

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Obsolete
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	75
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 20x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f2138ccdfp-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Current of Nov 2010

1.2 **Product List**

Table 1.3 lists Product List for R8C/38C Group. Figure 1.1 shows a Part Number, Memory Size, and Package of R8C/38C Group.

	ROM C	apacity	RAM			
Part No.	Program ROM	Data flash	Capacity	Package Type	Rer	marks
R5F21386CNFP	32 Kbytes	1 Kbyte \times 4	2.5 Kbytes	PLQP0080KB-A	N version	
R5F21387CNFP	48 Kbytes	1 Kbyte × 4	4 Kbytes	PLQP0080KB-A		
R5F21388CNFP	64 Kbytes	1 Kbyte × 4	6 Kbytes	PLQP0080KB-A		
R5F2138ACNFP	96 Kbytes	1 Kbyte × 4	8 Kbytes	PLQP0080KB-A		
R5F2138CCNFP	128 Kbytes	1 Kbyte \times 4	10 Kbytes	PLQP0080KB-A		
R5F21386CNXXXFP	32 Kbytes	1 Kbyte × 4	2.5 Kbytes	PLQP0080KB-A	N version	Factory
R5F21387CNXXXFP	48 Kbytes	1 Kbyte × 4	4 Kbytes	PLQP0080KB-A		programming
R5F21388CNXXXFP	64 Kbytes	1 Kbyte × 4	6 Kbytes	PLQP0080KB-A		product ⁽¹⁾
R5F2138ACNXXXFP	96 Kbytes	1 Kbyte × 4	8 Kbytes	PLQP0080KB-A		
R5F2138CCNXXXFP	128 Kbytes	1 Kbyte × 4	10 Kbytes	PLQP0080KB-A		
R5F21386CDFP	32 Kbytes	1 Kbyte × 4	2.5 Kbytes	PLQP0080KB-A	D version	
R5F21387CDFP	48 Kbytes	1 Kbyte × 4	4 Kbytes	PLQP0080KB-A		
R5F21388CDFP	64 Kbytes	1 Kbyte × 4	6 Kbytes	PLQP0080KB-A		
R5F2138ACDFP	96 Kbytes	1 Kbyte × 4	8 Kbytes	PLQP0080KB-A		
R5F2138CCDFP	128 Kbytes	1 Kbyte × 4	10 Kbytes	PLQP0080KB-A		
R5F21386CDXXXFP	32 Kbytes	1 Kbyte × 4	2.5 Kbytes	PLQP0080KB-A	D version	Factory
R5F21387CDXXXFP	48 Kbytes	1 Kbyte × 4	4 Kbytes	PLQP0080KB-A		programming
R5F21388CDXXXFP	64 Kbytes	1 Kbyte × 4	6 Kbytes	PLQP0080KB-A		product ⁽¹⁾
R5F2138ACDXXXFP	96 Kbytes	1 Kbyte × 4	8 Kbytes	PLQP0080KB-A		
R5F2138CCDXXXFP	128 Kbytes	1 Kbyte × 4	10 Kbytes	PLQP0080KB-A		

Table 1.3 Product List for R8C/38C Group

Note:

1. The user ROM is programmed before shipment.

Item	Pin Name	I/O Type	Description
SSU	SSI	I/O	Data I/O pin.
	SCS	I/O	Chip-select signal I/O pin.
	SSCK	I/O	Clock I/O pin.
	SSO	I/O	Data I/O pin.
I ² C bus	SCL	I/O	Clock I/O pin
	SDA	I/O	Data I/O pin
Reference voltage input	VREF	I	Reference voltage input pin to A/D converter.
A/D converter	AN0 to AN19	I	Analog input pins to A/D converter.
	ADTRG	I	AD external trigger input pin.
D/A converter	DA0, DA1	0	D/A converter output pins.
Comparator B	IVCMP1, IVCMP3	I	Comparator B analog voltage input pins.
	IVREF1, IVREF3	1	Comparator B reference voltage input pins.
I/O port	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_3 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_5	I/O	CMOS I/O ports. Each port has an I/O select direction register, allowing each pin in the port to be directed for input or output individually. Any port set to input can be set to use a pull-up resistor or not by a program.
Input port	P4_2		Input-only port.

Table 1.7Pin Functions (2)

I: Input O: Output I/O: Input and output

2.8.7 Interrupt Enable Flag (I)

The I flag enables maskable interrupts.

Interrupts are disabled when the I flag is set to 0, and are enabled when the I flag is set to 1. The I flag is set to 0 when an interrupt request is acknowledged.

2.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is set to 0; USP is selected when the U flag is set to 1. The U flag is set to 0 when a hardware interrupt request is acknowledged or the INT instruction of software interrupt numbers 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL is 3 bits wide and assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has higher priority than IPL, the interrupt is enabled.

2.8.10 Reserved Bit

If necessary, set to 0. When read, the content is undefined.

4. Special Function Registers (SFRs)

An SFR (special function register) is a control register for a peripheral function. Tables 4.1 to 4.12 list the special function registers. Table 4.13 lists the ID Code Areas and Option Function Select Area.

