E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Product Status	Obsolete
lumber of LABs/CLBs	-
umber of Logic Elements/Cells	256
tal RAM Bits	
umber of I/O	70
umber of Gates	6000
ltage - Supply	2.3V ~ 2.7V
ounting Type	Surface Mount
perating Temperature	0°C ~ 70°C (TA)
ckage / Case	100-LQFP
upplier Device Package	100-TQFP (14x14)
rchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ex128-ptg100

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

eX FPGA Architecture and Characteristics

General Description	-1
eX Family Architecture	-1
Other Architectural Features	-5
Design Considerations	13
Related Documents 1-1	15
2.5 V / 3.3 V /5.0 V Operating Conditions 1-1	16
2.5 V LVCMOS2 Electrical Specifications 1-1	17
3.3 V LVTTL Electrical Specifications 1-1	18
5.0 V TTL Electrical Specifications	18
Power Dissipation	19
Thermal Characteristics	21
Package Thermal Characteristics 1-2	21
eX Timing Model 1-2	22
Output Buffer Delays 1-2	23
AC Test Loads	23
Input Buffer Delays 1-2	24
C-Cell Delays	24
Cell Timing Characteristics 1-2	25
Timing Characteristics 1-2	26
eX Family Timing Characteristics 1-2	27
Pin Description	31
Package Pin Assignments	
TQ64	-1
TQ100	

Datasheet Information

List of Changes	3-1
Datasheet Categories	3-4
Export Administration Regulations (EAR)	3-4

1 – eX FPGA Architecture and Characteristics

General Description

The eX family of FPGAs is a low-cost solution for low-power, high-performance designs. The inherent low power attributes of the antifuse technology, coupled with an additional low static power mode, make these devices ideal for power-sensitive applications. Fabricated with an advanced 0.22 mm CMOS antifuse technology, these devices achieve high performance with no power penalty.

eX Family Architecture

Microsemi eX family is implemented on a high-voltage twin-well CMOS process using 0.22 μ m design rules. The eX family architecture uses a "sea-of-modules" structure where the entire floor of the device is covered with a grid of logic modules with virtually no chip area lost to interconnect elements or routing. Interconnection among these logic modules is achieved using Microsemi patented metal-to-metal programmable antifuse interconnect elements. The antifuse interconnect is made up of a combination of amorphous silicon and dielectric material with barrier metals and has an "on" state resistance of 25 Ω with a capacitance of 1.0fF for low-signal impedance. The antifuses are normally open circuit and, when programmed, form a permanent low-impedance connection. The eX family provides two types of logic modules, the register cell (R-cell) and the combinatorial cell (C-cell).

The R-cell contains a flip-flop featuring asynchronous clear, asynchronous preset, and clock enable (using the S0 and S1 lines) control signals (Figure 1-1). The R-cell registers feature programmable clock polarity selectable on a register-by-register basis. This provides additional flexibility while allowing mapping of synthesized functions into the eX FPGA. The clock source for the R-cell can be chosen from either the hard-wired clock or the routed clock.

The C-cell implements a range of combinatorial functions up to five inputs (Figure 1-2 on page 1-2). Inclusion of the DB input and its associated inverter function enables the implementation of more than 4,000 combinatorial functions in the eX architecture in a single module.

Two C-cells can be combined together to create a flip-flop to imitate an R-cell via the use of the CC macro. This is particularly useful when implementing non-timing-critical paths and when the design engineer is running out of R-cells. More information about the CC macro can be found in the *Maximizing Logic Utilization in eX, SX and SX-A FPGA Devices Using CC Macros* application note.

Figure 1-1 • R-Cell

Module Organization

C-cell and R-cell logic modules are arranged into horizontal banks called Clusters, each of which contains two C-cells and one R-cell in a C-R-C configuration.

Clusters are further organized into modules called SuperClusters for improved design efficiency and device performance, as shown in Figure 1-3. Each SuperCluster is a two-wide grouping of Clusters.

Figure 1-3 • Cluster Organization

Routing Resources

Clusters and SuperClusters can be connected through the use of two innovative local routing resources called FastConnect and DirectConnect, which enable extremely fast and predictable interconnection of modules within Clusters and SuperClusters (Figure 1-4). This routing architecture also dramatically reduces the number of antifuses required to complete a circuit, ensuring the highest possible performance.

DirectConnect is a horizontal routing resource that provides connections from a C-cell to its neighboring R-cell in a given SuperCluster. DirectConnect uses a hard-wired signal path requiring no programmable interconnection to achieve its fast signal propagation time of less than 0.1 ns (–P speed grade).

