

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Not For New Designs
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	75
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	2.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 20x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21386cnfp-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1.2 Specifications

Tables 1.1 and 1.2 outline the Specifications for R8C/38C Group.

Table 1.1 Specifications for R8C/38C Group (1)

Item	Function	Specification
CPU	Central processing unit	R8C CPU core • Number of fundamental instructions: 89 • Minimum instruction execution time: 50 ns (f(XIN) = 20 MHz, VCC = 2.7 to 5.5 V) 200 ns (f(XIN) = 5 MHz, VCC = 1.8 to 5.5 V) • Multiplier: 16 bits × 16 bits → 32 bits • Multiply-accumulate instruction: 16 bits × 16 bits + 32 bits → 32 bits • Operation mode: Single-chip mode (address space: 1 Mbyte)
Memory	ROM, RAM, Data flash	Refer to Table 1.3 Product List for R8C/38C Group
Power Supply Voltage Detection	Voltage detection circuit	 Power-on reset Voltage detection 3 (detection level of voltage detection 0 and voltage detection 1 selectable)
I/O Ports	Programmable I/O ports	 Input-only: 1 pin CMOS I/O ports: 75, selectable pull-up resistor High current drive ports: 75
Clock	Clock generation circuits	4 circuits: XIN clock oscillation circuit,
Interrupts		Interrupt Vectors: 69 External: 9 sources (INT × 5, key input × 4) Priority levels: 7 levels
Watchdog Tim	er	14 bits x 1 (with prescaler) Reset start selectable Low-speed on-chip oscillator for watchdog timer selectable
DTC (Data Tra	insfer Controller)	1 channelActivation sources: 39Transfer modes: 2 (normal mode, repeat mode)
Timer	Timer RA	8 bits x 1 (with 8-bit prescaler) Timer mode (period timer), pulse output mode (output level inverted every period), event counter mode, pulse width measurement mode, pulse period measurement mode
	Timer RB	8 bits x 1 (with 8-bit prescaler) Timer mode (period timer), programmable waveform generation mode (PWM output), programmable one-shot generation mode, programmable wait one-shot generation mode
	Timer RC	16 bits x 1 (with 4 capture/compare registers) Timer mode (input capture function, output compare function), PWM mode (output 3 pins), PWM2 mode (PWM output pin)
	Timer RD	16 bits × 2 (with 4 capture/compare registers) Timer mode (input capture function, output compare function), PWM mode (output 6 pins), reset synchronous PWM mode (output three-phase waveforms (6 pins), sawtooth wave modulation), complementary PWM mode (output three-phase waveforms (6 pins), triangular wave modulation), PWM3 mode (PWM output 2 pins with fixed period)

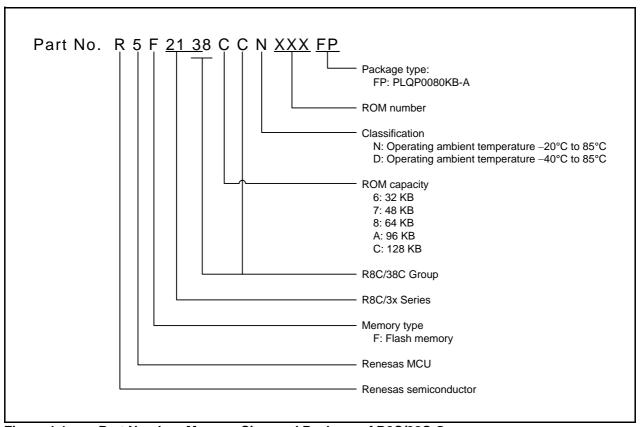


Figure 1.1 Part Number, Memory Size, and Package of R8C/38C Group

Table 1.4 Pin Name Information by Pin Number (1)

			I/O Pin Functions for Peripheral Modules					
Pin Number	Control Pin	Port	Interrupt	Timer	Serial Interface	SSU	I ² C bus	A/D Converter, D/A Converter, Comparator B
1		P5_6		(TRAO/TRGIOA)				
2		P5_5		(TRAIO)				
3		P3_2	(INT1/ INT2)	(TRAIO/TRGCLKB)				
4		P3_0	,	(TRAO/TRGCLKA)				
5		P4_2		,				VREF
6	MODE							
7	(XCIN)	P4_3						
8	(XCOUT)	P4_4						
9	RESET							
10	XOUT	P4_7						
11	VSS/AVSS							
12	XIN	P4_6						
13	VCC/AVCC							
14		P5_4		(TRCIOD)				
15		P5_3		(TRCIOC)				
16		P5_2		(TRCIOB)				
17		P5_1		(TRCIOA/TRCTRG)				
18		P5_0		(TRCCLK)				
19		P3_7		TRAO	(TXD2/SDA2/ RXD2/SCL2)	SSO	SDA	
20		P3_5		(TRCIOD)	(CLK2)	SSCK	SCL	
21		P3_4		(TRCIOC)	(TXD2/SDA2/ RXD2/SCL2)	SSI		IVREF3
22		P3_3	ĪNT3	(TRCCLK)	(CTS2/RTS2)	SCS		IVCMP3
23		P2_7		(TRDIOD1)	,			
24		P2_6		(TRDIOC1)				
25		P2_5		(TRDIOB1)				
26		P2_4		(TRDIOA1)				
27		P2_3		(TRDIOD0)				
28		P2_2		(TRCIOD/TRDIOB0)				
29		P2_1		(TRCIOC/TRDIOC0)				
30		P2_0	(ĪNT1)	(TRCIOB/TRDIOA0/ TRDCLK)				
31		P9_3						
32		P9_2						
33		P9_1						
34		P9_0						
35		P3_6	(INT1)					
36		P3_1		(TRBO)				
37		P8_7						
38		P8_6						
39		P8_5		(TRFO12)				
40		P8_4		(TRFO11)				

Note:

1. Can be assigned to the pin in parentheses by a program.

1.5 Pin Functions

Tables 1.6 and 1.7 list Pin Functions.