1 abie 4.1	SFK information (1) (7		
Address	Register	Symbol	After Reset
0000h			
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0	PM0	00h
0005h	Processor Mode Register 1	PM1	00h
0006h	System Clock Control Register 0	CM0	00101000b
0007h	System Clock Control Register 1	CM1	0010000b
0008h	Module Standby Control Register	MSTCR	00h
0009h	System Clock Control Register 3	CM3	00h
000Ah	Protect Register	PRCR	00h
000Bh	Reset Source Determination Register	RSTFR	0XXXXXXXb ⁽²⁾
000Ch	Oscillation Stop Detection Register	OCD	00000100b
000Dh	Watchdog Timer Reset Register	WDTR	XXh
000Eh	Watchdog Timer Start Register	WDTS	XXh
000Fh	Watchdog Timer Control Register	WDTC	00111111b
0010h			
0011h			
0012h			
0013h			
0014h		ľ	1
0015h	High-Speed On-Chip Oscillator Control Register 7	FRA7	When shipping
0016h			
0017h			
0018h			
0019h			
001Ah			
001Bh			
001Ch	Count Source Protection Mode Register	CSPR	00h
			1000000b (3)
001Dh			
001Eh			
001Fh			
0020h			
0021h			
0022h			
0023h	High-Speed On-Chip Oscillator Control Register 0	FRA0	00h
0024h	High-Speed On-Chip Oscillator Control Register 1	FRA1	When shipping
0025h	High-Speed On-Chip Oscillator Control Register 2	FRA2	00h
0026h	On-Chip Reference Voltage Control Register	OCVREFCR	00h
0027h			
0028h	Clock Prescaler Reset Flag	CPSRF	00h
0029h	High-Speed On-Chip Oscillator Control Register 4	FRA4	When shipping
002Ah	High-Speed On-Chip Oscillator Control Register 5	FRA5	When shipping
002Bh	High-Speed On-Chip Oscillator Control Register 6	FRA6	When shipping
002Ch			
002Dh			
002Eh			
002Fh	High-Speed On-Chip Oscillator Control Register 3	FRA3	When shipping
0030h	Voltage Monitor Circuit Control Register	CMPA	00h
0031h	Voltage Monitor Circuit Edge Select Register	VCAC	00h
0032h			
0033h	Voltage Detect Register 1	VCA1	00001000b
0034h	Voltage Detect Register 2	VCA2	00h ⁽⁴⁾
-		-	00100000b ⁽⁵⁾
0035h			
0035h	Voltage Detection 1 Level Select Register	VD1LS	00000111b
0030h			
0037h	Voltage Monitor 0 Circuit Control Register	VWOC	1100X010b ⁽⁴⁾
000011			1100X010b (5)
00005	Vallage Maniter 1 Circuit Control Devictor	1100/40	
0039h	Voltage Monitor 1 Circuit Control Register	VW1C	10001010b

Table 4.1SFR Information (1) (1)

X: Undefined

Notes:

1. The blank areas are reserved and cannot be accessed by users.

2. The CWR bit in the RSTFR register is set to 0 after power-on and voltage monitor 0 reset. Hardware reset, software reset, or watchdog timer reset does not affect this bit.

3. The CSPROINI bit in the OFS register is set to 0.

4. The LVDAS bit in the OFS register is set to 1.

^{5.} The LVDAS bit in the OFS register is set to 0.

