E·XF

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

D	e	ta	I	s

Details	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	256
Total RAM Bits	-
Number of I/O	70
Number of Gates	6000
Voltage - Supply	2.3V ~ 2.7V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	100-LQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ex128-ptq100i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Temperature Grade Offerings

Device\ Package	TQ64	TQ100
eX64	C, I, A	C, I, A
eX128	C, I, A	C, I, A
eX256	C, I, A	C, I, A

Note: C = Commercial

l = Industrial

A = Automotive

Speed Grade and Temperature Grade Matrix

	–F	Std	–P
С	\checkmark	\checkmark	\checkmark
1		\checkmark	\checkmark
A		\checkmark	

Note: P = Approximately 30% faster than Standard

–F = Approximately 40% slower than Standard

Refer to the eX Automotive Family FPGAs datasheet for details on automotive temperature offerings.

Contact your local Microsemi representative for device availability.

Table of Contents

eX FPGA Architecture and Characteristics

General Description	1-1
eX Family Architecture	1-1
Other Architectural Features	1-5
Design Considerations	1-13
Related Documents	1-15
2.5 V / 3.3 V /5.0 V Operating Conditions	1-16
2.5 V LVCMOS2 Electrical Specifications	1-17
3.3 V LVTTL Electrical Specifications	1-18
5.0 V TTL Electrical Specifications	1-18
Power Dissipation	1-19
Thermal Characteristics	1-21
Package Thermal Characteristics	1-21
eX Timing Model	1-22
Output Buffer Delays	1-23
AC Test Loads	1-23
Input Buffer Delays	1-24
C-Cell Delays	1-24
Cell Timing Characteristics	1-25
Timing Characteristics	1-26
eX Family Timing Characteristics	1-27
Pin Description	1-31
Package Pin Assignments	
TQ64	
TQ100	

Datasheet Information

List of Changes	3-1
Datasheet Categories	3-4
Export Administration Regulations (EAR)	3-4

1 – eX FPGA Architecture and Characteristics

General Description

The eX family of FPGAs is a low-cost solution for low-power, high-performance designs. The inherent low power attributes of the antifuse technology, coupled with an additional low static power mode, make these devices ideal for power-sensitive applications. Fabricated with an advanced 0.22 mm CMOS antifuse technology, these devices achieve high performance with no power penalty.

eX Family Architecture

Microsemi eX family is implemented on a high-voltage twin-well CMOS process using 0.22 μ m design rules. The eX family architecture uses a "sea-of-modules" structure where the entire floor of the device is covered with a grid of logic modules with virtually no chip area lost to interconnect elements or routing. Interconnection among these logic modules is achieved using Microsemi patented metal-to-metal programmable antifuse interconnect elements. The antifuse interconnect is made up of a combination of amorphous silicon and dielectric material with barrier metals and has an "on" state resistance of 25 Ω with a capacitance of 1.0fF for low-signal impedance. The antifuses are normally open circuit and, when programmed, form a permanent low-impedance connection. The eX family provides two types of logic modules, the register cell (R-cell) and the combinatorial cell (C-cell).

The R-cell contains a flip-flop featuring asynchronous clear, asynchronous preset, and clock enable (using the S0 and S1 lines) control signals (Figure 1-1). The R-cell registers feature programmable clock polarity selectable on a register-by-register basis. This provides additional flexibility while allowing mapping of synthesized functions into the eX FPGA. The clock source for the R-cell can be chosen from either the hard-wired clock or the routed clock.

The C-cell implements a range of combinatorial functions up to five inputs (Figure 1-2 on page 1-2). Inclusion of the DB input and its associated inverter function enables the implementation of more than 4,000 combinatorial functions in the eX architecture in a single module.

Two C-cells can be combined together to create a flip-flop to imitate an R-cell via the use of the CC macro. This is particularly useful when implementing non-timing-critical paths and when the design engineer is running out of R-cells. More information about the CC macro can be found in the *Maximizing Logic Utilization in eX, SX and SX-A FPGA Devices Using CC Macros* application note.

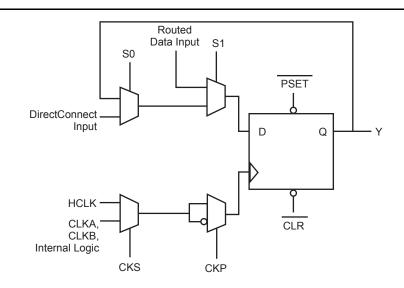
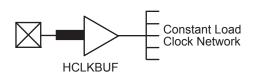



Figure 1-1 • R-Cell

eX FPGA Architecture and Characteristics

Table 1-1 describes the possible connections of the routed clock networks, CLKA and CLKB. Unused clock pins must not be left floating and must be tied to HIGH or LOW.