Table 1.6 Pin Functions (1)

Item	Pin Name	I/O Type	Description
Power supply input	VCC, VSS	_	Apply 1.8 to 5.5 V to the VCC pin. Apply 0 V to the VSS pin.
Analog power supply input	AVCC, AVSS	_	Power supply for the A/D converter. Connect a capacitor between AVCC and AVSS.
Reset input	RESET	I	Input "L" on this pin resets the MCU.
MODE	MODE	ı	Connect this pin to VCC via a resistor.
XIN clock input	XIN	I	These pins are provided for XIN clock generation circuit I/O.
XIN clock output	XOUT	I/O	Connect a ceramic resonator or a crystal oscillator between the XIN and XOUT pins. (1) To use an external clock, input it to the XOUT pin and leave the XIN pin open.
XCIN clock input	XCIN	I	These pins are provided for XCIN clock generation circuit I/O.
XCIN clock output	XCOUT	0	Connect a crystal oscillator between the XCIN and XCOUT pins. (1) To use an external clock, input it to the XCIN pin and leave the XCOUT pin open.
INT interrupt input	INT0 to INT4	I	INT interrupt input pins.
Key input interrupt	KI0 to KI3	I	Key input interrupt input pins.
Timer RA	TRAIO	I/O	Timer RA I/O pin.
	TRAO	0	Timer RA output pin.
Timer RB	TRBO	0	Timer RB output pin.
Timer RC	TRCCLK	ı	External clock input pin.
	TRCTRG	I	External trigger input pin.
	TRCIOA, TRCIOB, TRCIOC, TRCIOD	I/O	Timer RC I/O pins.
Timer RD	TRDIOA0, TRDIOA1, TRDIOB0, TRDIOB1, TRDIOC0, TRDIOC1, TRDIOD0, TRDIOD1	I/O	Timer RD I/O pins.
	TRDCLK	I	External clock input pin.
Timer RE	TREO	0	Divided clock output pin.
Timer RF	TRFO00, TRFO10, TRFO01,TRFO11, TRFO02,TRFO12	0	Timer RF output pins.
	TRFI	- 1	Timer RF input pin.
Timer RG	TRGIOA, TRGIOB	1/0	Timer RG I/O ports.
	TRGCLKA, TRGCLKB	I	External clock input pins.
Serial interface	CLK0, CLK1, CLK2	I/O	Transfer clock I/O pins.
	RXD0, RXD1, RXD2	ļ	Serial data input pins.
	TXD0, TXD1, TXD2	0	Serial data output pins.
	CTS2	I	Transmission control input pin.
	RTS2	0	Reception control output pin.
	SCL2	I/O	I ² C mode clock I/O pin.
	SDA2		

I: Input Note: O: Output

I/O: Input and output

1. Refer to the oscillator manufacturer for oscillation characteristics.

2.8.7 Interrupt Enable Flag (I)

The I flag enables maskable interrupts.

Interrupts are disabled when the I flag is set to 0, and are enabled when the I flag is set to 1. The I flag is set to 0 when an interrupt request is acknowledged.

2.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is set to 0; USP is selected when the U flag is set to 1.

The U flag is set to 0 when a hardware interrupt request is acknowledged or the INT instruction of software interrupt numbers 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL is 3 bits wide and assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has higher priority than IPL, the interrupt is enabled.

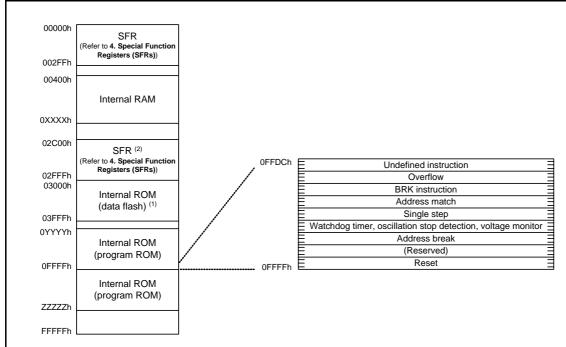
2.8.10 Reserved Bit

If necessary, set to 0. When read, the content is undefined.

R8C/38C Group 3. Memory

3. Memory

3.1 R8C/38C Group


Figure 3.1 is a Memory Map of R8C/38C Group. The R8C/38C Group has a 1-Mbyte address space from addresses 00000h to FFFFh. The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFFh. For example, a 64-Kbyte internal ROM area is allocated addresses 04000h to 13FFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. The starting address of each interrupt routine is stored here.

The internal ROM (data flash) is allocated addresses 03000h to 03FFFh.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 6-Kbyte internal RAM area is allocated addresses 00400h to 01BFFh. The internal RAM is used not only for data storage but also as a stack area when a subroutine is called or when an interrupt request is acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh and 02C00h to 02FFFh (the SFR areas for the DTC and other modules). Peripheral function control registers are allocated here. All unallocated spaces within the SFRs are reserved and cannot be accessed by users.

- 1. The data flash indicates block A (1 Kbyte), block B (1 Kbyte), block C (1 Kbyte), and block D (1 Kbyte).
- 2. The SFR areas for the DTC and other modules are allocated to addresses 02C00h to 02FFFh.
- 3. The blank areas are reserved and cannot be accessed by users.