Address	Register	Symbol	After Reset
0100h	Timer RA Control Register	TRACR	00h
	Timer RA L/O Control Register	TRAIOC	
0101h			00h
0102h	Timer RA Mode Register	TRAMR	00h
0103h	Timer RA Prescaler Register	TRAPRE	FFh
0104h	Timer RA Register	TRA	FFh
0105h	LIN Control Register 2	LINCR2	00h
0106h	LIN Control Register	LINCR	00h
0107h	LIN Status Register	LINST	00h
0108h	Timer RB Control Register	TRBCR	00h
0109h	Timer RB One-Shot Control Register	TRBOCR	00h
010Ah	Timer RB I/O Control Register	TRBIOC	00h
010Bh	Timer RB Mode Register	TRBMR	00h
010Ch	Timer RB Prescaler Register	TRBPRE	FFh
010Dh	Timer RB Secondary Register	TRBSC	FFh
010Eh	Timer RB Primary Register	TRBPR	FFh
010Fh	, , ,		
0110h			
0111h			
0112h			
0112h			
0113h 0114h			
0114h 0115h			
0116h			
0117h			
0118h	Timer RE Second Data Register / Counter Data Register	TRESEC	00h
0119h	Timer RE Minute Data Register / Compare Data Register	TREMIN	00h
011Ah	Timer RE Hour Data Register	TREHR	00h
011Bh	Timer RE Day of Week Data Register	TREWK	00h
011Ch	Timer RE Control Register 1	TRECR1	00h
011Dh	Timer RE Control Register 2	TRECR2	00h
011Eh	Timer RE Count Source Select Register	TRECSR	00001000b
011Fh			
0120h	Timer RC Mode Register	TRCMR	01001000b
0121h	Timer RC Control Register 1	TRCCR1	00h
0122h	Timer RC Interrupt Enable Register	TRCIER	01110000b
0123h	Timer RC Status Register	TRCSR	01110000b
0124h	Timer RC I/O Control Register 0	TRCIOR0	10001000b
0125h	Timer RC I/O Control Register 1	TRCIOR1	10001000b
0126h	Timer RC Counter	TRC	00h
0127h			00h
0128h	Timer RC General Register A	TRCGRA	FFh
0120h		INCONA	FFh
0129h	Timer RC General Register B	TRCGRB	FFh
012An 012Bh		INCORD	FFh
	Times DO Occased Devictor O	TROODO	
012Ch	Timer RC General Register C	TRCGRC	FFh
012Dh	Timere DO Company De sister D	TROOPR	FFh
012Eh	Timer RC General Register D	TRCGRD	FFh
012Fh			FFh
0130h	Timer RC Control Register 2	TRCCR2	00011000b
0131h	Timer RC Digital Filter Function Select Register	TRCDF	00h
0132h	Timer RC Output Master Enable Register	TRCOER	01111111b
0133h	Timer RC Trigger Control Register	TRCADCR	00h
0134h			
0135h	Timer RD Control Expansion Register	TRDECR	00h
0136h	Timer RD Trigger Control Register	TRDADCR	00h
0137h	Timer RD Start Register	TRDSTR	11111100b
0138h	Timer RD Mode Register	TRDMR	00001110b
0139h	Timer RD PWM Mode Register	TRDPMR	10001000b
013Ah	Timer RD Function Control Register	TRDFCR	1000000b
013Bh	Timer RD Output Master Enable Register 1	TRDOER1	FFh
013Ch	Timer RD Output Master Enable Register 2	TRDOER2	01111111b
013Dh	Timer RD Output Control Register	TRDOCR	00h
013Eh	Timer RD Digital Filter Function Select Register 0	TRDDF0	00h
013Fh	Timer RD Digital Filter Function Select Register 1	TRDDF1	00h
010111			

Table 4.5SFR Information (5) (1)

Table 4.6	SFR Info	rmation (6) ⁽¹⁾
-----------	----------	----------------------------

Address	Register	Symbol TRDCR0	After Reset
0140h	Timer RD Control Register 0		00h
0141h	Timer RD I/O Control Register A0	TRDIORA0	10001000b
0142h	Timer RD I/O Control Register C0	TRDIORCO	10001000b
0143h	Timer RD Status Register 0	TRDSR0	11100000b
0144h	Timer RD Interrupt Enable Register 0	TRDIER0	11100000b
0145h	Timer RD PWM Mode Output Level Control Register 0	TRDPOCR0	11111000b
0146h	Timer RD Counter 0	TRD0	00h
0147h	1		00h
0148h	Timer RD General Register A0	TRDGRA0	FFh
0149h			FFh
014Ah	Timer RD General Register B0	TRDGRB0	FFh
014Bh		THE ONE O	FFh
014Ch	Timer RD General Register C0	TRDGRC0	FFh
014Ch 014Dh		TRUGRCU	
		700000	FFh
014Eh	Timer RD General Register D0	TRDGRD0	FFh
014Fh			FFh
0150h	Timer RD Control Register 1	TRDCR1	00h
0151h	Timer RD I/O Control Register A1	TRDIORA1	10001000b
0152h	Timer RD I/O Control Register C1	TRDIORC1	10001000b
0153h	Timer RD Status Register 1	TRDSR1	1100000b
0154h	Timer RD Interrupt Enable Register 1	TRDIER1	11100000b
0155h	Timer RD PWM Mode Output Level Control Register 1	TRDPOCR1	11111000b
0156h	Timer RD Counter 1	TRD1	00h
0157h	1		00h
0158h	Timer RD General Register A1	TRDGRA1	FFh
0159h		INDORAT	FFh
	Timer DD Ceneral Deviator D1		
015Ah	Timer RD General Register B1	TRDGRB1	FFh
015Bh			FFh
015Ch	Timer RD General Register C1	TRDGRC1	FFh
015Dh			FFh
015Eh	Timer RD General Register D1	TRDGRD1	FFh
015Fh			FFh
0160h	UART1 Transmit/Receive Mode Register	U1MR	00h
0161h	UART1 Bit Rate Register	U1BRG	XXh
0162h	UART1 Transmit Buffer Register	U1TB	XXh
0163h		0115	XXh
0164h	UART1 Transmit/Receive Control Register 0	U1C0	00001000b
0165h	UART1 Transmit/Receive Control Register 1	U1C1	00001000b
0166h	UART1 Receive Buffer Register	U1RB	XXh
0167h			XXh
0168h			
0169h			
016Ah			
016Bh			
016Ch			
016Dh			
016Eh			
016Fh			
0170h	Timer RG Mode Register	TRGMR	0100000b
0171h	Timer RG Count Control Register	TRGCNTC	00h
0172h	Timer RG Control Register		1000000b
0173h	Timer RG Interrupt Enable Register	TRGIER	11110000b
0174h	Timer RG Status Register	TRGSR	11100000b
0175h	Timer RG I/O Control Register	TRGIOR	00h
0176h	Timer RG Counter	TRG	00h
0177h			00h
0178h	Timer RG General Register A	TRGGRA	FFh
0179h			FFh
017Ah	Timer RG General Register B	TRGGRB	FFh
017Bh			FFh
017Ch	Timer RG General Register C	TRGGRC	FFh
		INGONG	
017Dh		TRACER	FFh
017Eh	Timer RG General Register D	TRGGRD	FFh
017Fh			FFh