Figure 1-5 • eX HCLK Clock Pad

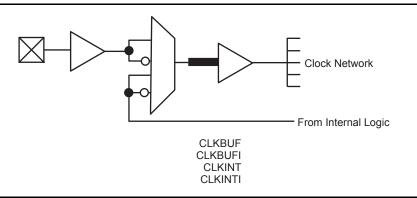


Figure 1-6 • eX Routed Clock Buffer

Table 1-1 • Connections of Routed Clock Networks, CLKA and CLKB

Module	Pins	
C-Cell	A0, A1, B0 and B1	
R-Cell	CLKA, CLKB, S0, S1, PSET, and CLR	
I/O-Cell	EN	

Other Architectural Features

Performance

The combination of architectural features described above enables eX devices to operate with internal clock frequencies exceeding 350 MHz for very fast execution of complex logic functions. The eX family is an optimal platform upon which the functionality previously contained in CPLDs can be integrated. eX devices meet the performance goals of gate arrays, and at the same time, present significant improvements in cost and time to market. Using timing-driven place-and-route tools, designers can achieve highly deterministic device performance.

User Security

Microsemi FuseLock advantage provides the highest level of protection in the FPGA industry against unauthorized modifications. In addition to the inherent strengths of the architecture, special security fuses that are intended to prevent internal probing and overwriting are hidden throughout the fabric of the device. They are located such that they cannot be accessed or bypassed without destroying the rest of the device, making Microsemi antifuse FPGAs highly resistant to both invasive and more subtle noninvasive attacks.

Look for this symbol to ensure your valuable IP is secure. The FuseLock Symbol on the FPGA ensures that the device is safeguarded to cryptographic attacks.

Figure 1-7 • Fuselock

For more information, refer to Implementation of Security in Microsemi Antifuse FPGAs application note.

I/O Modules

Each I/O on an eX device can be configured as an input, an output, a tristate output, or a bidirectional pin. Even without the inclusion of dedicated I/O registers, these I/Os, in combination with array registers, can achieve clock-to-out (pad-to-pad) timing as fast as 3.9 ns. I/O cells in eX devices do not contain embedded latches or flip-flops and can be inferred directly from HDL code. The device can easily interface with any other device in the system, which in turn enables parallel design of system components and reduces overall design time.

All unused I/Os are configured as tristate outputs by Microsemi's Designer software, for maximum flexibility when designing new boards or migrating existing designs. Each I/O module has an available pull-up or pull-down resistor of approximately 50 k Ω that can configure the I/O in a known state during power-up. Just shortly before V_{CCA} reaches 2.5 V, the resistors are disabled and the I/Os will be controlled by user logic.

To exit the LP mode, the LP pin must be driven LOW for over 200 μs to allow for the charge pumps to power-up and device initialization can begin.

Table 1-3 illustrates the standby current of eX devices in LP mode.

Table 1-3	 Standby Power of eX Devices in LP Mode Typical Conditions, V_{CCA}, V_{CCI} = 2.5 V,
	$T_{J} = 25^{\circ} C$

Product	Low Power Standby Current	Units
eX64	100	μΑ
eX128	111	μA
eX256	134	μΑ

Boundary Scan Testing (BST)

All eX devices are IEEE 1149.1 compliant. eX devices offer superior diagnostic and testing capabilities by providing Boundary Scan Testing (BST) and probing capabilities. These functions are controlled through the special test pins (TMS, TDI, TCK, TDO and TRST). The functionality of each pin is defined by two available modes: Dedicated and Flexible, and is described in Table 1-4. In the dedicated test mode, TCK, TDI, and TDO are dedicated pins and cannot be used as regular I/Os. In flexible mode (default mode), TMS should be set HIGH through a pull-up resistor of 10 k Ω . TMS can be pulled LOW to initiate the test sequence.

Table 1-4 •	Boundary	/ Scan Pin	Functionality
-------------	----------	------------	---------------

Dedicated Test Mode	Flexible Mode	
TCK, TDI, TDO are dedicated BST pins	TCK, TDI, TDO are flexible and may be used as I/Os	
No need for pull-up resistor for TMS and TDI	Use a pull-up resistor of 10 k Ω on TMS	

Dedicated Test Mode

In Dedicated mode, all JTAG pins are reserved for BST; designers cannot use them as regular I/Os. An internal pull-up resistor is automatically enabled on both TMS and TDI pins, and the TMS pin will function as defined in the IEEE 1149.1 (JTAG) specification.