Part Number	Internal ROM			Internal RAM		
Fait Number	Size	Address 0YYYYh	Address ZZZZZh	Size	Address 0XXXXh	
R5F21386CNFP, R5F21386CDFP, R5F21386CNXXXFP, R5F21386CDXXXFP	32 Kbytes	08000h	-	2.5 Kbytes	00DFFh	
R5F21387CNFP, R5F21387CDFP, R5F21387CNXXXFP, R5F21387CDXXXFP	48 Kbytes	04000h	-	4 Kbytes	013FFh	
R5F21388CNFP, R5F21388CDFP, R5F21388CNXXXFP, R5F21388CDXXXFP	64 Kbytes	04000h	13FFFh	6 Kbytes	01BFFh	
R5F2138ACNFP, R5F2138ACDFP, R5F2138ACNXXXFP, R5F2138ACDXXXFP	96 Kbytes	04000h	1BFFFh	8 Kbytes	023FFh	
R5F2138CCNFP, R5F2138CCDFP, R5F2138CCNXXXFP, R5F2138CCDXXXFP	128 Kbytes	04000h	23FFFh	10 Kbytes	02BFFh	

Figure 3.1 Memory Map of R8C/38C Group

SFR Information (2) (1) Table 4.2

Address	Register	Symbol	After Reset
003Ah	Voltage Monitor 2 Circuit Control Register	VW2C	10000010b
003Bh			
003Ch			
003Dh			
003Eh			
003Fh			
0040h			
0040H	Floor Momony Doody Interview Control Docietor	FMRDYIC	XXXXX000b
	Flash Memory Ready Interrupt Control Register	FINIRDTIC	AAAAAUUUD
0042h			
0043h			
0044h			
0045h			
0046h	INT4 Interrupt Control Register	INT4IC	XX00X000b
0047h	Timer RC Interrupt Control Register	TRCIC	XXXXX000b
0048h	Timer RD0 Interrupt Control Register	TRD0IC	XXXXX000b
0049h	Timer RD1 Interrupt Control Register	TRD1IC	XXXXX000b
004Ah	Timer RE Interrupt Control Register	TREIC	XXXXX000b
004Bh	UART2 Transmit Interrupt Control Register	S2TIC	XXXXX000b
004Ch	UART2 Receive Interrupt Control Register	S2RIC	XXXXX000b
004Dh	Key Input Interrupt Control Register	KUPIC	XXXXX000b
004Bh	A/D Conversion Interrupt Control Register	ADIC	XXXXX000b XXXXX000b
		_	
004Fh	SSU Interrupt Control Register/IIC bus Interrupt Control Register (2)	SSUIC/IICIC	XXXXX000b
0050h	Timer RF Compare 1 Interrupt Control Register	CMP1IC	XXXXX000b
0051h	UART0 Transmit Interrupt Control Register	SOTIC	XXXXX000b
0052h	UARTO Receive Interrupt Control Register	SORIC	XXXXX000b
0053h	UART1 Transmit Interrupt Control Register	S1TIC	XXXXX000b
0054h	UART1 Receive Interrupt Control Register	S1RIC	XXXXX000b
0055h	INT2 Interrupt Control Register	INT2IC	XX00X000b
0056h	Timer RA Interrupt Control Register	TRAIC	XXXXX000b
0057h	Timor to timorapt control regiotor	110.10	70000000
0058h	Timer RB Interrupt Control Register	TRBIC	XXXXX000b
0059h	INT1 Interrupt Control Register	INT1IC	XX00X000b
005Ah	INT3 Interrupt Control Register	INT3IC	XX00X000b
005Bh	Timer RF Interrupt Control Register	TRFIC	XXXXX000b
005Ch	Timer RF Compare 0 Interrupt Control Register	CMP0IC	XXXXX000b
005Dh	INT0 Interrupt Control Register	INT0IC	XX00X000b
005Eh	UART2 Bus Collision Detection Interrupt Control Register	U2BCNIC	XXXXX000b
005Fh	Timer RF Capture Interrupt Control Register	CAPIC	XXXXX000b
0060h			
0061h			
0062h			
0063h			
0064h			
0065h			
0066h			
0067h			
0068h			
0069h			
006Ah			
006Bh	Timer RG Interrupt Control Register	TRGIC	XXXXX000b
006Ch			
006Dh			
006Eh			
006Fh			
000111 0070h			
0070H			
	Voltage Maniter 1 Interrupt Central Register	VCMD4IC	VVVVV
0072h	Voltage Monitor 1 Interrupt Control Register	VCMP1IC	XXXXX000b
0073h	Voltage Monitor 2 Interrupt Control Register	VCMP2IC	XXXXX000b
0074h			
0075h			
0076h			
0077h			
0078h			
0079h			
0073h			
007An			
007Ch			
007Dh			
007Eh			
007Fh	<u> </u>		1

X: Undefined

- The blank areas are reserved and cannot be accessed by users.
 Selectable by the IICSEL bit in the SSUIICSR register.