FastConnect enables horizontal routing between any two logic modules within a given SuperCluster and vertical routing with the SuperCluster immediately below it. Only one programmable connection is used in a FastConnect path, delivering maximum pin-to-pin propagation of 0.3 ns (–P speed grade).

In addition to DirectConnect and FastConnect, the architecture makes use of two globally oriented routing resources known as segmented routing and high-drive routing. The segmented routing structure of Microsemi provides a variety of track lengths for extremely fast routing between SuperClusters. The exact combination of track lengths and antifuses within each path is chosen by the fully automatic place-and-route software to minimize signal propagation delays.

Figure 1-4 • DirectConnect and FastConnect for SuperClusters

Clock Resources

eX's high-drive routing structure provides three clock networks. The first clock, called HCLK, is hardwired from the HCLK buffer to the clock select MUX in each R-Cell. HCLK cannot be connected to combinational logic. This provides a fast propagation path for the clock signal, enabling the 3.9 ns clock-to-out (pad-to-pad) performance of the eX devices. The hard-wired clock is tuned to provide a clock skew of less than 0.1 ns worst case. If not used, the HCLK pin must be tied LOW or HIGH and must not be left floating. Figure 1-5 describes the clock circuit used for the constant load HCLK.

HCLK does not function until the fourth clock cycle each time the device is powered up to prevent false output levels due to any possible slow power-on-reset signal and fast start-up clock circuit. To activate HCLK from the first cycle, the TRST pin must be reserved in the Design software and the pin must be tied to GND on the board. (See the "TRST, I/O Boundary Scan Reset Pin" on page 1-32).

The remaining two clocks (CLKA, CLKB) are global routed clock networks that can be sourced from external pins or from internal logic signals (via the CLKINT routed clock buffer) within the eX device. CLKA and CLKB may be connected to sequential cells or to combinational logic. If CLKA or CLKB is sourced from internal logic signals, the external clock pin cannot be used for any other input and must be tied LOW or HIGH and must not float. Figure 1-6 describes the CLKA and CLKB circuit used in eX devices.

To exit the LP mode, the LP pin must be driven LOW for over 200 μs to allow for the charge pumps to power-up and device initialization can begin.

Table 1-3 illustrates the standby current of eX devices in LP mode.

Table 1-3 •	Standby Power of eX Devices in LP Mode Typical Conditions, V _{CCA} , V _{CCI} = 2.5 V,
·	$T_{\rm J}$ = 25° C

Product	Low Power Standby Current	Units
eX64	100	μΑ
eX128	111	μA
eX256	134	μΑ

Figure 1-8 to Figure 1-11 on page 1-9 show some sample power characteristics of eX devices.

Notes:

- 1. Device filled with 16-bit counters.
- 2. VCCA, VCCI = 2.7 V, device tested at room temperature.

Figure 1-8 • eX Dynamic Power Consumption – High Frequency

Notes:

- 1. Device filled with 16-bit counters.
- 2. VCCA, VCCI = 2.7 V, device tested at room temperature.

Figure 1-9 • eX Dynamic Power Consumption – Low Frequency

Table 1-5 describes the different configuration requirements of BST pins and their functionality in different modes.

Mode	Designer "Reserve JTAG" Selection	TAP Controller State
Dedicated (JTAG)	Checked	Any
Flexible (User I/O)	Unchecked	Test-Logic-Reset
Flexible (JTAG)	Unchecked	Any EXCEPT Test-Logic-Reset

Table 1-5 • Boundary-Scan Pin Configurations and Functions

TRST Pin

The TRST pin functions as a dedicated Boundary-Scan Reset pin when the **Reserve JTAG Test Reset** option is selected, as shown in Figure 1-12. An internal pull-up resistor is permanently enabled on the TRST pin in this mode. It is recommended to connect this pin to GND in normal operation to keep the JTAG state controller in the Test-Logic-Reset state. When JTAG is being used, it can be left floating or be driven HIGH.

When the **Reserve JTAG Test Reset** option is not selected, this pin will function as a regular I/O. If unused as an I/O in the design, it will be configured as a tristated output.

JTAG Instructions

Table 1-6 lists the supported instructions with the corresponding IR codes for eX devices.

