low and its function is disabled. After disable the DRVSE0 bit, host will enumerate the USB device again.

Reference: Universal Serial Bus Specification Revision 1.1

5.4.2 Features

This Universal Serial Bus (USB) performs a serial interface with a single connector type for attaching all USB peripherals to the host system. Following is the feature listing of this USB.

- Compliant with USB 2.0 Full-Speed specification
- Provide 1 interrupt vector with 4 different interrupt events (WAKEUP, FLDET, USB and BUS)
- Support Control/Bulk/Interrupt/Isochronous transfer type
- Support suspend function when no bus activity existing for 3 ms
- Provide 6 endpoints for configurable Control/Bulk/Interrupt/Isochronous transfer types and maximum 512 bytes buffer size
- Provide remote wake-up capability

5.6 I²C Serial Interface Controller (Master/Slave) (I²C)

5.6.1 Overview

 I^2C is a two-wire, bi-directional serial bus that provides a simple and efficient method of data exchange between devices. The I^2C standard is a true multi-master bus including collision detection and arbitration that prevents data corruption if two or more masters attempt to control the bus simultaneously.

Data is transferred between a Master and a Slave synchronously to SCL on the SDA line on a byte-by-byte basis. Each data byte is 8-bit long. There is one SCL clock pulse for each data bit with the MSB being transmitted first. An acknowledge bit follows each transferred byte. Each bit is sampled during the high period of SCL; therefore, the SDA line may be changed only during the low period of SCL and must be held stable during the high period of SCL. A transition on the SDA line while SCL is high is interpreted as a command (START or STOP). Please refer to the Figure 5-9 for more detail I²C BUS Timing.

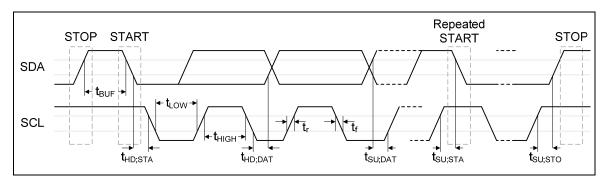


Figure 5-9 I²C Bus Timing

The device's on-chip I²C logic provides the serial interface that meets the I²C bus standard mode specification. The I²C port handles byte transfers autonomously. To enable this port, the bit ENS1 in I2CON should be set to '1'. The I²C H/W interfaces to the I²C bus via two pins: SDA and SCL. Pull up resistor is needed for I²C operation as these are open drain pins. When the I/O pins are used as I²C port, user must set the pins function to I²C in advance.

5.6.2 Features

The I²C bus uses two wires (SDA and SCL) to transfer information between devices connected to the bus. The main features of the bus are:

- Master/Slave mode
- Bidirectional data transfer between masters and slaves
- Multi-master bus (no central master)
- Arbitration between simultaneously transmitting masters without corruption of serial data on the bus
- Serial clock synchronization allows devices with different bit rates to communicate via one serial bus
- Serial clock synchronization can be used as a handshake mechanism to suspend and resume serial transfer
- Built-in a 14-bit time-out counter will request the I²C interrupt if the I²C bus hangs up and timer-out counter overflows.
- External pull-up are needed for high output
- Programmable clocks allow versatile rate control
- Supports 7-bit addressing mode
- I²C-bus controllers support multiple address recognition (Four slave address with mask option)

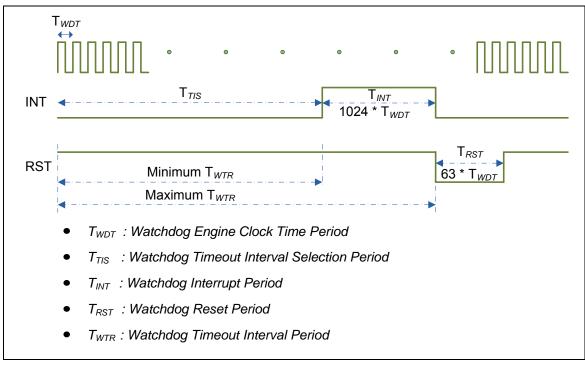


Figure 5-10 Timing of Interrupt and Reset Signal

System clock = Internal 22.1184 MHz high speed oscillator									
Baud rate	М	ode0	М	ode1	Mode2				
Badd fallo	Parameter	Parameter Register Parameter Register		Parameter	Register				
921600	х	х	A=0,B=11	0x2B00_0000	A=22	0x3000_0016			
460800	A=1	0x0000_0001	A=1,B=15 A=2,B=11	0x2F00_0001 0x2B00_0002	A=46	0x3000_002E			
230400	A=4	0x0000_0004	A=4,B=15 A=6,B=11	0x2F00_0004 0x2B00_0006	A=94	0x3000_005E			
115200	A=10	0x0000_000A	A=10,B=15 A=14,B=11	0x2F00_000A 0x2B00_000E	A=190	0x3000_00BE			
57600	A=22	0x0000_0016	A=22,B=15 A=30,B=11	0x2F00_0016 0x2B00_001E	A=382	0x3000_017E			
38400	A=34	0x0000_0022	A=62,B=8 A=46,B=11 A=34,B=15	0x2800_003E 0x2B00_002E 0x2F00_0022	A=574	0x3000_023E			
19200	A=70	0x0000_0046	A=126,B=8 A=94,B=11 A=70,B=15	0x2800_007E 0x2B00_005E 0x2F00_0046	A=1150	0x3000_047E			
9600	A=142	0x0000_008E	A=254,B=8 A=190,B=11 A=142,B=15	0x2800_00FE 0x2B00_00BE 0x2F00_008E	A=2302	0x3000_08FE			
4800	A=286	0x0000_011E	A=510,B=8 A=382,B=11 A=286,B=15	0x2800_01FE 0x2B00_017E 0x2F00_011E	A=4606	0x3000_11FE			

Table 5-7 UART Baud Rate Setting Table

The UART0 and UART1 controllers support auto-flow control function that uses two low-level signals, /CTS (clear-to-send) and /RTS (request-to-send), to control the flow of data transfer between the UART and external devices (ex: Modem). When auto-flow is enabled, the UART is not allowed to receive data until the UART asserts /RTS to external device. When the number of bytes in the RX FIFO equals the value of RTS_TRI_LEV (UA_FCR [19:16]), the /RTS is deasserted. The UART sends data out when UART controller detects /CTS is asserted from external device. If a valid asserted /CTS is not detected the UART controller will not send data out.