SFR Information (4) (1) Table 4.4

Address	Register	Symbol	After Reset
00C0h	A/D Register 0	AD0	XXh
00C1h			000000XXb
00C2h	A/D Register 1	AD1	XXh
00C3h			000000XXb
00C4h	A/D Register 2	AD2	XXh
00C5h			000000XXb
00C6h	A/D Register 3	AD3	XXh
00C7h			000000XXb
00C8h	A/D Register 4	AD4	XXh
00C9h			000000XXb
00CAh	A/D Register 5	AD5	XXh
00CBh			000000XXb
00CCh	A/D Register 6	AD6	XXh
00CDh			000000XXb
00CEh	A/D Register 7	AD7	XXh
00CFh	7 P Regiotor 7	7.57	000000XXb
00D0h			OOOOOOXXB
00D0H			
00D111			
00D2H			
00D3H	A/D Mode Register	ADMOD	00h
00D4fi	A/D Input Select Register	ADINSEL	11000000b
00D5h	A/D Control Register 0	ADCON0	00h
00D6h	A/D Control Register 1	ADCON0 ADCON1	00h
00D7h 00D8h			00h
00D8h	D/A0 Register D/A1 Register	DA0 DA1	00h
00D9h 00DAh	DIAT REGISTER	DAT	UUII
00DBh 00DCh	D/A Control Pogistor	DACON	100h
	D/A Control Register	DACON	00h
00DDh			
00DEh			
00DFh	Port DO Dogistor	100	VVh
00E0h	Port P0 Register	P0	XXh
00E1h	Port P1 Register	P1	XXh
00E2h	Port P0 Direction Register	PD0	00h
00E3h	Port P1 Direction Register	PD1	00h
00E4h	Port P2 Register	P2	XXh
00E5h	Port P3 Register	P3	XXh
00E6h	Port P2 Direction Register	PD2	00h
00E7h	Port P3 Direction Register	PD3	00h
00E8h	Port P4 Register	P4	XXh
00E9h	Port P5 Register	P5	XXh
00EAh	Port P4 Direction Register	PD4	00h
00EBh	Port P5 Direction Register	PD5	00h
00ECh	Port P6 Register	P6	XXh
00EDh	Port P7 Register	P7	XXh
00EEh	Port P6 Direction Register	PD6	00h
00EFh	Port P7 Direction Register	PD7	00h
00F0h	Port P8 Register	P8	XXh
00F1h	Port P9 Register	P9	XXh
00F2h	Port P8 Direction Register	PD8	00h
00F3h	Port P9 Direction Register	PD9	00h
00F4h			
00F5h			
00F6h			
00F7h			
00F8h			
00F9h			
00FAh			
00FBh			
00FCh			
00FDh			
	 		+
00FEh		ı	

X: Undefined

Note:

1. The blank areas are reserved and cannot be accessed by users.

Table 5.2 Recommended Operating Conditions (1)

Company and	Darameter			Conditions	Standard			Linit	
Symbol		Р	arameter		Conditions	Min.	Тур.	Max.	Unit
Vcc/AVcc	Supply voltage					1.8	_	5.5	V
Vss/AVss	Supply voltage					_	0	_	V
VIH	Input "H" voltage	Other th	nan CMOS ii	nput		0.8 Vcc		Vcc	V
		CMOS	Input level switching	Input level selection:	4.0 V ≤ Vcc ≤ 5.5 V	0.5 Vcc		Vcc	V
		input		0.35 Vcc	2.7 V ≤ Vcc < 4.0 V	0.55 Vcc		Vcc	V
			function (I/O port)		1.8 V ≤ Vcc < 2.7 V	0.65 Vcc		Vcc	V
			(I/O port)	Input level selection:	4.0 V ≤ Vcc ≤ 5.5 V	0.65 Vcc		Vcc	V
				0.5 Vcc	2.7 V ≤ Vcc < 4.0 V	0.7 Vcc		Vcc	V
					1.8 V ≤ Vcc < 2.7 V	0.8 Vcc		Vcc	V
				Input level selection:	4.0 V ≤ Vcc ≤ 5.5 V	0.85 Vcc		Vcc	V
				0.7 Vcc	2.7 V ≤ Vcc < 4.0 V	0.85 Vcc		Vcc	V
					1.8 V ≤ Vcc < 2.7 V	0.85 Vcc	_	Vcc	V
		Externa	I clock input	(XOUT)		1.2	_	Vcc	V
VIL	Input "L" voltage	Other th	nan CMOS ii	nput		0	_	0.2 Vcc	V
		CMOS	Inputlevel	Input level selection:	4.0 V ≤ Vcc ≤ 5.5 V	0	_	0.2 Vcc	V
		input	switching	0.35 Vcc	2.7 V ≤ Vcc < 4.0 V	0	_	0.2 Vcc	V
			function		1.8 V ≤ Vcc < 2.7 V	0	_	0.2 Vcc	V
			(I/O port)	Input level selection:	4.0 V ≤ Vcc ≤ 5.5 V	0	_	0.4 Vcc	V
				0.5 Vcc	2.7 V ≤ Vcc < 4.0 V	0	_	0.3 Vcc	V
					1.8 V ≤ Vcc < 2.7 V	0	_	0.2 Vcc	V
				Input level selection:	4.0 V ≤ Vcc ≤ 5.5 V	0	_	0.55 Vcc	V
				0.7 Vcc	2.7 V ≤ Vcc < 4.0 V	0		0.45 Vcc	V
					1.8 V ≤ Vcc < 2.7 V	0		0.35 Vcc	V
		Externa	l clock input	(XOUT)		0	_	0.4	V
IOH(sum)	Peak sum output current	"H"	Sum of all	pins IOH(peak)		_	_	-160	mA
IOH(sum)	Average sum out current	put "H"	Sum of all	pins IOH(avg)		_	_	-80	mA
IOH(peak)	Peak output "H" o	urrent	Drive capa	city Low		_	_	-10	mA
	·		Drive capa	city High		_	_	-40	mA
IOH(avg)	Average output "I	H"	Drive capa	city Low		_	_	-5	mA
	current		Drive capa	city High		_	_	-20	mA
IOL(sum)	Peak sum output current	"L"	Sum of all	pins IOL(peak)		_	_	160	mA
IOL(sum)	Average sum out	put "L"	Sum of all	pins IOL(avg)		_	_	80	mA
IOL(peak)	Peak output "L" c	urrent	Drive capa	city Low		_		10	mA
" /	·		Drive capa	•		_	_	40	mA
IOL(avg)	Average output "I	"	Drive capa			_	_	5	mA
- (* 3)	current		Drive capa	•		_	_	20	mA
f(XIN)	XIN clock input of	scillation	•	,	2.7 V ≤ Vcc ≤ 5.5 V	_	_	20	MHz
()			,		1.8 V ≤ Vcc < 2.7 V	_	_	5	MHz
f(XCIN)	XCIN clock input	oscillatio	n frequency		1.8 V ≤ Vcc ≤ 5.5 V	_	32.768	50	kHz
fOCO40M			. ,	ner RC, timer RD or	2.7 V ≤ Vcc ≤ 5.5 V	32	_	40	MHz
fOCO-F	fOCO-F frequence	V			2.7 V ≤ Vcc ≤ 5.5 V	_	_	20	MHz
1000-	1000-i ilequello	у			$1.8 \text{ V} \le \text{VCC} \le 3.3 \text{ V}$	_		5	MHz
_	System clock free	ייים			1.8 V ≤ VCC < 2.7 V 2.7 V ≤ VCC ≤ 5.5 V	_		20	MHz
_	Gystern Glock fret	₁ u c ncy			1.8 V ≤ VCC ≤ 5.5 V			5	MHz
f(BCLK)	CPU clock freque	ncv/			1.8 V ≤ VCC < 2.7 V 2.7 V ≤ VCC ≤ 5.5 V	_		20	MHz
f(BCLK)	or o clock freque	псу				_	_		
					$1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$	_	_	5	MHz