Address	Register	Symbol	After Reset
2C00h	DTC Transfer Vector Area		XXh
2C01h	DTC Transfer Vector Area		XXh
2C02h	DTC Transfer Vector Area		XXh
2C03h	DTC Transfer Vector Area		XXh
2C04h	DTC Transfer Vector Area		XXh
2C05h	DTC Transfer Vector Area		XXh
2C06h	DTC Transfer Vector Area		XXh
2C07h	DTC Transfer Vector Area		XXh
2C08h	DTC Transfer Vector Area		XXh
2C09h	DTC Transfer Vector Area		XXh
2C0Ah	DTC Transfer Vector Area		XXh
:	DTC Transfer Vector Area		XXh
:	DTC Transfer Vector Area		XXh
2C3Ah	DTC Transfer Vector Area		XXh
2C3Bh	DTC Transfer Vector Area		XXh
2C3Ch	DTC Transfer Vector Area		XXh
2C3Dh	DTC Transfer Vector Area		XXh
2C3Eh	DTC Transfer Vector Area		XXh
2C3Fh	DTC Transfer Vector Area		XXh
2C40h	DTC Control Data 0	DTCD0	XXh
2C41h			XXh
2C42h			XXh
2C43h			XXh
2C44h			XXh
2C45h			XXh
2C46h			XXh
2C47h			XXh
2C48h	DTC Control Data 1	DTCD1	XXh
2C49h			XXh
2C4Ah			XXh
2C4Bh			XXh
2C4Ch			XXh
2C4Dh			XXh
2C4Eh			XXh
2C4Fh			XXh
2C50h	DTC Control Data 2	DTCD2	XXh
2C51h		-	XXh
2C52h			XXh
2C53h			XXh
2C54h			XXh
2C55h			XXh
2C56h			XXh
2C57h			XXh
2C58h	DTC Control Data 3	DTCD3	XXh
2C59h		51655	XXh
2C5Ah			XXh
2C5Bh			XXh
2C5Ch			XXh
2C5Dh			XXh
2C5Dh 2C5Eh			XXh
2C5En 2C5Fh			XXh
2C5Fn 2C60h	DTC Control Data 4		
	DTC Control Data 4	DTCD4	XXh
2C61h			XXh
2C62h			XXh
2C63h			XXh
2C64h			XXh
2C65h			XXh
2C66h			XXh
2C67h			XXh
2C68h	DTC Control Data 5	DTCD5	XXh
2C69h			XXh
2C6Ah			XXh
2C6Bh			XXh
2C6Ch			XXh
2C6Dh			XXh
2C6Eh			XXh

Table 4.9SFR Information (9) (1)

X: Undefined Note:

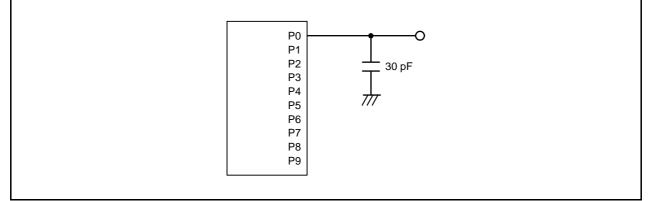

Address	Register	Symbol	After Reset
2C70h	DTC Control Data 6	DTCD6	XXh
2C71h			XXh
2C72h			XXh
2C73h			XXh
2C74h			XXh
2C75h			XXh
2C76h			XXh
2C77h			XXh
2C78h	DTC Control Data 7	DTCD7	XXh
2C79h			XXh
2C7Ah			XXh
2C7Bh			XXh
2C7Ch			XXh
2C7Dh			XXh
2C7Eh			XXh
2C7Fh			XXh
2C80h	DTC Control Data 8	DTCD8	XXh
2C81h		51050	XXh
2C82h			XXh
2C83h			XXh
2C84h			XXh
2C841			XXh
2C86h			XXh
2C80h			XXh
2C88h	DTC Control Data 9	DTCD9	XXh
2C89h	DTC CONTOL Data 9	DICDS	XXh
2C8911 2C8Ah			XXh
2C8Bh			XXh
2C8Ch			XXh
2C8Dh			XXh
2C8Eh			XXh
2C8Eh			XXh
2C8Fn 2C90h	DTC Control Data 10	DTCD10	XXh
2C90h	DTC Control Data TO	DICDIO	XXh
2C92h 2C93h			XXh XXh
2C93n 2C94h			XXh
2C95h 2C96h			XXh XXh
2C97h		DTOD44	XXh
2C98h	DTC Control Data 11	DTCD11	XXh
2C99h			XXh
2C9Ah			XXh
2C9Bh			XXh
2C9Ch			XXh
2C9Dh			XXh
2C9Eh			XXh
2C9Fh		DTOD40	XXh
2CA0h	DTC Control Data 12	DTCD12	XXh
2CA1h			XXh
2CA2h			XXh
2CA3h			XXh
2CA4h			XXh
2CA5h			XXh
2CA6h			XXh
2CA7h			XXh
2CA8h	DTC Control Data 13	DTCD13	XXh
2CA9h			XXh
2CAAh			XXh
2CABh			XXh
2CACh			XXh
2CADh			XXh
2CAEh			XXh
2CAFh			XXh