To select Dedicated mode, users need to reserve the JTAG pins in Microsemi's Designer software by checking the **Reserve JTAG** box in the Device Selection Wizard (Figure 1-12). JTAG pins comply with LVTTL/TTL I/O specification regardless of whether they are used as a user I/O or a JTAG I/O. Refer to the "3.3 V LVTTL Electrical Specifications" section and "5.0 V TTL Electrical Specifications" section on page 1-18 for detailed specifications.

Dev	vice Selection Wizard - Variations
	Reserve Pins
	🔽 Reserve JTAG
	Reserve JTAG Test Reset
	Reserve Probe

Figure 1-12 • Device Selection Wizard

Flexible Mode

In Flexible Mode, TDI, TCK and TDO may be used as either user I/Os or as JTAG input pins. The internal resistors on the TMS and TDI pins are disabled in flexible JTAG mode, and an external 10 k Ω pull-resistor to V_{CCI} is required on the TMS pin.

To select the Flexible mode, users need to clear the check box for **Reserve JTAG** in the Device Selection Wizard in Microsemi's Designer software. The functionality of TDI, TCK, and TDO pins is controlled by the BST TAP controller. The TAP controller receives two control inputs, TMS and TCK. Upon power-up, the TAP controller enters the Test-Logic-Reset state. In this state, TDI, TCK, and TDO function as user I/Os. The TDI, TCK, and TDO pins are transformed from user I/Os into BST pins when the TMS pin is LOW at the first rising edge of TCK. The TDI, TCK, and TDO pins return to user I/Os when TMS is held HIGH for at least five TCK cycles.

Programming

Device programming is supported through Silicon Sculptor series of programmers. In particular, Silicon Sculptor II is a compact, robust, single-site and multi-site device programmer for the PC.

With standalone software, Silicon Sculptor II allows concurrent programming of multiple units from the same PC, ensuring the fastest programming times possible. Each fuse is subsequently verified by Silicon Sculptor II to insure correct programming. In addition, integrity tests ensure that no extra fuses are programmed. Silicon Sculptor II also provides extensive hardware self-testing capability.

The procedure for programming an eX device using Silicon Sculptor II is as follows:

- 1. Load the *.AFM file
- 2. Select the device to be programmed
- 3. Begin programming

When the design is ready to go to production, Microsemi offers device volume-programming services either through distribution partners or via in-house programming from the factory.

For more details on programming eX devices, please refer to the *Programming Antifuse Devices* application note and the *Silicon Sculptor II User's Guide*.

Probing Capabilities

eX devices provide internal probing capability that is accessed with the JTAG pins. The Silicon Explorer II Diagnostic hardware is used to control the TDI, TCK, TMS and TDO pins to select the desired nets for debugging. The user simply assigns the selected internal nets in the Silicon Explorer II software to the PRA/PRB output pins for observation. Probing functionality is activated when the BST pins are in JTAG mode and the TRST pin is driven HIGH or left floating. If the TRST pin is held LOW, the TAP controller will remain in the Test-Logic-Reset state so no probing can be performed. The Silicon Explorer II automatically places the device into JTAG mode, but the user must drive the TRST pin HIGH or allow the internal pull-up resistor to pull TRST HIGH.

When you select the **Reserve Probe Pin** box, as shown in Figure 1-12 on page 1-10, the layout tool reserves the PRA and PRB pins as dedicated outputs for probing. This reserve option is merely a guideline. If the Layout tool requires that the PRA and PRB pins be user I/Os to achieve successful layout, the tool will use these pins for user I/Os. If you assign user I/Os to the PRA and PRB pins and select the **Reserve Probe Pin** option, Designer Layout will override the "Reserve Probe Pin" option and place your user I/Os on those pins.

To allow for probing capabilities, the security fuse must not be programmed. Programming the security fuse will disable the probe circuitry. Table 1-8 on page 1-13 summarizes the possible device configurations for probing once the device leaves the Test-Logic-Reset JTAG state.

Silicon Explorer II Probe

Silicon Explorer II is an integrated hardware and software solution that, in conjunction with Microsemi Designer software tools, allow users to examine any of the internal nets of the device while it is operating in a prototype or a production system. The user can probe into an eX device via the PRA and PRB pins without changing the placement and routing of the design and without using any additional resources. Silicon Explorer II's noninvasive method does not alter timing or loading effects, thus shortening the debug cycle.

