E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Product StatusActiveNumber of LABs/CLBs-Number of Logic Elements/Cells256Total RAM Bits-Number of I/O70Number of I/O600Voltage - Supply2.3V ~ 2.7VMounting TypeSurface MountOperating Temperature0° ~ 70°C (TA)Package / Case100-LQFPSupplier Device Package100-TQF (14x14)Purchase URLHttps://www.e-xfl.com/product-detail/microchip-technology/ex128-tgg100	Details	
Number of Logic Elements/Cells256Total RAM Bits-Number of I/O70Number of Gates6000Voltage - Supply2.3V ~ 2.7VMounting TypeSurface MountOperating Temperature0°C ~ 70°C (TA)Package / Case100-LQFPSupplier Device Package100-TQFP (14x14)	Product Status	Active
Total RAM Bits-Number of I/O70Number of Gates6000Voltage - Supply2.3V ~ 2.7VMounting TypeSurface MountOperating Temperature0°C ~ 70°C (TA)Package / Case100-LQFPSupplier Device Package100-TQFP (14x14)	Number of LABs/CLBs	-
Number of I/O70Number of Gates6000Voltage - Supply2.3V ~ 2.7VMounting TypeSurface MountOperating Temperature0°C ~ 70°C (TA)Package / Case100-LQFPSupplier Device Package100-TQFP (14x14)	Number of Logic Elements/Cells	256
Number of Gates6000Voltage - Supply2.3V ~ 2.7VMounting TypeSurface MountOperating Temperature0°C ~ 70°C (TA)Package / Case100-LQFPSupplier Device Package100-TQFP (14x14)	Total RAM Bits	
Voltage - Supply2.3V ~ 2.7VMounting TypeSurface MountOperating Temperature0°C ~ 70°C (TA)Package / Case100-LQFPSupplier Device Package100-TQFP (14x14)	Number of I/O	70
Mounting TypeSurface MountOperating Temperature0°C ~ 70°C (TA)Package / Case100-LQFPSupplier Device Package100-TQFP (14x14)	Number of Gates	6000
Operating Temperature0°C ~ 70°C (TA)Package / Case100-LQFPSupplier Device Package100-TQFP (14x14)	Voltage - Supply	2.3V ~ 2.7V
Package / Case 100-LQFP Supplier Device Package 100-TQFP (14x14)	Mounting Type	Surface Mount
Supplier Device Package 100-TQFP (14x14)	Operating Temperature	0°C ~ 70°C (TA)
	Package / Case	100-LQFP
Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/ex128-tqg100	Supplier Device Package	100-TQFP (14x14)
	Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ex128-tqg100

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

🌜 Microsemi.

eX FPGA Architecture and Characteristics

Table 1-2 describes the I/O features of eX devices. For more information on I/Os, refer to *Microsemi eX, SX-A, and RT54SX-S I/Os* application note.

Table 1-2 • I/O Features

Function	Description
Input Buffer Threshold	• 5.0V TTL
Selection	• 3.3V LVTTL
	2.5V LVCMOS2
Nominal Output Drive	5.0V TTL/CMOS
	• 3.3V LVTTL
	2.5V LVCMOS 2
Output Buffer	"Hot-Swap" Capability
	 I/O on an unpowered device does not sink current
	Can be used for "cold sparing"
	Selectable on an individual I/O basis
	Individually selectable low-slew option
Power-Up	Individually selectable pull ups and pull downs during power-up (default is to power up in tristate)
	Enables deterministic power-up of device
	V_{CCA} and V_{CCI} can be powered in any order

The eX family supports mixed-voltage operation and is designed to tolerate 5.0 V inputs in each case. A detailed description of the I/O pins in eX devices can be found in "Pin Description" on page 1-31.

Hot-Swapping

eX I/Os are configured to be hot-swappable. During power-up/down (or partial up/down), all I/Os are tristated, provided V_{CCA} ramps up within a diode drop of V_{CCI} . V_{CCA} and V_{CCI} do not have to be stable. during power-up/down, and they do not require a specific power-up or power-down sequence in order to avoid damage to the eX devices. In addition, all outputs can be programmed to have a weak resistor pull-up or pull-down for output tristate at power-up. After the eX device is plugged into an electrically active system, the device will not degrade the reliability of or cause damage to the host system. The device's output pins are driven to a high impedance state until normal chip operating conditions are reached. Please see the application note, *Microsemi SX-A and RT54SX-S Devices in Hot-Swap and Cold-Sparing Applications*, which also applies to the eX devices, for more information on hot swapping.