Instructions (IR4: IR0)	Binary Code
EXTEST	00000
SAMPLE / PRELOAD	00001
INTEST	00010
USERCODE	00011
IDCODE	00100
HIGHZ	01110
CLAMP	01111
Diagnostic	10000
BYPASS	11111
Reserved	All others

Table 1-7 lists the codes returned after executing the IDCODE instruction for eX devices. Note that bit 0 is always "1." Bits 11-1 are always "02F", which is Microsemi SoC Products Group's manufacturer code.

Device	Revision	Bits 31-28	Bits 27-12
eX64	0	8	40B2, 42B2
eX128	0	9	40B0, 42B0
eX256	0	9	40B5, 42B5
eX64	1	A	40B2, 42B2
eX128	1	В	40B0, 42B0
eX256	1	В	40B5, 42B5

Table 1-7 • IDCODE for eX Devices

Programming

Device programming is supported through Silicon Sculptor series of programmers. In particular, Silicon Sculptor II is a compact, robust, single-site and multi-site device programmer for the PC.

With standalone software, Silicon Sculptor II allows concurrent programming of multiple units from the same PC, ensuring the fastest programming times possible. Each fuse is subsequently verified by Silicon Sculptor II to insure correct programming. In addition, integrity tests ensure that no extra fuses are programmed. Silicon Sculptor II also provides extensive hardware self-testing capability.

The procedure for programming an eX device using Silicon Sculptor II is as follows:

- 1. Load the *.AFM file
- 2. Select the device to be programmed
- 3. Begin programming

When the design is ready to go to production, Microsemi offers device volume-programming services either through distribution partners or via in-house programming from the factory.

For more details on programming eX devices, please refer to the *Programming Antifuse Devices* application note and the *Silicon Sculptor II User's Guide*.

Probing Capabilities

eX devices provide internal probing capability that is accessed with the JTAG pins. The Silicon Explorer II Diagnostic hardware is used to control the TDI, TCK, TMS and TDO pins to select the desired nets for debugging. The user simply assigns the selected internal nets in the Silicon Explorer II software to the PRA/PRB output pins for observation. Probing functionality is activated when the BST pins are in JTAG mode and the TRST pin is driven HIGH or left floating. If the TRST pin is held LOW, the TAP controller will remain in the Test-Logic-Reset state so no probing can be performed. The Silicon Explorer II automatically places the device into JTAG mode, but the user must drive the TRST pin HIGH or allow the internal pull-up resistor to pull TRST HIGH.

When you select the **Reserve Probe Pin** box, as shown in Figure 1-12 on page 1-10, the layout tool reserves the PRA and PRB pins as dedicated outputs for probing. This reserve option is merely a guideline. If the Layout tool requires that the PRA and PRB pins be user I/Os to achieve successful layout, the tool will use these pins for user I/Os. If you assign user I/Os to the PRA and PRB pins and select the **Reserve Probe Pin** option, Designer Layout will override the "Reserve Probe Pin" option and place your user I/Os on those pins.

To allow for probing capabilities, the security fuse must not be programmed. Programming the security fuse will disable the probe circuitry. Table 1-8 on page 1-13 summarizes the possible device configurations for probing once the device leaves the Test-Logic-Reset JTAG state.

Silicon Explorer II Probe

Silicon Explorer II is an integrated hardware and software solution that, in conjunction with Microsemi Designer software tools, allow users to examine any of the internal nets of the device while it is operating in a prototype or a production system. The user can probe into an eX device via the PRA and PRB pins without changing the placement and routing of the design and without using any additional resources. Silicon Explorer II's noninvasive method does not alter timing or loading effects, thus shortening the debug cycle.

Silicon Explorer II does not require re-layout or additional MUXes to bring signals out to an external pin, which is necessary when using programmable logic devices from other suppliers.

Silicon Explorer II samples data at 100 MHz (asynchronous) or 66 MHz (synchronous). Silicon Explorer II attaches to a PC's standard COM port, turning the PC into a fully functional 18-channel logic analyzer. Silicon Explorer II allows designers to complete the design verification process at their desks and reduces verification time from several hours per cycle to a few seconds.

The Silicon Explorer II tool uses the boundary scan ports (TDI, TCK, TMS and TDO) to select the desired nets for verification. The selected internal nets are assigned to the PRA/PRB pins for observation. Figure 1-13 on page 1-13 illustrates the interconnection between Silicon Explorer II and the eX device to perform in-circuit verification.