Silicon Explorer II does not require re-layout or additional MUXes to bring signals out to an external pin, which is necessary when using programmable logic devices from other suppliers.

Silicon Explorer II samples data at 100 MHz (asynchronous) or 66 MHz (synchronous). Silicon Explorer II attaches to a PC's standard COM port, turning the PC into a fully functional 18-channel logic analyzer. Silicon Explorer II allows designers to complete the design verification process at their desks and reduces verification time from several hours per cycle to a few seconds.

The Silicon Explorer II tool uses the boundary scan ports (TDI, TCK, TMS and TDO) to select the desired nets for verification. The selected internal nets are assigned to the PRA/PRB pins for observation. Figure 1-13 on page 1-13 illustrates the interconnection between Silicon Explorer II and the eX device to perform in-circuit verification.

3.3 V LVTTL Electrical Specifications

	Parameter		Commercial		Industrial				
Symbol			Min.	Max.	Min.	Max.	Units		
VOH	VCCI = MIN, VI = VIH or VIL	(IOH =8 mA)	2.4		2.4	•	V		
VOL	VCCI = MIN, VI = VIH or VIL	(IOL = 12 mA)		0.4		0.4	V		
VIL	Input Low Voltage			0.8		0.8	V		
VIH	Input High Voltage		2.0	VCCI +0.5	2.0	VCCI +0.5	V		
IIL/ IIH	Input Leakage Current, VIN = VCCI or GND		-10	10	-10	10	μA		
IOZ	3-State Output Leakage Current, VOUT = VCCI or GND		-10	10	–10	10	μA		
t _R , t _{F1,2}	Input Transition Time			10		10	ns		
C _{IO}	I/O Capacitance			10		10	pF		
ICC ^{3,4}	Standby Current			1.5		10	mA		
IV Curve	Can be derived from the IBIS model at www.microsemi.com/soc/custsup/models/ibis.html.								

Notes:

1. t_R is the transition time from 0.8 V to 2.0 V.

2. t_F is the transition time from 2.0 V to 0.8 V.

3. ICC max Commercial -F = 5.0 mA

4. ICC = *ICCI* + *ICCA*

5. JTAG pins comply with LVTTL/TTL I/O specification regardless of whether they are used as a user I/O or a JTAG I/O.

5.0 V TTL Electrical Specifications

	ool Parameter		Commercial		Industrial			
Symbol			Min.	Max.	Min.	Max.	Units	
VOH	VCCI = MIN, VI = VIH or VIL	(IOH = -8 mA)	2.4	•	2.4	•	V	
VOL	VCCI = MIN, VI = VIH or VIL	(IOL= 12 mA)		0.4		0.4	V	
VIL	Input Low Voltage			0.8		0.8	V	
VIH	Input High Voltage		2.0	VCCI +0.5	2.0	VCCI +0.5	V	
IIL/ IIH	Input Leakage Current, VIN = VCCI or GND		-10	10	-10	10	μA	
IOZ	3-State Output Leakage Current, VOUT = VCCI or GND		-10	10	-10	10	μA	
t _R , t _{F1,2}	Input Transition Time			10		10	ns	
C _{IO}	I/O Capacitance			10		10	pF	
ICC ^{3,4}	Standby Current			15		20	mA	
IV Curve	Can be derived from the IBIS model at www.microsemi.com/soc/custsup/models/ibis.html.							
Noto:	•							

Note:

1. t_R is the transition time from 0.8 V to 2.0 V.

2. t_F is the transition time from 2.0 V to 0.8 V.

3. ICC max Commercial -F=20mA

4. ICC = *ICCI* + *ICCA*

5. JTAG pins comply with LVTTL/TTL I/O specification regardless of whether they are used as a user I/O or a JTAG I/O.

Power Dissipation

Power consumption for eX devices can be divided into two components: static and dynamic.

Static Power Component

The power due to standby current is typically a small component of the overall power. Typical standby current for eX devices is listed in the Table 1-11 on page 1-16. For example, the typical static power for eX128 at 3.3 V V_{CCI} is:

ICC * VCCA = 795 µA x 2.5 V = 1.99 mW

Dynamic Power Component

Power dissipation in CMOS devices is usually dominated by the dynamic power dissipation. This component is frequency-dependent and a function of the logic and the external I/O. Dynamic power dissipation results from charging internal chip capacitance due to PC board traces and load device inputs. An additional component of the dynamic power dissipation is the totem pole current in the CMOS transistor pairs. The net effect can be associated with an equivalent capacitance that can be combined with frequency and voltage to represent dynamic power dissipation.