Table 4.10SFR Information (10) (1)

X: Undefined

Note:

Figure 5.1	Ports P0 to P9 Timing Measurement Circuit
------------	---

Symbol	Parameter	Condition	Standard			Unit
Symbol	Falanielei	Condition	Min.	Тур.	Max.	Onit
Vdet0	Voltage detection level Vdet0_0 ⁽²⁾		1.80	1.90	2.05	V
	Voltage detection level Vdet0_1 (2)		2.15	2.35	2.50	V
	Voltage detection level Vdet0_2 ⁽²⁾		2.70	2.85	3.05	V
	Voltage detection level Vdet0_3 ⁽²⁾		3.55	3.80	4.05	V
-	Voltage detection 0 circuit response time ⁽⁴⁾	At the falling of Vcc from 5.0 V to (Vdet0_0 - 0.1) V	_	6	150	μS
—	Voltage detection circuit self power consumption	VCA25 = 1, Vcc = 5.0 V	-	1.5	_	μA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		_		100	μS

Table 5.8 Voltage Detection 0 Circuit Electrical Characteristics

Notes:

1. The measurement condition is Vcc = 1.8 to 5.5 V and T_{opr} = -20 to 85 °C (N version)/-40 to 85 °C (D version).

2. Select the voltage detection level with bits VDSEL0 and VDSEL1 in the OFS register.

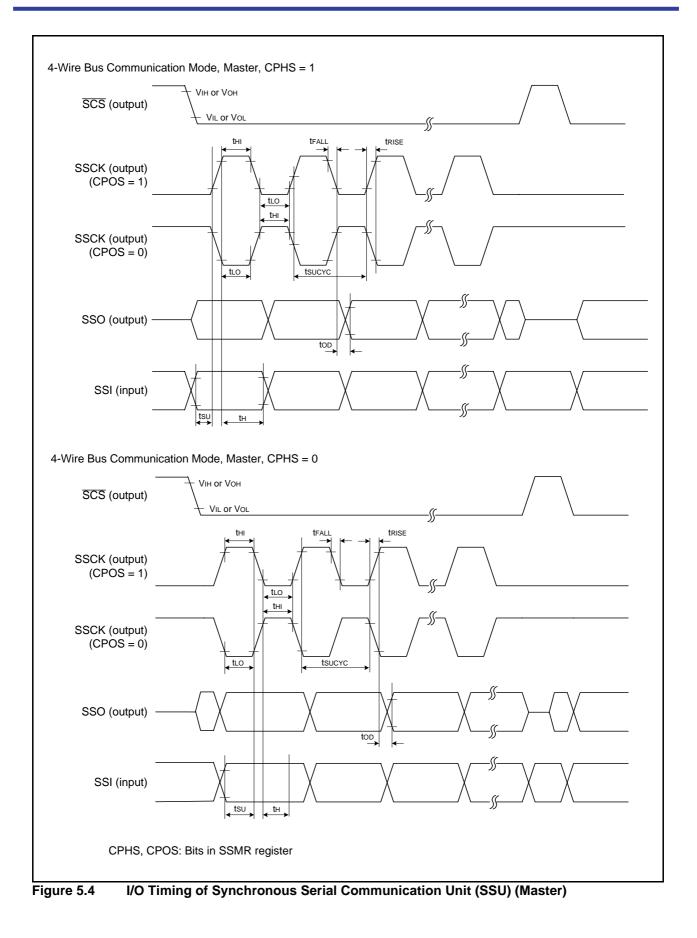
3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA25 bit in the VCA2 register to 0.