Related Documents

Datasheet

eX Automotive Family FPGAs www.microsemi.com/soc/documents/eX_Auto_DS.pdf

Application Notes

Maximizing Logic Utilization in eX, SX and SX-A FPGA Devices Using CC Macros www.microsemi.com/soc/documents/CC_Macro_AN.pdf Implementation of Security in Microsemi Antifuse FPGAs www.microsemi.com/soc/documents/Antifuse_Security_AN.pdf Microsemi eX, SX-A, and RT54SX-S I/Os www.microsemi.com/soc/documents/antifuseIO_AN.pdf Microsemi SX-A and RT54SX-S Devices in Hot-Swap and Cold-Sparing Applications www.microsemi.com/soc/documents/HotSwapColdSparing_AN.pdf Design For Low Power in Microsemi Antifuse FPGAs www.microsemi.com/soc/documents/Low_Power_AN.pdf Programming Antifuse Devices www.microsemi.com/soc/documents/AntifuseProgram_AN.pdf

User Guides

Silicon Sculptor II User's Guide www.microsemi.com/soc/documents/SiliSculptII_Sculpt3_ug.pdf

Miscellaneous

Libero IDE flow www.microsemi.com/soc/products/tools/libero/flow.html

3.3 V LVTTL Electrical Specifications

			Commercial		Industrial		
Symbol	Parameter		Min.	Max.	Min.	Max.	Units
VOH	VCCI = MIN, VI = VIH or VIL	(IOH = -8 mA)	2.4		2.4	•	V
VOL	VCCI = MIN, VI = VIH or VIL	(IOL = 12 mA)		0.4		0.4	V
VIL	Input Low Voltage			0.8		0.8	V
VIH	Input High Voltage		2.0	VCCI +0.5	2.0	VCCI +0.5	V
IIL/ IIH	Input Leakage Current, VIN = VCCI or GND		-10	10	–10	10	μA
IOZ	3-State Output Leakage Current, VOUT = VCCI or GND		-10	10	-10	10	μA
t _R , t _{F1,2}	Input Transition Time			10		10	ns
C _{IO}	I/O Capacitance			10		10	pF
ICC ^{3,4}	Standby Current			1.5		10	mA
IV Curve	Can be derived from the IBIS model at www.microsemi.com/soc/custsup/models/ibis.html.						

Notes:

1. t_R is the transition time from 0.8 V to 2.0 V.

2. t_F is the transition time from 2.0 V to 0.8 V.

3. ICC max Commercial -F = 5.0 mA

4. ICC = *ICCI* + *ICCA*

5. JTAG pins comply with LVTTL/TTL I/O specification regardless of whether they are used as a user I/O or a JTAG I/O.

5.0 V TTL Electrical Specifications

			Commercial		Industrial		
Symbol	Parameter		Min.	Max.	Min.	Max.	Units
VOH	VCCI = MIN, VI = VIH or VIL	(IOH = -8 mA)	2.4	•	2.4	•	V
VOL	VCCI = MIN, VI = VIH or VIL	(IOL= 12 mA)		0.4		0.4	V
VIL	Input Low Voltage			0.8		0.8	V
VIH	Input High Voltage		2.0	VCCI +0.5	2.0	VCCI +0.5	V
IIL/ IIH	Input Leakage Current, VIN = VCCI or GND		-10	10	-10	10	μA
IOZ	3-State Output Leakage Current, VOUT = VCCI or GND		-10	10	-10	10	μA
t _R , t _{F1,2}	Input Transition Time			10		10	ns
C _{IO}	I/O Capacitance			10		10	pF
ICC ^{3,4}	Standby Current			15		20	mA
IV Curve	Can be derived from the IBIS model at www.microsemi.com/soc/custsup/models/ibis.html.						
Noto:	•						

Note:

1. t_R is the transition time from 0.8 V to 2.0 V.

2. t_F is the transition time from 2.0 V to 0.8 V.

3. ICC max Commercial -F=20mA

 $4. \quad ICC = ICCI + ICCA$

5. JTAG pins comply with LVTTL/TTL I/O specification regardless of whether they are used as a user I/O or a JTAG I/O.

Thermal Characteristics

The temperature variable in the Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because the heat generated from dynamic power consumption is usually hotter than the ambient temperature. EQ 1, shown below, can be used to calculate junction temperature.

Junction Temperature = $\Delta T + T_a(1)$

Where:

 T_a = Ambient Temperature

 ΔT = Temperature gradient between junction (silicon) and ambient = θ_{ja} * P

P = Power

 θ_{ja} = Junction to ambient of package. θ_{ja} numbers are located in the "Package Thermal Characteristics" section below.