Dynamic power dissipation = CEQ * VCCA² x F

where:

CEQ = Equivalent capacitance

F = switching frequency

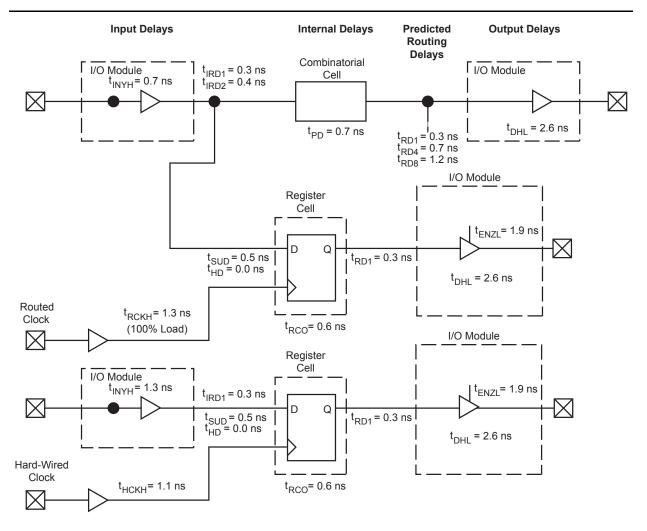
Equivalent capacitance is calculated by measuring ICCA at a specified frequency and voltage for each circuit component of interest. Measurements have been made over a range of frequencies at a fixed value of VCC. Equivalent capacitance is frequency-independent, so the results can be used over a wide range of operating conditions. Equivalent capacitance values are shown below.

CEQ Values for eX Devices

) pF
) pF
) pF
) pF
БF

The variable and fixed capacitance of other device components must also be taken into account when estimating the dynamic power dissipation.

Table 1-12 shows the capacitance of the clock components of eX devices.


Table 1-12 • Capacitance of Clock Components of eX Devices

	eX64	eX128	eX256
Dedicated array clock – variable (Ceqhv)	0.85 pF	0.85 pF	0.85 pF
Dedicated array clock – fixed (Ceqhf)	18.00 pF	20.00 pF	25.00 pF
Routed array clock A (r1)	23.00 pF	28.00 pF	35.00 pF
Routed array clock B (r2)	23.00 pF	28.00 pF	35.00 pF

🌜 Microsemi.

eX FPGA Architecture and Characteristics

eX Timing Model

Note: Values shown for eX128–P, worst-case commercial conditions (5.0 V, 35 pF Pad Load). Figure 1-14 • eX Timing Model

Hardwired Clock

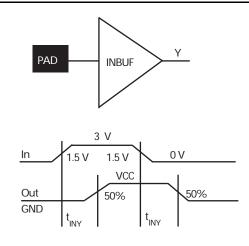
External Setup = $t_{INYH} + t_{IRD1} + t_{SUD} - t_{HCKH}$ = 0.7 + 0.3 + 0.5 - 1.1 = 0.4 ns Clock-to-Out (Pad-to-Pad), typical = $t_{HCKH} + t_{RCO} + t_{RD1} + t_{DHL}$

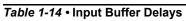
= 1.1 + 0.6 + 0.3 + 2.6 = 4.6 ns

Routed Clock

External Setup = $t_{INYH} + t_{IRD2} + t_{SUD} - t_{RCKH}$ = 0.7 + 0.4 + 0.5 - 1.3= 0.3 ns

Clock-to-Out (Pad-to-Pad), typical


 $= t_{RCKH} + t_{RCO} + t_{RD1} + t_{DHL}$


= 1.3+ 0.6 + 0.3 + 2.6 = 4.8 ns

🌜 Microsemi.

eX FPGA Architecture and Characteristics

Input Buffer Delays

C-Cell Delays

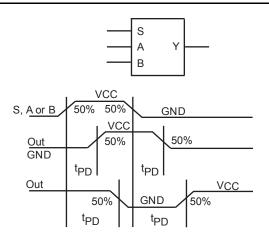


Table 1-15 • C-Cell Delays

Cell Timing Characteristics

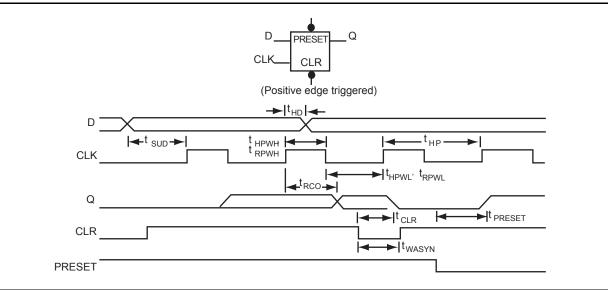


Figure 1-16 • Flip-Flops

eX FPGA Architecture and Characteristics

Timing Characteristics

Timing characteristics for eX devices fall into three categories: family-dependent, device-dependent, and design-dependent. The input and output buffer characteristics are common to all eX family members. Internal routing delays are device-dependent. Design dependency means actual delays are not determined until after placement and routing of the user's design are complete. Delay values may then be determined by using the Timer utility or performing simulation with post-layout delays.