- 1. Vcc = 1.8 to 5.5 V and $T_{opr} = -20$ to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.
- 2. The average output current indicates the average value of current measured during 100 ms.
- 3. fOCO40M can be used as the count source for timer RC, timer RD, or timer RG in the range of Vcc = 2.7 to 5.5 V.

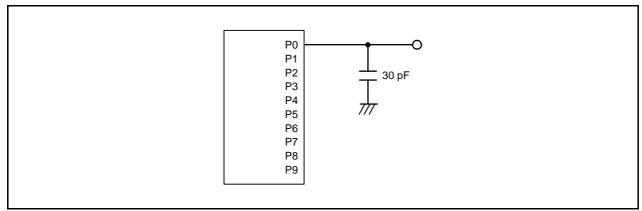


Figure 5.1 Ports P0 to P9 Timing Measurement Circuit

Table 5.3 A/D Converter Characteristics

Symbol	Parameter		Conc	ditions		Standard		Unit
Syllibol			Odriditions		Min.	Тур.	Max.	Offic
_	Resolution		Vref = AVCC		_	_	10	Bit
_	Absolute accuracy	10-bit mode	Vref = AVCC = 5.0 V	AN0 to AN7 input, AN8 to AN11 input, AN12 to AN19 input	I	_	±3	LSB
			Vref = AVCC = 3.3 V	AN0 to AN7 input, AN8 to AN11 input, AN12 to AN19 input	_	_	±5	LSB
			Vref = AVCC = 3.0 V	AN0 to AN7 input, AN8 to AN11 input, AN12 to AN19 input	_	_	±5	LSB
			Vref = AVCC = 2.2 V	AN0 to AN7 input, AN8 to AN11 input, AN12 to AN19 input	_	_	±5	LSB
		8-bit mode	Vref = AVCC = 5.0 V	AN0 to AN7 input, AN8 to AN11 input, AN12 to AN19 input	_	_	±2	LSB
			Vref = AVCC = 3.3 V	AN0 to AN7 input, AN8 to AN11 input, AN12 to AN19 input	_	_	±2	LSB
			Vref = AVCC = 3.0 V	AN0 to AN7 input, AN8 to AN11 input, AN12 to AN19 input	_	_	±2	LSB
			Vref = AVCC = 2.2 V	AN0 to AN7 input, AN8 to AN11 input, AN12 to AN19 input	_	_	±2	LSB
φAD	A/D conversion clock	•	4.0 V ≤ Vref = AVCC ≤	≤ 5.5 V ⁽²⁾	2	_	20	MHz
			3.2 V ≤ Vref = AVCC ≤	≤ 5.5 V ⁽²⁾	2	_	16	MHz
			2.7 V ≤ Vref = AVCC ≤	≤ 5.5 V ⁽²⁾	2	_	10	MHz
			$2.2 \text{ V} \le \text{Vref} = \text{AVCC} \le 5.5 \text{ V}$ (2)		2	_	5	MHz
_	Tolerance level impedance	e				3	_	kΩ
tconv	Conversion time	10-bit mode	Vref = AVCC = 5.0 V,	φAD = 20 MHz	2.2	_	_	μS
		8-bit mode	Vref = AVCC = 5.0 V,	φAD = 20 MHz	2.2		_	μS
tsamp	Sampling time	•	φAD = 20 MHz		0.8	_	_	μS
lVref	Vref current		Vcc = 5.0 V, XIN = f1	1 = φAD = 20 MHz	_	45	_	μА
Vref	Reference voltage				2.2	_	AVcc	V
VIA	Analog input voltage (3)				0	_	Vref	V
OCVREF	On-chip reference voltage)	2 MHz ≤ φAD ≤ 4 MH	łz	1.19	1.34	1.49	V

^{1.} Vcc/AVcc = Vref = 2.2 to 5.5 V, Vss = 0 V, and Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.

^{2.} The A/D conversion result will be undefined in wait mode, stop mode, when the flash memory stops, and in low-current-consumption mode. Do not perform A/D conversion in these states or transition to these states during A/D conversion.

^{3.} When the analog input voltage is over the reference voltage, the A/D conversion result will be 3FFh in 10-bit mode and FFh in 8-bit mode.