Package Thermal Characteristics

The device junction-to-case thermal characteristic is θ_{jc} , and the junction-to-ambient air characteristic is θ_{ja} . The thermal characteristics for θ_{ja} are shown with two different air flow rates. $\theta_{jc \ is \ provided \ for \ reference.}$ The maximum junction temperature is 150°C.

The maximum power dissipation allowed for eX devices is a function of θ_{ja} . A sample calculation of the absolute maximum power dissipation allowed for a TQFP 100-pin package at commercial temperature and still air is as follows:

Maximum Power Allowed = $\frac{\text{Max. junction temp. } (^{\circ}\text{C}) - \text{Max. ambient temp. } (^{\circ}\text{C})}{\theta_{ja}(^{\circ}\text{C/W})} = \frac{150^{\circ}\text{C} - 70^{\circ}\text{C}}{33.5^{\circ}\text{C/W}} = 2.39\text{W}$

Package Type	Pin Count	θ _{jc}	Still Air	1.0 m/s 200 ft/min	2.5 m/s 500 ft/min	Units
Thin Quad Flat Pack (TQFP)	64	12.0	42.4	36.3	34.0	°C/W
Thin Quad Flat Pack (TQFP)	100	14.0	33.5	27.4	25.0	°C/W

EQ 1

eX Timing Model

Note: Values shown for eX128–P, worst-case commercial conditions (5.0 V, 35 pF Pad Load). Figure 1-14 • eX Timing Model

Hardwired Clock

External Setup = $t_{INYH} + t_{IRD1} + t_{SUD} - t_{HCKH}$ = 0.7 + 0.3 + 0.5 - 1.1 = 0.4 ns Clock-to-Out (Pad-to-Pad), typical = $t_{HCKH} + t_{RCO} + t_{RD1} + t_{DHL}$

= 1.1 + 0.6 + 0.3 + 2.6 = 4.6 ns

Routed Clock

External Setup = $t_{INYH} + t_{IRD2} + t_{SUD} - t_{RCKH}$ = 0.7 + 0.4 + 0.5 - 1.3= 0.3 ns

Clock-to-Out (Pad-to-Pad), typical

 $= t_{RCKH} + t_{RCO} + t_{RD1} + t_{DHL}$

= 1.3+ 0.6 + 0.3 + 2.6 = 4.8 ns

Output Buffer Delays

Table 1-13 • Output Buffer Delays

AC Test Loads

Figure 1-15 • AC Test Loads

2 – Package Pin Assignments

TQ64

Note: For Package Manufacturing and Environmental information, visit Resource center at www.microsemi.com/soc/products/rescenter/package/index.html.

	TQ64		TQ64			
Pin Number	eX64 Function	eX128 Function	Pin Number	eX64 Function	eX128 Function	
1	GND	GND	33	GND	GND	
2	TDI, I/O	TDI, I/O	34	I/O	I/O	
3	I/O	I/O	35	I/O	I/O	
4	TMS	TMS	36	VCCA	VCCA	
5	GND	GND	37	VCCI	VCCI	
6	VCCI	VCCI	38	I/O	I/O	
7	I/O	I/O	39	I/O	I/O	
8	I/O	I/O	40	NC	I/O	
9	NC	I/O	41	NC	I/O	
10	NC	I/O	42	I/O	I/O	
11	TRST, I/O	TRST, I/O	43	I/O	I/O	
12	I/O	I/O	44	VCCA	VCCA	
13	NC	I/O	45*	GND/LP	GND/ LP	
14	GND	GND	46	GND	GND	
15	I/O	I/O	47	I/O	I/O	
16	I/O	I/O	48	I/O	I/O	
17	I/O	I/O	49	I/O	I/O	
18	I/O	I/O	50	I/O	I/O	
19	VCCI	VCCI	51	I/O	I/O	
20	I/O	I/O	52	VCCI	VCCI	
21	PRB, I/O	PRB, I/O	53	I/O	I/O	
22	VCCA	VCCA	54	I/O	I/O	
23	GND	GND	55	CLKA	CLKA	
24	I/O	I/O	56	CLKB	CLKB	
25	HCLK	HCLK	57	VCCA	VCCA	
26	I/O	I/O	58	GND	GND	
27	I/O	I/O	59	PRA, I/O	PRA, I/O	
28	I/O	I/O	60	I/O	I/O	
29	I/O	I/O	61	VCCI	VCCI	
30	I/O	I/O	62	I/O	I/O	
31	I/O	I/O	63	I/O	I/O	
32	TDO, I/O	TDO, I/O	64	TCK, I/O	TCK, I/O	

Note: *Please read the LP pin descriptions for restrictions on their use.