Critical Nets and Typical Nets

Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most timing critical paths. Critical nets are determined by net property assignment prior to placement and routing. Up to six percent of the nets in a design may be designated as critical.

Long Tracks

Some nets in the design use long tracks. Long tracks are special routing resources that span multiple rows, columns, or modules. Long tracks employ three to five antifuse connections. This increases capacitance and resistance, resulting in longer net delays for macros connected to long tracks. Typically, no more than six percent of nets in a fully utilized device require long tracks. Long tracks contribute approximately 4 ns to 8.4 ns delay. This additional delay is represented statistically in higher fanout routing delays.

Timing Derating

eX devices are manufactured with a CMOS process. Therefore, device performance varies according to temperature, voltage, and process changes. Minimum timing parameters reflect maximum operating voltage, minimum operating temperature, and best-case processing. Maximum timing parameters reflect minimum operating voltage, maximum operating temperature, and worst-case processing.

Temperature and Voltage Derating Factors

Table 1-16 • Temperature and Voltage Derating Factors

(Normalized to Worst-Case Commercial, T_J = 70°C, VCCA = 2.3V)

	Junction Temperature (T _J)							
VCCA	-55	-40	0	25	70	85	125	
2.3	0.79	0.80	0.87	0.88	1.00	1.04	1.13	
2.5	0.74	0.74	0.81	0.83	0.93	0.97	1.06	
2.7	0.69	0.70	0.76	0.78	0.88	0.91	1.00	

🔨 Microsemi

eX FPGA Architecture and Characteristics

Table 1-18 • eX Family Timing Characteristics (Worst-Case Commercial Conditions VCCA = 2.3 V, VCCI = 4.75 V, T_J = 70°C)

		–P S	peed	Std Speed		-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated (Hard-Wired) Array Clock Networks								
t _{нскн}	Input LOW to HIGH (Pad to R-Cell Input)		1.1		1.6		2.3	ns
t _{HCKL}	Input HIGH to LOW (Pad to R-Cell Input)		1.1		1.6		2.3	ns
t _{HPWH}	Minimum Pulse Width HIGH	1.4		2.0		2.8		ns
t _{HPWL}	Minimum Pulse Width LOW	1.4		2.0		2.8		ns
t _{HCKSW}	Maximum Skew		<0.1		<0.1		<0.1	ns
t _{HP}	Minimum Period	2.8		4.0		5.6		ns
f _{HMAX}	Maximum Frequency		357		250		178	MHz
Routed Arra	y Clock Networks							
t _{RCKH}	Input LOW to HIGH (Light Load) (Pad to R-Cell Input) MAX.		1.1		1.6		2.2	ns
t _{RCKL}	Input HIGH to LOW (Light Load) (Pad to R-Cell Input) MAX.		1.0		1.4		2.0	ns
t _{RCKH}	Input LOW to HIGH (50% Load) (Pad to R-Cell Input) MAX.		1.2		1.7		2.4	ns
t _{RCKL}	Input HIGH to LOW (50% Load) (Pad to R-Cell Input) MAX.		1.2		1.7		2.4	ns
t _{RCKH}	Input LOW to HIGH (100% Load) (Pad to R-Cell Input) MAX.		1.3		1.9		2.6	ns
t _{RCKL}	Input HIGH to LOW (100% Load) (Pad to R-Cell Input) MAX.		1.3		1.9		2.6	ns
t _{RPWH}	Min. Pulse Width HIGH	1.5		2.1		3.0		ns
t _{RPWL}	Min. Pulse Width LOW	1.5		2.1		3.0		ns
t _{RCKSW} *	Maximum Skew (Light Load)		0.2		0.3		0.4	ns
t _{RCKSW} *	Maximum Skew (50% Load)		0.1		0.2		0.3	ns
t _{RCKSW} *	Maximum Skew (100% Load)		0.1		0.1		0.2	ns

Note: *Clock skew improves as the clock network becomes more heavily loaded.