The UART controllers also provides Serial IrDA (SIR, Serial Infrared) function (User must set IrDA_EN (UA_FUN_SEL [1]) to enable IrDA function). The SIR specification defines a short-range infrared asynchronous serial transmission mode with one start bit, 8 data bits, and 1 stop bit. The maximum data rate is 115.2 Kbps (half duplex). The IrDA SIR block contains an IrDA SIR Protocol encoder/decoder. The IrDA SIR protocol is half-duplex only. So it cannot transmit and receive data at the same time. The IrDA SIR physical layer specifies a minimum 10ms transfer delay between transmission and reception. This delay feature must be implemented by software.

For NuMicro[™] NUC100/NUC120 Low Density, another alternate function of UART controllers is RS-485 9-bit mode function, and direction control provided by RTS pin or can program GPIO (PB.2 for RTS0 and PB.6 for RTS1) to implement the function by software. The RS-485 mode is selected by setting the UA_FUN_SEL register to select RS-485 function. The RS-485 driver control is implemented using the RTS control signal from an asynchronous serial port to enable the RS-485 driver. In RS-485 mode, many characteristics of the RX and TX are same as UART.

5.13 PS/2 Device Controller (PS2D)

5.13.1 Overview

PS/2 device controller provides basic timing control for PS/2 communication. All communication between the device and the host is managed through the CLK and DATA pins. Unlike PS/2 keyboard or mouse device controller, the received/transmit code needs to be translated as meaningful code by firmware. The device controller generates the CLK signal after receiving a request to send, but host has ultimate control over communication. DATA sent from the host to the device is read on the rising edge and DATA sent from device to the host is change after rising edge. A 16 bytes FIFO is used to reduce CPU intervention. S/W can select 1 to 16 bytes for a continuous transmission.

5.13.2 Features

- Host communication inhibit and request to send detection
- Reception frame error detection
- Programmable 1 to 16 bytes transmit buffer to reduce CPU intervention
- Double buffer for data reception
- S/W override bus

7 ELECTRICAL CHARACTERISTICS

7.1 Absolute Maximum Ratings

SYMBOL	PARAMETER	MIN	MAX	UNIT
DC Power Supply	V _{DD} -V _{SS}	-0.3	+7.0	V
Input Voltage	V _{IN}	V _{SS} -0.3	V _{DD} +0.3	V
Oscillator Frequency	1/t _{CLCL}	4	24	MHz
Operating Temperature	ТА	-40	+85	°C
Storage Temperature	TST	-55	+150	°C
Maximum Current into V _{DD}		-	120	mA
Maximum Current out of V_{SS}			120	mA
Maximum Current sunk by a I/O pin			35	mA
Maximum Current sourced by a I/O pin			35	mA
Maximum Current sunk by total I/O pins			100	mA
Maximum Current sourced by total I/O pins			100	mA

Note: Exposure to conditions beyond those listed under absolute maximum ratings may adversely affects the lift and reliability of the device.

PARAMETER	SYM.	S	SPECIFIC	CATION		TEST CONDITIONS
		MIN.	TYP.	MAX.	UNIT	
Bandgap voltage	V_{BG}	1.20	1.26	1.32	V	V _{DD} = 2.5 V~5.5 V

Note:

1. /RESET pin is a Schmitt trigger input.

2. Crystal Input is a CMOS input.

3. Pins of PA, PB, PC, PD and PE can source a transition current when they are being externally driven from 1 to 0. In the condition of V_{DD} =5.5 V, 5he transition current reaches its maximum value when V_{IN} approximates to 2 V.

7.4.2 Specification of LDO and Power management

PARAMETER	MIN.	TYP.	MAX.	UNIT	NOTE
Input Voltage	2.7	5	5.5	V	V_{DD} input voltage
Output Voltage	-10%	2.5	+10%	V	V _{DD} > 2.7 V
Temperature	-40	25	85	°C	
Сbр	-	1	-	uF	Resr=10hm

Note:

1. It is recommended that a 10uF or higher capacitor and a 100nF bypass capacitor are connected between $V_{\mbox{\tiny DD}}$ and the closest $V_{\mbox{\tiny SS}}$ pin of the device.

2. For ensuring power stability, a 1uF or higher capacitor must be connected between LDO pin and the closest $V_{\rm SS}$ pin of the device.

7.5 **Flash DC Electrical Characteristics**

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
N _{endu}	Endurance		10000			cycles ^[1]
T _{ret}	Retention time	Temp=25 ℃	100			year
T _{erase}	Page erase time		20		40	ms
T _{mass}	Mass erase time		40	50	60	ms
T _{prog}	Program time		35	40	55	us
V _{dd}	Supply voltage		2.25	2.5	2.75	V ^[2]
I _{dd1}	Read current				14	mA
I _{dd2}	Program/Erase current				7	mA
I _{pd}	Power down current				10	uA

Number of program/erase cycles.
V_{dd} is source from chip LDO output voltage.
This table is guaranteed by design, not test in production.