Table 5.6 Flash Memory (Program ROM) Electrical Characteristics

Cumbal	Parameter	Conditions		Unit		
Symbol	Parameter	Conditions	Min.	Тур.	5. Max. — ti 500 500 5 + CPU clock × 3 cycles — 30 + CPU clock × 1 cycle	Unit
_	Program/erase endurance (2)		1,000 (3)	_	_	times
_	Byte program time		_	80	500	μS
_	Block erase time		_	0.3	_	S
td(SR-SUS)	Time delay from suspend request until suspend		_	_		ms
_	Interval from erase start/restart until following suspend request		0	_	_	μS
_	Time from suspend until erase restart		_	_		μS
td(CMDRST -READY)	Time from when command is forcibly stopped until reading is enabled		=	=	30 + CPU clock × 1 cycle	μS
_	Program, erase voltage		2.7	_	5.5	V
_	Read voltage		1.8	_	5.5	V
_	Program, erase temperature		0	_	60	°C
_	Data hold time (7)	Ambient temperature = 55 °C	20	_	_	year

- 1. Vcc = 2.7 to 5.5 V and Topr = 0 to 60 °C, unless otherwise specified.
- 2. Definition of programming/erasure endurance
 - The programming and erasure endurance is defined on a per-block basis.
 - If the programming and erasure endurance is n (n = 1,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one. However, the same address must not be programmed more than once per erase operation (overwriting prohibited).
- 3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed.)
- 4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.
- 5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
- 6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.
- 7. The data hold time includes time that the power supply is off or the clock is not supplied.

Table 5.7 Flash Memory (Data flash Block A to Block D) Electrical Characteristics

Cumbal	Parameter	Conditions		Unit		
Symbol	Parameter	Conditions	Min.	Тур.	Max. — 1500 1500 1	Unit
_	Program/erase endurance (2)		10,000 (3)	_	_	times
_	Byte program time (program/erase endurance ≤ 1,000 times)		_	160	1500	μS
_	Byte program time (program/erase endurance > 1,000 times)		_	300	1500	μS
_	Block erase time (program/erase endurance ≤ 1,000 times)		_	0.2	1	S
_	Block erase time (program/erase endurance > 1,000 times)		_	0.3	1	S
td(SR-SUS)	Time delay from suspend request until suspend		_	_		ms
_	Interval from erase start/restart until following suspend request		0	_	_	μS
_	Time from suspend until erase restart		_	_		μS
td(CMDRST -READY)	Time from when command is forcibly stopped until reading is enabled		-	-		μS
_	Program, erase voltage		2.7	_	5.5	V
_	Read voltage		1.8	_	5.5	V
_	Program, erase temperature		-20 (7)	_	85	°C
_	Data hold time (8)	Ambient temperature = 55 °C	20	_	_	year

- 1. Vcc = 2.7 to 5.5 V and Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.
- 2. Definition of programming/erasure endurance
 - The programming and erasure endurance is defined on a per-block basis.
 - If the programming and erasure endurance is n (n = 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one. However, the same address must not be programmed more than once per erase operation (overwriting prohibited).
- 3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed.)
- 4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. In addition, averaging the erasure endurance between blocks A to D can further reduce the actual erasure endurance. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.
- 5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
- 6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.
- 7. -40 °C for D version.
- 8. The data hold time includes time that the power supply is off or the clock is not supplied.

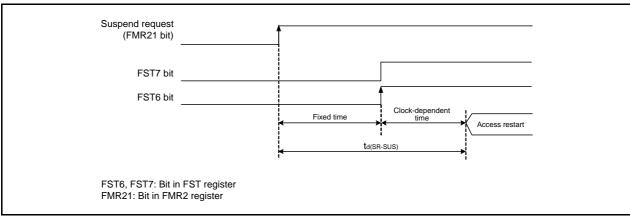


Figure 5.2 Time delay until Suspend

Table 5.12 High-speed On-Chip Oscillator Circuit Electrical Characteristics

Cumbal	Parameter	Condition		Unit		
Symbol	Parameter	Condition	Min.	Тур.	Max.	Offic
_	High-speed on-chip oscillator frequency after reset	Vcc = 1.8 V to 5.5 V -20 °C ≤ Topr ≤ 85 °C	38.4	40	41.6	MHz
		Vcc = 1.8 V to 5.5 V -40 °C ≤ Topr ≤ 85 °C	38.0	40	42.0	MHz
	High-speed on-chip oscillator frequency when the FRA4 register correction value is written into the	Vcc = 1.8 V to 5.5 V -20 °C ≤ Topr ≤ 85 °C	35.389	36.864	38.338	MHz
	FRA1 register and the FRA5 register correction value into the FRA3 register (2)	Vcc = 1.8 V to 5.5 V -40 °C ≤ Topr ≤ 85 °C	35.020	36.864	38.707	MHz
	High-speed on-chip oscillator frequency when the FRA6 register correction value is written into the	Vcc = 1.8 V to 5.5 V -20 °C ≤ Topr ≤ 85 °C	30.72	32	33.28	MHz
	1 : EDAG : .	Vcc = 1.8 V to 5.5 V -40 °C ≤ Topr ≤ 85 °C	30.40	32	33.60	MHz
_	Oscillation stability time	Vcc = 5.0 V, Topr = 25 °C	_	0.5	3	ms
	Self power consumption at oscillation	Vcc = 5.0 V, Topr = 25 °C	_	400	_	μΑ

Notes:

- 1. Vcc = 1.8 to 5.5 V and Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.
- 2. This enables the setting errors of bit rates such as 9600 bps and 38400 bps to be 0% when the serial interface is used in UART mode.

Table 5.13 Low-speed On-Chip Oscillator Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
	i didilietei	Condition	Min.	Тур.	Max.	Offic
fOCO-S	Low-speed on-chip oscillator frequency		60	125	250	kHz
_	Oscillation stability time	Vcc = 5.0 V, Topr = 25 °C	_	30	100	μS
-	Self power consumption at oscillation	Vcc = 5.0 V, Topr = 25 °C	1	2	_	μΑ

Note:

Table 5.14 Power Supply Circuit Timing Characteristics

Symbol	Parameter	Condition		Standard		Unit
Symbol	r alametei	Condition	Min.	Тур.	Max.	Offic
td(P-R)	Time for internal power supply stabilization during power-on ⁽²⁾		_	_	2,000	μS

- 1. The measurement condition is Vcc = 1.8 to 5.5 V and Topr = 25 °C.
- 2. Waiting time until the internal power supply generation circuit stabilizes during power-on.