Power Requirements

Power consumption is extremely low for the eX family due to the low capacitance of the antifuse interconnects. The antifuse architecture does not require active circuitry to hold a charge (as do SRAM or EPROM), making it the lowest-power FPGA architecture available today.

Low Power Mode

The eX family has been designed with a Low Power Mode. This feature, activated with setting the special LP pin to HIGH for a period longer than 800 ns, is particularly useful for battery-operated systems where battery life is a primary concern. In this mode, the core of the device is turned off and the device consumes minimal power with low standby current. In addition, all input buffers are turned off, and all outputs and bidirectional buffers are tristated when the device enters this mode. Since the core of the device is turned off, the states of the registers are lost. The device must be re-initialized when returning to normal operating mode. I/Os can be driven during LP mode. For details, refer to the *Design for Low Power in Microsemi Antifuse FPGAs* application note under the section Using the LP Mode Pin on eX Devices. Clock pins should be driven either HIGH or LOW and should not float; otherwise, they will draw current and burn power. The device must be re-initialized when exiting LP mode.

To exit the LP mode, the LP pin must be driven LOW for over 200 μs to allow for the charge pumps to power-up and device initialization can begin.

Table 1-3 illustrates the standby current of eX devices in LP mode.

Table 1-3	 Standby Power of eX Devices in LP Mode Typical Conditions, V_{CCA}, V_{CCI} = 2.5 V,
	$T_{J} = 25^{\circ} C$

Product	Low Power Standby Current	Units
eX64	100	μΑ
eX128	111	μA
eX256	134	μΑ

Programming

Device programming is supported through Silicon Sculptor series of programmers. In particular, Silicon Sculptor II is a compact, robust, single-site and multi-site device programmer for the PC.

With standalone software, Silicon Sculptor II allows concurrent programming of multiple units from the same PC, ensuring the fastest programming times possible. Each fuse is subsequently verified by Silicon Sculptor II to insure correct programming. In addition, integrity tests ensure that no extra fuses are programmed. Silicon Sculptor II also provides extensive hardware self-testing capability.

The procedure for programming an eX device using Silicon Sculptor II is as follows:

- 1. Load the *.AFM file
- 2. Select the device to be programmed
- 3. Begin programming

When the design is ready to go to production, Microsemi offers device volume-programming services either through distribution partners or via in-house programming from the factory.

For more details on programming eX devices, please refer to the *Programming Antifuse Devices* application note and the *Silicon Sculptor II User's Guide*.

Probing Capabilities

eX devices provide internal probing capability that is accessed with the JTAG pins. The Silicon Explorer II Diagnostic hardware is used to control the TDI, TCK, TMS and TDO pins to select the desired nets for debugging. The user simply assigns the selected internal nets in the Silicon Explorer II software to the PRA/PRB output pins for observation. Probing functionality is activated when the BST pins are in JTAG mode and the TRST pin is driven HIGH or left floating. If the TRST pin is held LOW, the TAP controller will remain in the Test-Logic-Reset state so no probing can be performed. The Silicon Explorer II automatically places the device into JTAG mode, but the user must drive the TRST pin HIGH or allow the internal pull-up resistor to pull TRST HIGH.

When you select the **Reserve Probe Pin** box, as shown in Figure 1-12 on page 1-10, the layout tool reserves the PRA and PRB pins as dedicated outputs for probing. This reserve option is merely a guideline. If the Layout tool requires that the PRA and PRB pins be user I/Os to achieve successful layout, the tool will use these pins for user I/Os. If you assign user I/Os to the PRA and PRB pins and select the **Reserve Probe Pin** option, Designer Layout will override the "Reserve Probe Pin" option and place your user I/Os on those pins.

To allow for probing capabilities, the security fuse must not be programmed. Programming the security fuse will disable the probe circuitry. Table 1-8 on page 1-13 summarizes the possible device configurations for probing once the device leaves the Test-Logic-Reset JTAG state.