4. Time until the voltage monitor 0 reset is generated after the voltage passes Vdet0.

Table 5.9 Voltage Detection 1 Circuit Electrical Characteristics

Symbol	Parameter	Condition		Standard		Unit
Symbol	Falalletei	Condition	Min.	Тур.	Max.	Unit
Vdet1	Voltage detection level Vdet1_0 ⁽²⁾	At the falling of Vcc	2.00	2.20	2.40	V
	Voltage detection level Vdet1_1 (2)	At the falling of Vcc	2.15	2.35	2.55	V
	Voltage detection level Vdet1_2 (2)	At the falling of Vcc	2.30	2.50	2.70	V
	Voltage detection level Vdet1_3 (2)	At the falling of Vcc	2.45	2.65	2.85	V
	Voltage detection level Vdet1_4 (2)	At the falling of Vcc	2.60	2.80	3.00	V
	Voltage detection level Vdet1_5 (2)	At the falling of Vcc	2.75	2.95	3.15	V
	Voltage detection level Vdet1_6 ⁽²⁾	At the falling of Vcc	2.85	3.10	3.40	V
	Voltage detection level Vdet1_7 (2)	At the falling of Vcc	3.00	3.25	3.55	V
	Voltage detection level Vdet1_8 (2)	At the falling of Vcc	3.15	3.40	3.70	V
	Voltage detection level Vdet1_9 (2)	At the falling of Vcc	3.30	3.55	3.85	V
	Voltage detection level Vdet1_A ⁽²⁾	At the falling of Vcc	3.45	3.70	4.00	V
	Voltage detection level Vdet1_B (2)	At the falling of Vcc	3.60	3.85	4.15	V
	Voltage detection level Vdet1_C (2)	At the falling of Vcc	3.75	4.00	4.30	V
	Voltage detection level Vdet1_D (2)	At the falling of Vcc	3.90	4.15	4.45	V
	Voltage detection level Vdet1_E ⁽²⁾	At the falling of Vcc	4.05	4.30	4.60	V
	Voltage detection level Vdet1_F ⁽²⁾	At the falling of Vcc	4.20	4.45	4.75	V
_	Hysteresis width at the rising of Vcc in voltage detection 1 circuit	Vdet1_0 to Vdet1_5 selected		0.07	—	V
		Vdet1_6 to Vdet1_F selected	_	0.10	—	V
_	Voltage detection 1 circuit response time (3)	At the falling of Vcc from 5.0 V to (Vdet1_0 - 0.1) V	_	60	150	μS
_	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V		1.7	—	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽⁴⁾		_	_	100	μS

Notes:


1. The measurement condition is Vcc = 1.8 to 5.5 V and T_{opr} = -20 to 85 °C (N version)/-40 to 85 °C (D version).

2. Select the voltage detection level with bits VD1S0 to VD1S3 in the VD1LS register.


3. Time until the voltage monitor 1 interrupt request is generated after the voltage passes Vdet1.

4. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.

RENESAS

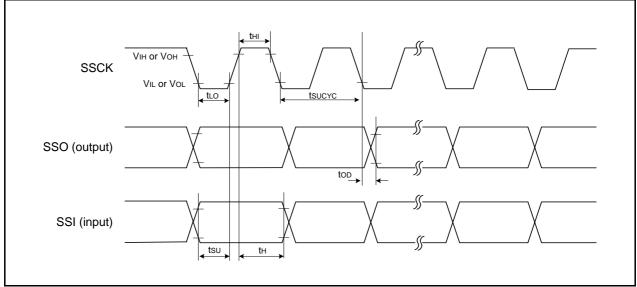


Figure 5.6 I/O Timing of Synchronous Serial Communication Unit (SSU) (Clock Synchronous Communication Mode)

Table 5.18Electrical Characteristics (2) [3.3 V \leq Vcc \leq 5.5 V]
(Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.)

Symbol	Parameter		Condition		Standard	Ł	Unit
Symbol				Min.	Тур.	Max.	Unit
Icc	Power supply current (Vcc = 3.3 to 5.5 V) Single-chip mode,	High-speed clock mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	6.5	15	mA
	output pins are open, other pins are Vss		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	—	5.3	12.5	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division		3.6	_	mA
			XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	—	3.0	_	mA
			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	2.2	_	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.5		mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	7.0	15	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	3.0		mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16, MSTIIC = MSTTRD = MSTTRC = 1	—	1	_	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	—	90	400	μA
		Low-speed clock mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division FMR27 = 1, VCA20 = 0	-	85	400	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division Program operation on RAM Flash memory off, FMSTP = 1, VCA20 = 0	_	47		μΑ
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	-	15	100	μΑ
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	4	90	μΑ
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (peripheral clock off) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	3.5	_	μΑ
		Stop mode	XIN clock off, Topr = 25 °C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	2.0	5.0	μΑ
			XIN clock off, Topr = 85 °C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1	-	15	—	μA
			Peripheral clock off VCA27 = VCA26 = VCA25 = 0				