^{1.} Vcc = 1.8 to 5.5 V and Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.

Table 5.17 Electrical Characteristics (1) [4.2 V \leq VCC \leq 5.5 V]

Symbol		Parameter	Condition		Standard			Unit
Symbol	Output "H" Other than XOUT Drive capacity High Vcc = 5 V IoH = -20 mA Vcc -2.0	Max.	Offic					
Vон	Output "H"	Other than XOUT	Drive capacity High Vcc = 5 V	Iон = -20 mA	Vcc - 2.0	_	Vcc	V
	voltage		Drive capacity Low Vcc = 5 V	lон = −5 mA	Vcc - 2.0	_	Vcc	V
		XOUT	Vcc = 5 V	Ioн = -200 μA	1.0	_	Vcc	V
Vol	Output "L"	Other than XOUT	Drive capacity High Vcc = 5 V	IoL = 20 mA	_	_	2.0	V
	voltage		Drive capacity Low Vcc = 5 V	IoL = 5 mA	_	_	2.0	V
		XOUT	Vcc = 5 V	IOL = 200 μA	_	_	0.5	V
VT+-VT-	Hysteresis	INT3, INT4, KIO, KI1, KI2, KI3, TRAIO, TRBO, TRCIOA, TRCIOB, TRCIOC, TRCIOD, TRDIOAO, TRDIOBO, TRDIOCO, TRDIODO, TRDIOA1, TRDIOB1, TRDIOC1, TRDIOD1, TRCTRG, TRCCLK, TRFI, TRGIOA, TRGIOB, ADTRG,			0.1	1.2	_	V
liн	Input "H" cu	ırrent	VI = 5 V, VCC = 5.0 V		_	_	5.0	μА
lıL	Input "L" cu	rrent	VI = 0 V, VCC = 5.0 V		_	_	-5.0	μΑ
RPULLUP	Pull-up resistance		VI = 0 V, VCC = 5.0 V		25	50	100	kΩ
RfXIN	Feedback resistance	XIN			_	0.3	_	ΜΩ
RfXCIN	Feedback resistance	XCIN			_	8	_	ΜΩ
VRAM	RAM hold v	/oltage	During stop mode		1.8	_	_	V

^{1. 4.2} V ≤ Vcc ≤ 5.5 V, Topr = −20 to 85 °C (N version)/−40 to 85 °C (D version), and f(XIN) = 20 MHz, unless otherwise specified.

Table 5.22 Serial Interface

Symbol	Parameter	Stan	dard	Unit
Syllibol	Falantetel	Min.	Min. Max.	Offic
tc(CK)	CLKi input cycle time	200	_	ns
tw(ckh)	CLKi input "H" width	100	_	ns
tw(ckl)	CLKi input "L" width	100	_	ns
td(C-Q)	TXDi output delay time	_	50	ns
th(C-Q)	TXDi hold time	0	_	ns
tsu(D-C)	RXDi input setup time	50	_	ns
th(C-D)	RXDi input hold time	90	_	ns

i = 0 to 2

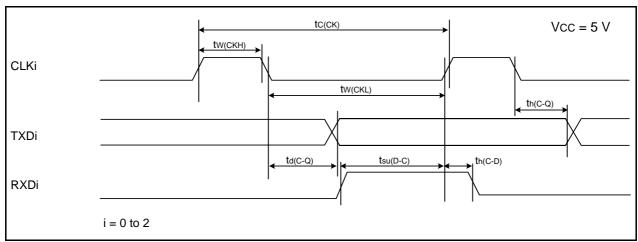


Figure 5.11 Serial Interface Timing Diagram when Vcc = 5 V

Table 5.23 External Interrupt INTi (i = 0 to 4) Input, Key Input Interrupt Kli (i = 0 to 3)

Symbol Parameter -	Parameter	Standard		Unit
	Min.	Max.	Offic	
tw(INH)	INTi input "H" width, Kli input "H" width	250 (1)	_	ns
tw(INL)	INTi input "L" width, Kli input "L" width			ns

- 1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.
- 2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

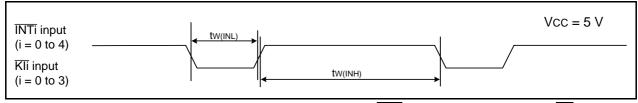


Figure 5.12 Input Timing Diagram for External Interrupt INTi and Key Input Interrupt Kli when Vcc = 5 V

Table 5.24 Electrical Characteristics (3) [2.7 V \leq Vcc < 4.2 V]

Symbol	Por	ameter	Condition		Standard			Unit
Symbol	Fair	ameter		Min.	Тур.	Max.	Offic	
Vон	Output "H" voltage	Other than XOUT	Drive capacity High	Iон = −5 mA	Vcc - 0.5	_	Vcc	V
			Drive capacity Low	Iон = −1 mA	Vcc - 0.5	_	Vcc	V
		XOUT		$IOH = -200 \mu A$	1.0	_	Vcc	V
Vol	Output "L" voltage	Other than XOUT	Drive capacity High	IoL = 5 mA	_	_	0.5	V
			Drive capacity Low	IoL = 1 mA	_	_	0.5	V
		XOUT		IOL = 200 μA	_	_	0.5	V
VT+-VT-	Hysteresis	INTO, INT1, INT2, INT3, INT4, KIO, KI1, KI2, KI3, TRAIO, TRBO, TRCIOA, TRCIOB, TRCIOC, TRCIOD, TRDIOAO, TRDIOBO, TRDIOCO, TRDIODO, TRDIOA1, TRDIOB1, TRDIOC1, TRDIOD1, TRCTRG, TRCCLK, TRFI, TRGIOA, TRGIOB, ADTRG, RXDO, RXD1, RXD2, CLK0, CLK1, CLK2, SSI, SCL, SDA, SSO RESET	Vcc = 3.0 V		0.1	0.4		V
lін	Input "H" current		$V_1 = 3 V, V_{CC} = 3.0 V$		_		4.0	μΑ
lıL_	Input "L" current		VI = 0 V, Vcc = 3.0 \		_		-4.0	μΑ
RPULLUP	Pull-up resistance		$V_1 = 0 V, V_{CC} = 3.0 V$	/	42	84	168	kΩ
RfXIN	Feedback resistance	XIN			_	0.3	_	ΜΩ
Rfxcin	Feedback resistance	XCIN			_	8	_	МΩ
VRAM	RAM hold voltage	L	During stop mode		1.8	_	_	V