Silicon Explorer II Probe

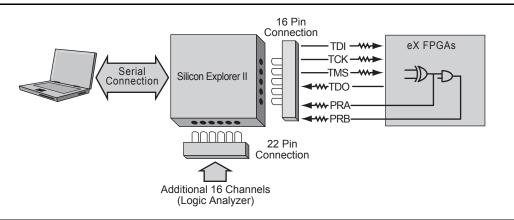
Silicon Explorer II is an integrated hardware and software solution that, in conjunction with Microsemi Designer software tools, allow users to examine any of the internal nets of the device while it is operating in a prototype or a production system. The user can probe into an eX device via the PRA and PRB pins without changing the placement and routing of the design and without using any additional resources. Silicon Explorer II's noninvasive method does not alter timing or loading effects, thus shortening the debug cycle.

Silicon Explorer II does not require re-layout or additional MUXes to bring signals out to an external pin, which is necessary when using programmable logic devices from other suppliers.

Silicon Explorer II samples data at 100 MHz (asynchronous) or 66 MHz (synchronous). Silicon Explorer II attaches to a PC's standard COM port, turning the PC into a fully functional 18-channel logic analyzer. Silicon Explorer II allows designers to complete the design verification process at their desks and reduces verification time from several hours per cycle to a few seconds.

The Silicon Explorer II tool uses the boundary scan ports (TDI, TCK, TMS and TDO) to select the desired nets for verification. The selected internal nets are assigned to the PRA/PRB pins for observation. Figure 1-13 on page 1-13 illustrates the interconnection between Silicon Explorer II and the eX device to perform in-circuit verification.

Design Considerations


The TDI, TCK, TDO, PRA, and PRB pins should not be used as input or bidirectional ports. Since these pins are active during probing, critical signals input through these pins are not available while probing. In addition, the Security Fuse should not be programmed because doing so disables the probe circuitry. It is recommended to use a series 70Ω termination resistor on every probe connector (TDI, TCK, TMS, TDO, PRA, PRB). The 70Ω series termination is used to prevent data transmission corruption during probing and reading back the checksum.

JTAG Mode	TRST ¹	Security Fuse Programmed	PRA, PRB ²	TDI, TCK, TDO ²
Dedicated	LOW	No	User I/O ³	Probing Unavailable
Flexible	LOW	No	User I/O ³	User I/O ³
Dedicated	HIGH	No	Probe Circuit Outputs	Probe Circuit Inputs
Flexible	HIGH	No	Probe Circuit Outputs	Probe Circuit Inputs
-	_	Yes	Probe Circuit Secured	Probe Circuit Secured

Notes:

1. If TRST pin is not reserved, the device behaves according to TRST = HIGH in the table.

- 2. Avoid using the TDI, TCK, TDO, PRA, and PRB pins as input or bidirectional ports. Since these pins are active during probing, input signals will not pass through these pins and may cause contention.
- 3. If no user signal is assigned to these pins, they will behave as unused I/Os in this mode. Unused pins are automatically tristated by Microsemi Designer software.

Development Tool Support

The eX family of FPGAs is fully supported by both Libero® Integrated Design Environment and Designer FPGA Development software. Libero IDE is a design management environment that streamlines the design flow. Libero IDE provides an integrated design manager that seamlessly integrates design tools while guiding the user through the design flow, managing all design and log files, and passing necessary design data among tools. Additionally, Libero IDE allows users to integrate both schematic and HDL synthesis into a single flow and verify the entire design in a single environment. Libero IDE includes Synplify[®] for Microsemi from Synplicity[®], ViewDraw for Microsemi from Mentor Graphics, ModelSim[®] HDL Simulator from Mentor Graphics[®], WaveFormer Lite[™] from SynaptiCAD[™], and Designer software from Microsemi. Refer to the *Libero IDE flow* (located on Microsemi SoC Product Group's website) diagram for more information.

eX FPGA Architecture and Characteristics

Designer software is a place-and-route tool and provides a comprehensive suite of backend support tools for FPGA development. The Designer software includes timing-driven place-and-route, and a world-class integrated static timing analyzer and constraints editor. With the Designer software, a user can lock his/her design pins before layout while minimally impacting the results of place-and-route. Additionally, the back-annotation flow is compatible with all the major simulators and the simulation results can be cross-probed with Silicon Explorer II, Microsemi integrated verification and logic analysis tool. Another tool included in the Designer software is the SmartGen core generator, which easily creates popular and commonly used logic functions for implementation into your schematic or HDL design. Microsemi's Designer software is compatible with the most popular FPGA design entry and verification tools from companies such as Mentor Graphics, Synplicity, Synopsys, and Cadence Design Systems. The Designer software is available for both the Windows and UNIX operating systems.