Symbol	Der	ameter	Conditi	a a	S	standard		Unit
Symbol	Fai	ameter	Conditi	UII	Min.	Тур.	Max.	Unit
Vон	Output "H" voltage	Other than XOUT	Drive capacity High	Iон = -5 mA	Vcc - 0.5	_	Vcc	V
			Drive capacity Low	Iон = -1 mA	Vcc - 0.5	_	Vcc	V
		XOUT		Іон = -200 μА	1.0	_	Vcc	V
Vol	Output "L" voltage	Other than XOUT	Drive capacity High	IoL = 5 mA	—	_	0.5	V
			Drive capacity Low	IoL = 1 mA	—	_	0.5	V
		XOUT		IoL = 200 μA	—	_	0.5	V
VT+-VT-	Hysteresis	INTO, INT1, INT2, INT3, INT4, KI0, KI1, KI2, KI3, TRAIO, TRBO, TRCIOA, TRCIOB, TRCIOC, TRCIOD, TRDIOA0, TRDIOB0, TRDIOC0, TRDIOD0, TRDIOA1, TRDIOD1, TRCTRG, TRCCLK, TRFI, TRGIOA, TRGIOB, ADTRG, RXD0, RXD1, RXD2, CLK0, CLK1, CLK2, SSI, SCL, SDA, SSO RESET	Vcc = 3.0 V Vcc = 3.0 V		0.1	0.4		V
Ін	Input "H" current	1	VI = 3 V, Vcc = 3.0 V	/	_	_	4.0	μA
lı∟	Input "L" current		VI = 0 V, Vcc = 3.0 V	/	_	_	-4.0	μΑ
RPULLUP	Pull-up resistance		VI = 0 V, VCC = 3.0 V	/	42	84	168	kΩ
Rfxin	Feedback resistance	XIN			—	0.3	_	MΩ
Rfxcin	Feedback resistance	XCIN			—	8	—	MΩ
Vram	RAM hold voltage	•	During stop mode		1.8	_	—	V

2.7 V ≤ Vcc < 4.2 V, T_{opr} = -20 to 85 °C (N version)/-40 to 85 °C (D version), and f(XIN) = 10 MHz, unless otherwise specified.

Table 5.29Serial Interface

Symbol	Parameter	Star	Standard	
Symbol	Parameter	Min.	Max.	Unit
tc(CK)	CLKi input cycle time	300	—	ns
tw(CKH)	CLKi input "H" width	150	—	ns
tW(CKL)	CLKi Input "L" width	150	—	ns
td(C-Q)	TXDi output delay time	—	80	ns
th(C-Q)	TXDi hold time	0	—	ns
tsu(D-C)	RXDi input setup time	70	—	ns
th(C-D)	RXDi input hold time	90	—	ns

i = 0 to 2

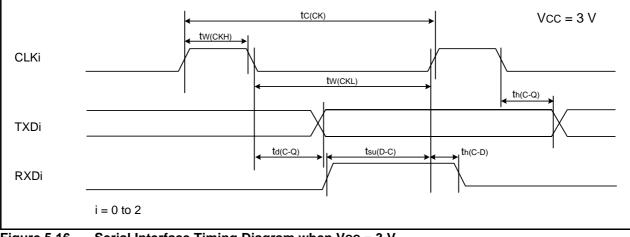


Figure 5.16 Serial Interface Timing Diagram when Vcc = 3 V

Table 5.30 External Interrupt INTi (i = 0 to 4) Input, Key Input Interrupt Kli (i = 0 to 3)

Symbol	Parameter	Stan	dard	Unit
Symbol	Falanetei	Min.	Max.	Onit
tw(INH)	INTi input "H" width, Kli input "H" width	380 (1)	_	ns
tw(INL)	INTi input "L" width, Kli input "L" width	380 (2)		ns

Notes:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

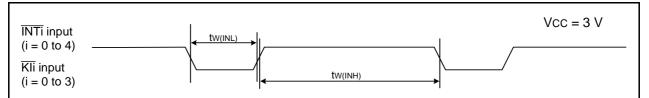


Figure 5.17 Input Timing Diagram for External Interrupt INTi and Key Input Interrupt Kli when Vcc = 3 V

Symbol	Dor	ameter	Conditi	on	S	Standard		Unit
Symbol	Fai	ameter	Conditi	011	Min.	Тур.	Max.	Unit
Vон	Output "H" voltage	Other than XOUT	Drive capacity High	Іон = -2 mA	Vcc - 0.5	_	Vcc	V
			Drive capacity Low	Iон = -1 mA	Vcc - 0.5	_	Vcc	V
		XOUT		Іон = -200 μА	1.0	_	Vcc	V
Vol	Output "L" voltage	Other than XOUT	Drive capacity High	IOL = 2 mA	_	_	0.5	V
			Drive capacity Low	IoL = 1 mA	_	_	0.5	V
		XOUT		Ιοι = 200 μΑ	_	_	0.5	V
VT+-VT-	Hysteresis	NTO, INT1, INT2, INT3, INT4, KI0, KI1, KI2, KI3, TRAIO, TRBO, TRCIOA, TRCIOB, TRCIOC, TRCIOD, TRDIOAO, TRDIOBO, TRDIOCO, TRDIODO, TRDIOA1, TRDIOD1, TRDIOC1, TRDIOD1, TRCTRG, TRCCLK, TRFI, TRGIOA, TRGIOB, ADTRG, RXD0, RXD1, RXD2, CLK0, CLK1, CLK2, SSI, SCL, SDA, SSO RESET			0.05	0.20		V
<u>Iн</u>	Input "H" current		$V_{I} = 2.2 V, V_{CC} = 2.2$		_		4.0	μA
	Input "L" current		$V_{I} = 0 V, V_{CC} = 2.2 V$				-4.0	μA
RPULLUP	Pull-up resistance		VI = 0 V, Vcc = 2.2 V	/	70	140	300	kΩ
Rfxin	Feedback resistance	XIN			—	0.3		MΩ
RfxCIN	Feedback resistance	XCIN			—	8	_	MΩ
Vram	RAM hold voltage	1	During stop mode		1.8		_	V

Table 5.31	Electrical Characteristics (5) [1.8 V \leq Vcc $<$ 2.7 V]
------------	---

1. 1.8 V \leq Vcc < 2.7 V, T_{opr} = -20 to 85 °C (N version)/-40 to 85 °C (D version), and f(XIN) = 5 MHz, unless otherwise specified.