^{1.} $2.7 \text{ V} \leq \text{Vcc} < 4.2 \text{ V}$, $\text{Topr} = -20 \text{ to } 85 ^{\circ}\text{C}$ (N version)/ $-40 \text{ to } 85 ^{\circ}\text{C}$ (D version), and f(XIN) = 10 MHz, unless otherwise specified.

Table 5.31 Electrical Characteristics (5) [1.8 V \leq VCC < 2.7 V]

Cumbal	Dor	amatar.	Conditi		S	Standard		Unit
Symbol	Par	ameter	Conditi	on	Min.	Тур.	Max.	Unit
Vон	Output "H" voltage	Other than XOUT	Drive capacity High	IOH = −2 mA	Vcc - 0.5	_	Vcc	V
			Drive capacity Low	Iон = −1 mA	Vcc - 0.5	_	Vcc	V
		XOUT		Ioн = −200 μA	1.0	_	Vcc	V
Vol	Output "L" voltage	Other than XOUT	Drive capacity High	IoL = 2 mA	_	_	0.5	V
			Drive capacity Low	IoL = 1 mA	_	_	0.5	V
		XOUT		IOL = 200 μA	_	_	0.5	V
VT+-VT-	Hysteresis	NTO, INT1, INT2, INT3, INT4, KIO, KI1, KI2, KI3, TRAIO, TRBO, TRCIOA, TRCIOB, TRCIOC, TRDIOAO, TRCICK, TRFI, TRGIOA, TRGIOB, ADTRG, RXDO, RXD1, RXD2, CLK0, CLK1, CLK2, SSI, SCL, SDA, SSO RESET			0.05	0.20		V
lін	Input "H" current		$V_1 = 2.2 \text{ V}, \text{ Vcc} = 2.2 \text{ V}$		_		4.0	μА
lıL	Input "L" current		$V_1 = 0 \ V, \ V_{CC} = 2.2 \ V_{CC}$		_		-4.0	μА
RPULLUP	Pull-up resistance		$V_1 = 0 \ V, \ V_{CC} = 2.2 \ V_{CC}$	<i>J</i>	70	140	300	kΩ
RfXIN	Feedback resistance	XIN			_	0.3	_	ΜΩ
Rfxcin	Feedback resistance	XCIN			_	8	_	ΜΩ
VRAM	RAM hold voltage		During stop mode		1.8	_	_	V

^{1.} $1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$, $\text{Topr} = -20 \text{ to } 85 ^{\circ}\text{C}$ (N version)/ $-40 \text{ to } 85 ^{\circ}\text{C}$ (D version), and f(XIN) = 5 MHz, unless otherwise specified.

Table 5.36 Serial Interface

Symbol	Parameter	Standard		Unit	
Syllibol	Falantetel	Min.	Max.	Offile	
tc(CK)	CLKi input cycle time	800	_	ns	
tw(ckh)	CLKi input "H" width	400	_	ns	
tw(ckl)	CLKi input "L" width	400	_	ns	
td(C-Q)	TXDi output delay time	_	200	ns	
th(C-Q)	TXDi hold time	0	_	ns	
tsu(D-C)	RXDi input setup time	150	_	ns	
th(C-D)	RXDi input hold time	90	_	ns	

i = 0 to 2

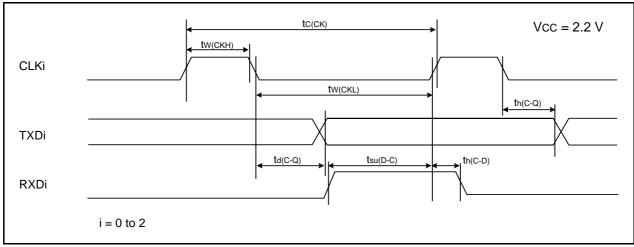


Figure 5.21 Serial Interface Timing Diagram when Vcc = 2.2 V

Table 5.37 External Interrupt INTi (i = 0 to 4) Input, Key Input Interrupt Kli (i = 0 to 3)

Symbol Parameter	Parameter	Stan	Standard		
Symbol	- T diameter	Min.	Max.	Unit	
tw(INH)	INTi input "H" width, Kli input "H" width	1000 (1)	_	ns	
tW(INL)	INTi input "L" width, Kli input "L" width	1000 (2)	_	ns	

- 1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.
- 2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

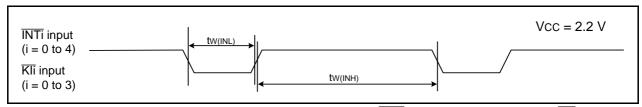


Figure 5.22 Input Timing Diagram for External Interrupt INTi and Key Input Interrupt Kli when Vcc = 2.2 V

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- 2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
- "Specific": Aircraft: aerospace equipment: submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

Limites State United Programs From Limited Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tet: +952-2866-9318, Fax: +852-2866-9022/9044

Renesas Electronics Taiwan Co., Ltd.

7F, No. 363 Fu Shing North Road Taipei, Taiwar Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.

1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-627-80-3000, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn.Bhd.

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd. 11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: 482-2-588-3737, Fax: 482-2-558-5141

© 2010 Renesas Electronics Corporation. All rights reserved.