Related Documents

Datasheet

eX Automotive Family FPGAs www.microsemi.com/soc/documents/eX_Auto_DS.pdf

Application Notes

Maximizing Logic Utilization in eX, SX and SX-A FPGA Devices Using CC Macros www.microsemi.com/soc/documents/CC_Macro_AN.pdf Implementation of Security in Microsemi Antifuse FPGAs www.microsemi.com/soc/documents/Antifuse_Security_AN.pdf Microsemi eX, SX-A, and RT54SX-S I/Os www.microsemi.com/soc/documents/antifuseIO_AN.pdf Microsemi SX-A and RT54SX-S Devices in Hot-Swap and Cold-Sparing Applications www.microsemi.com/soc/documents/HotSwapColdSparing_AN.pdf Design For Low Power in Microsemi Antifuse FPGAs www.microsemi.com/soc/documents/Low_Power_AN.pdf Programming Antifuse Devices www.microsemi.com/soc/documents/AntifuseProgram_AN.pdf

User Guides

Silicon Sculptor II User's Guide www.microsemi.com/soc/documents/SiliSculptII_Sculpt3_ug.pdf

Miscellaneous

Libero IDE flow www.microsemi.com/soc/products/tools/libero/flow.html

Microsemi eX Family FPGAs

2.5 V LVCMOS2 Electrical Specifications

			Commercial		Industrial		
Symbol	Parameter		Min.	Max.	Min.	Max.	Units
VOH	VCCI = MIN, VI = VIH or VIL	(IOH = -100 mA)	2.1		2.1		V
	VCCI = MIN, VI = VIH or VIL	(IOH = -1 mA)	2.0		2.0		V
	VCCI = MIN, VI = VIH or VIL	(IOH = –2 mA)	1.7		1.7		V
VOL	VCCI = MIN, VI = VIH or VIL	(IOL = 100 mA)		0.2		0.2	V
	VCCI = MIN, VI = VIH or VIL	(IOL = 1mA)		0.4		0.4	V
	VCCI = MIN,VI = VIH or VIL	(IOL = 2 mA)		0.7		0.7	V
VIL	Input Low Voltage, VOUT \leq VOL (max.)		-0.3	0.7	-0.3	0.7	V
VIH	Input High Voltage, VOUT \ge VOH (min.)		1.7	VCCI + 0.3	1.7	VCCI + 0.3	V
IIL/ IIH	Input Leakage Current, VIN = VCCI or GND		-10	10	-10	10	μA
IOZ	3-State Output Leakage Current, VOUT = VCCI or GND		-10	10	-10	10	μA
t _R , t _{F1,2}	Input Transition Time			10		10	ns
C _{IO}	I/O Capacitance			10		10	pF
ICC ^{3,4}	Standby Current			1.0		3.0	mA
IV Curve	Can be derived from the IBIS model at v	www.microsemi.com	n/soc/cu	istsup/models	/ibis.ht	ml.	L

Notes:

1. t_R is the transition time from 0.7 V to 1.7 V.

2. t_F is the transition time from 1.7 V to 0.7 V.

3. I_{CC} max Commercial -F = 5.0 mA

 $4. \quad I_{CC} = I_{CCI} + I_{CCA}$

3.3 V LVTTL Electrical Specifications

			Commercial		Industrial		
Symbol	Parameter		Min.	Max.	Min.	Max.	Units
VOH	VCCI = MIN, VI = VIH or VIL	(IOH =8 mA)	2.4		2.4	•	V
VOL	VCCI = MIN, VI = VIH or VIL	(IOL = 12 mA)		0.4		0.4	V
VIL	Input Low Voltage			0.8		0.8	V
VIH	Input High Voltage		2.0	VCCI +0.5	2.0	VCCI +0.5	V
IIL/ IIH	Input Leakage Current, VIN = VCCI or GND		-10	10	-10	10	μA
IOZ	3-State Output Leakage Current, VOUT = VCCI or GND		-10	10	–10	10	μA
t _R , t _{F1,2}	Input Transition Time			10		10	ns
C _{IO}	I/O Capacitance			10		10	pF
ICC ^{3,4}	Standby Current			1.5		10	mA
IV Curve	Can be derived from the IBIS model at ww	w.microsemi.com	m/soc/cu	stsup/models	/ibis.htm	I	-

Notes:

1. t_R is the transition time from 0.8 V to 2.0 V.