Pin Description

CLKA/B Routed Clock A and B

These pins are clock inputs for clock distribution networks. Input levels are compatible with standard TTL or LVTTL specifications. The clock input is buffered prior to clocking the R-cells. If not used, this pin must be set LOW or HIGH on the board. It must not be left floating.

GND Ground

LOW supply voltage.

HCLK Dedicated (Hardwired) Array Clock

This pin is the clock input for sequential modules. Input levels are compatible with standard TTL or LVTTL specifications. This input is directly wired to each R-cell and offers clock speeds independent of the number of R-cells being driven. If not used, this pin must be set LOW or HIGH on the board. It must not be left floating.

I/O Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Based on certain configurations, input and output levels are compatible with standard TTL or LVTTL specifications. Unused I/O pins are automatically tristated by the Designer software.

LP Low Power Pin

Controls the low power mode of the eX devices. The device is placed in the low power mode by connecting the LP pin to logic HIGH. In low power mode, all I/Os are tristated, all input buffers are turned OFF, and the core of the device is turned OFF. To exit the low power mode, the LP pin must be set LOW. The device enters the low power mode 800 ns after the LP pin is driven to a logic HIGH. It will resume normal operation 200 μ s after the LP pin is driven to a logic LOW. LP pin should not be left floating. Under normal operating condition it should be tied to GND via 10 k Ω resistor.

NC No Connection

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.

PRA/PRB, I/O Probe A/B

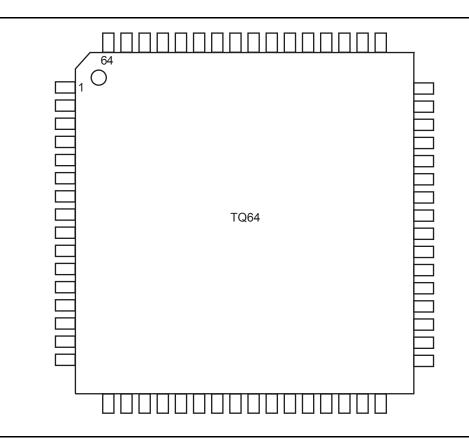
The Probe pin is used to output data from any user-defined design node within the device. This diagnostic pin can be used independently or in conjunction with the other probe pin to allow real-time diagnostic output of any signal path within the device. The Probe pin can be used as a user-defined I/O when verification has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality.

TCK, I/O Test Clock

Test clock input for diagnostic probe and device programming. In flexible mode, TCK becomes active when the TMS pin is set LOW (refer to Table 1-4 on page 1-10). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state.

TDI, I/O Test Data Input

Serial input for boundary scan testing and diagnostic probe. In flexible mode, TDI is active when the TMS pin is set LOW (refer to Table 1-4 on page 1-10). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state.


TDO, I/O Test Data Output

Serial output for boundary scan testing. In flexible mode, TDO is active when the TMS pin is set LOW (refer to Table 1-4 on page 1-10). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state. When Silicon Explorer is being used, TDO will act as an output when the "checksum" command is run. It will return to user I/O when "checksum" is complete.

2 – Package Pin Assignments

TQ64

Note: For Package Manufacturing and Environmental information, visit Resource center at www.microsemi.com/soc/products/rescenter/package/index.html.

Package Pin Assignments

TQ64			TQ64			
Pin Number	eX64 Function	eX128 Function	Pin Number	eX64 Function	eX128 Function	
1	GND	GND	33	GND	GND	
2	TDI, I/O	TDI, I/O	34	I/O	I/O	
3	I/O	I/O	35	I/O	I/O	
4	TMS	TMS	36	VCCA	VCCA	
5	GND	GND	37	VCCI	VCCI	
6	VCCI	VCCI	38	I/O	I/O	
7	I/O	I/O	39	I/O	I/O	
8	I/O	I/O	40	NC	I/O	
9	NC	I/O	41	NC	I/O	
10	NC	I/O	42	I/O	I/O	
11	TRST, I/O	TRST, I/O	43	I/O	I/O	
12	I/O	I/O	44	VCCA	VCCA	
13	NC	I/O	45*	GND/LP	GND/ LP	
14	GND	GND	46	GND	GND	
15	I/O	I/O	47	I/O	I/O	
16	I/O	I/O	48	I/O	I/O	
17	I/O	I/O	49	I/O	I/O	
18	I/O	I/O	50	I/O	I/O	
19	VCCI	VCCI	51	I/O	I/O	
20	I/O	I/O	52	VCCI	VCCI	
21	PRB, I/O	PRB, I/O	53	I/O	I/O	
22	VCCA	VCCA	54	I/O	I/O	
23	GND	GND	55	CLKA	CLKA	
24	I/O	I/O	56	CLKB	CLKB	
25	HCLK	HCLK	57	VCCA	VCCA	
26	I/O	I/O	58	GND	GND	
27	I/O	I/O	59	PRA, I/O	PRA, I/O	
28	I/O	I/O	60	I/O	I/O	
29	I/O	I/O	61	VCCI	VCCI	
30	I/O	I/O	62	I/O	I/O	
31	I/O	I/O	63	I/O	I/O	
32	TDO, I/O	TDO, I/O	64	TCK, I/O	TCK, I/O	