Table 5.32Electrical Characteristics (6) [1.8 V \leq Vcc < 2.7 V]
(Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.)

Symbol	Parameter		Condition		Standar	b	Unit
Symbol				Min.	Тур.	Max.	Unit
Icc	Power supply current (Vcc = 1.8 to 2.7 V) Single-chip mode, output pins are open,	High-speed clock mode	XIN = 5 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division		2.2		mA
	other pins are Vss		XIN = 5 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8		0.8	_	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 5 MHz Low-speed on-chip oscillator on = 125 kHz No division		2.5	10	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 5 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8		1.7	300	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16, MSTIIC = MSTTRD = MSTTRC = 1	_	1		mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0		90		μA
		Low-speed clock mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division FMR27 = 1, VCA20 = 0	off	350	μΑ	
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division Program operation on RAM Flash memory off, FMSTP = 1, VCA20 = 0	_	40		μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	—	15	90	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	4		μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (peripheral clock off) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	3.5		μA
		Stop mode	XIN clock off, Topr = 25 °C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0		2.0	5	μA
			XIN clock off, Topr = 85 °C — 15 High-speed on-chip oscillator off	15	_	μA	

Table 5.36Serial Interface

Symbol	Parameter	Star	Standard	
Symbol	Parameter	Min.	Min. Max. 800 — r 400 — r	Unit
tc(CK)	CLKi input cycle time	800	—	ns
tW(CKH)	CLKi input "H" width	400	—	ns
tW(CKL)	CLKi input "L" width	400	—	ns
td(C-Q)	TXDi output delay time	—	200	ns
th(C-Q)	TXDi hold time	0	—	ns
tsu(D-C)	RXDi input setup time	150	—	ns
th(C-D)	RXDi input hold time	90	—	ns

i = 0 to 2

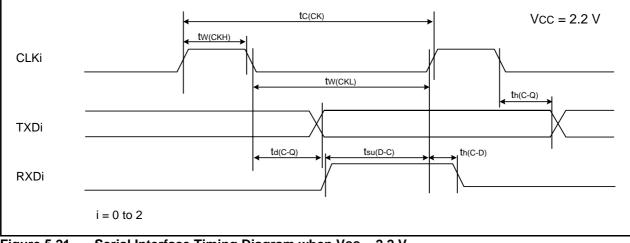


Figure 5.21 Serial Interface Timing Diagram when VCC = 2.2 V

Table 5.37External Interrupt \overline{INTi} (i = 0 to 4) Input, Key Input Interrupt \overline{Kli} (i = 0 to 3)

Symbol	Paramatar	Stan	dard	Unit
Symbol	Falameter	but "H" width	Max.	Onit
tw(INH)	INTi input "H" width, Kli input "H" width	1000 (1)	—	ns
tw(INL)	INTi input "L" width, Kli input "L" width	1000 (2)	-	ns

Notes:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

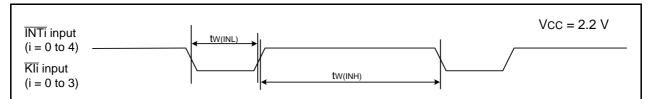


Figure 5.22 Input Timing Diagram for External Interrupt INTi and Key Input Interrupt Kli when Vcc = 2.2 V

Notice

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renease Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renease Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product for which the soften where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product of soften an application categorized as "Specific" for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product of uses of any expression product of the prior written consent of Renesas Electronics.
- "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools
- personal electronic equipment; and industrial robots.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically
 designed for life support.
- "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renease Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renease Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220 Renease Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renease Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renease Electronics Corpo GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renease Electronics Corpo GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renease Electronics (Shanghai) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-12-827-1551, Fax: +86-21-6887-7859 Renease Electronics (Shanghai) Co., Ltd. 10n1 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 Renease Electronics Hong Kong Limited Unit 1801-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +88-2486-9318, Fax: +882-2486-9022/9044e, 1845-24817-9400, Fax: +882-2486-9022/9044e, 1945-063 Fu Shing North Road Taipei, Taiwan Tel: +882-2486-9300, Fax: +882-24175-9670 Renease Electronics Mangapore Pte. Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +68-2413-2400, Fax: +885-24175-9670 Renease Electronics Malaysia Sch.Bhd. Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9300, Fax: +882-355-9510 Renease Electronics Korea Co., Ltd. 11F, Samik Lavied O'r Bilde, T20-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: +82-2558-3737, Fax: +882-2-558-5141