TQ100				TQ100			
Pin Number	eX64 Function	eX128 Function	eX256 Function	Pin Number	eX64 Function	eX128 Function	eX2 Funct
1	GND	GND	GND	36	GND	GND	GN
2	TDI, I/O	TDI, I/O	TDI, I/O	37	NC	NC	NC
3	NC	NC	I/O	38	I/O	I/O	I/C
4	NC	NC	I/O	39	HCLK	HCLK	HCL
5	NC	NC	I/O	40	I/O	I/O	I/C
6	I/O	I/O	I/O	41	I/O	I/O	I/C
7	TMS	TMS	TMS	42	I/O	I/O	I/O
8	VCCI	VCCI	VCCI	43	I/O	I/O	I/O
9	GND	GND	GND	44	VCCI	VCCI	VCC
10	NC	I/O	I/O	45	I/O	I/O	I/O
11	NC	I/O	I/O	46	I/O	I/O	I/O
12	I/O	I/O	I/O	47	I/O	I/O	I/O
13	NC	I/O	I/O	48	I/O	I/O	I/O
14	I/O	I/O	I/O	49	TDO, I/O	TDO, I/O	TDO,
15	NC	I/O	I/O	50	NC	I/O	I/O
16	TRST, I/O	TRST, I/O	TRST, I/O	51	GND	GND	GNI
17	NC	I/O	I/O	52	NC	NC	I/O
18	I/O	I/O	I/O	53	NC	NC	I/O
19	NC	I/O	I/O	54	NC	NC	I/O
20	VCCI	VCCI	VCCI	55	I/O	I/O	I/O
21	I/O	I/O	I/O	56	I/O	I/O	I/O
22	NC	I/O	I/O	57	VCCA	VCCA	VCC
23	NC	NC	I/O	58	VCCI	VCCI	VCC
24	NC	NC	I/O	59	NC	I/O	I/O
25	I/O	I/O	I/O	60	I/O	I/O	I/O
26	I/O	I/O	I/O	61	NC	I/O	I/O
27	I/O	I/O	I/O	62	I/O	I/O	I/O
28	I/O	I/O	I/O	63	NC	I/O	I/O
29	I/O	I/O	I/O	64	I/O	I/O	I/O
30	I/O	I/O	I/O	65	NC	I/O	I/O
31	I/O	I/O	I/O	66	I/O	I/O	I/O
32	I/O	I/O	I/O	67	VCCA	VCCA	VCC
33	I/O	I/O	I/O	68	GND/LP	GND/LP	GND/
34	PRB, I/O	PRB, I/O	PRB, I/O	69	GND	GND	GNI
35	VCCA	VCCA	VCCA	70	I/O	I/O	I/O

Note: *Please read the LP pin descriptions for restrictions on their use.

TQ100						
Pin Number	eX64 Function	eX128 Function	eX256 Function			
71	I/O	I/O	I/O			
72	NC	I/O	I/O			
73	NC	NC	I/O			
74	NC	NC	I/O			
75	NC	NC	I/O			
76	NC	I/O	I/O			
77	I/O	I/O	I/O			
78	I/O	I/O	I/O			
79	I/O	I/O	I/O			
80	I/O	I/O	I/O			
81	I/O	I/O	I/O			
82	VCCI	VCCI	VCCI			
83	I/O	I/O	I/O			
84	I/O	I/O	I/O			
85	I/O	I/O	I/O			
86	I/O	I/O	I/O			
87	CLKA	CLKA	CLKA			
88	CLKB	CLKB	CLKB			
89	NC	NC	NC			
90	VCCA	VCCA	VCCA			
91	GND	GND	GND			
92	PRA, I/O	PRA, I/O	PRA, I/O			
93	I/O	I/O	I/O			
94	I/O	I/O	I/O			
95	I/O	I/O	I/O			
96	I/O	I/O	I/O			
97	I/O	I/O	I/O			
98	I/O	I/O	I/O			
99	I/O	I/O	I/O			
100	TCK, I/O	TCK, I/O	TCK, I/O			

Note: *Please read the LP pin descriptions for restrictions on their use.

Datasheet Categories

Categories

In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device, as highlighted in the "eX Device Status" table on page II, is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

Production

This version contains information that is considered to be final.

Export Administration Regulations (EAR)

The product described in this datasheet is subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at **www.microsemi.com**.

© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.