Note: *Please read the LP pin descriptions for restrictions on their use.

TQ100						
Pin Number	eX64 Function	eX128 Function	eX256 Function			
71	I/O	I/O	I/O			
72	NC	I/O	I/O			
73	NC	NC	I/O			
74	NC	NC	I/O			
75	NC	NC	I/O			
76	NC	I/O	I/O			
77	I/O	I/O	I/O			
78	I/O	I/O	I/O			
79	I/O	I/O	I/O			
80	I/O	I/O	I/O			
81	I/O	I/O	I/O			
82	VCCI	VCCI	VCCI			
83	I/O	I/O	I/O			
84	I/O	I/O	I/O			
85	I/O	I/O	I/O			
86	I/O	I/O	I/O			
87	CLKA	CLKA	CLKA			
88	CLKB	CLKB	CLKB			
89	NC	NC	NC			
90	VCCA	VCCA	VCCA			
91	GND	GND	GND			
92	PRA, I/O	PRA, I/O	PRA, I/O			
93	I/O	I/O	I/O			
94	I/O	I/O	I/O			
95	I/O	I/O	I/O			
96	I/O	I/O	I/O			
97	I/O	I/O	I/O			
98	I/O	I/O	I/O			
99	I/O	I/O	I/O			
100	TCK, I/O	TCK, I/O	TCK, I/O			

Note: *Please read the LP pin descriptions for restrictions on their use.

3 – Datasheet Information

List of Changes

The following table lists critical changes that were made in the current version of the document.

Revision	Changes	Page				
Revision 10 (October 2012)	The "User Security" section was revised to clarify that although no existing security measures can give an absolute guarantee, Microsemi FPGAs implement industry standard security (SAR 34677).	1-5				
	Package names used in the "Product Profile" section and "Package Pin Assignments"	ا 2-1				
	section were revised to match standards given in <i>Package Mechanical Drawings</i> (SAR 34779).					
Revision 9 (June 2011)	The versioning system for datasheets has been changed. Datasheets are assigned a revision number that increments each time the datasheet is revised. The "eX Device Status" table indicates the status for each device in the device family.	II				
	The Chip Scale packages (CS49, CS128, CS181) are no longer offered for eX devices. They have been removed from the product family information. Pin tables for CSP packages have been removed from the datasheet (SAR 32002).					
Revision 8 (v4.3, June 2006)	The "Ordering Information" was updated with RoHS information. The TQFP measurement was also updated.					
	The "Dedicated Test Mode" was updated.	1-10				
	Note 5 was added to the "3.3 V LVTTL Electrical Specifications" and "5.0 V TTL Electrical Specifications" tables	1-18				
	The "LP Low Power Pin" description was updated.	1-31				
Revision 7 (v4.2, June 2004)	The "eX Timing Model" was updated.	1-22				
v4.1	The "Development Tool Support" section was updated.	1-13				
	The "Package Thermal Characteristics" section was updated.	1-21				
v4.0	The "Product Profile" section was updated.	1-I				
	The "Ordering Information" section was updated.	1-II				
	The "Temperature Grade Offerings" section is new.	1-111				
	The "Speed Grade and Temperature Grade Matrix" section is new.	1-III				
	The "eX FPGA Architecture and Characteristics" section was updated.	1-1				
	The "Clock Resources" section was updated.	1-3				
	Table 1-1 •Connections of Routed Clock Networks, CLKA and CLKB is new.	1-4				
	The "User Security" section was updated.	1-5				
	The "I/O Modules" section was updated.	1-5				
	The "Hot-Swapping" section was updated.	1-6				
	The "Power Requirements" section was updated.	1-6				
	The "Low Power Mode" section was updated.	1-6				
	The "Boundary Scan Testing (BST)" section was updated.	1-10				
	The "Dedicated Test Mode" section was updated.	1-10				