2. t_F is the transition time from 2.0 V to 0.8 V.

3. ICC max Commercial -F = 5.0 mA

4. ICC = *ICCI* + *ICCA*

5. JTAG pins comply with LVTTL/TTL I/O specification regardless of whether they are used as a user I/O or a JTAG I/O.

5.0 V TTL Electrical Specifications

			Commercial		Industrial		
Symbol	Parameter		Min.	Max.	Min.	Max.	Units
VOH	VCCI = MIN, VI = VIH or VIL	(IOH = -8 mA)	2.4	•	2.4	•	V
VOL	VCCI = MIN, VI = VIH or VIL	(IOL= 12 mA)		0.4		0.4	V
VIL	Input Low Voltage			0.8		0.8	V
VIH	Input High Voltage		2.0	VCCI +0.5	2.0	VCCI +0.5	V
IIL/ IIH	Input Leakage Current, VIN = VCCI or GND		-10	10	-10	10	μA
IOZ	3-State Output Leakage Current, VOUT = VCCI or GND		-10	10	-10	10	μA
t _R , t _{F1,2}	Input Transition Time			10		10	ns
C _{IO}	I/O Capacitance			10		10	pF
ICC ^{3,4}	Standby Current			15		20	mA
IV Curve	Can be derived from the IBIS model at www	.microsemi.com/	/soc/cus	tsup/models/	ibis.htm		
Noto:	•						

Note:

1. t_R is the transition time from 0.8 V to 2.0 V.

2. t_F is the transition time from 2.0 V to 0.8 V.

3. ICC max Commercial -F=20mA

4. ICC = *ICCI* + *ICCA*

5. JTAG pins comply with LVTTL/TTL I/O specification regardless of whether they are used as a user I/O or a JTAG I/O.

Power Dissipation

Power consumption for eX devices can be divided into two components: static and dynamic.

Static Power Component

The power due to standby current is typically a small component of the overall power. Typical standby current for eX devices is listed in the Table 1-11 on page 1-16. For example, the typical static power for eX128 at 3.3 V V_{CCI} is:

ICC * VCCA = 795 µA x 2.5 V = 1.99 mW

Dynamic Power Component

Power dissipation in CMOS devices is usually dominated by the dynamic power dissipation. This component is frequency-dependent and a function of the logic and the external I/O. Dynamic power dissipation results from charging internal chip capacitance due to PC board traces and load device inputs. An additional component of the dynamic power dissipation is the totem pole current in the CMOS transistor pairs. The net effect can be associated with an equivalent capacitance that can be combined with frequency and voltage to represent dynamic power dissipation.

Dynamic power dissipation = CEQ * VCCA² x F

where:

CEQ = Equivalent capacitance

F = switching frequency

Equivalent capacitance is calculated by measuring ICCA at a specified frequency and voltage for each circuit component of interest. Measurements have been made over a range of frequencies at a fixed value of VCC. Equivalent capacitance is frequency-independent, so the results can be used over a wide range of operating conditions. Equivalent capacitance values are shown below.

CEQ Values for eX Devices

1.70 pF
1.70 pF
1.30 pF
7.40 pF
1.05 pF

The variable and fixed capacitance of other device components must also be taken into account when estimating the dynamic power dissipation.

Table 1-12 shows the capacitance of the clock components of eX devices.

Table 1-12 • Capacitance of Clock Components of eX Devices

	eX64	eX128	eX256
Dedicated array clock – variable (Ceqhv)	0.85 pF	0.85 pF	0.85 pF
Dedicated array clock – fixed (Ceqhf)	18.00 pF	20.00 pF	25.00 pF
Routed array clock A (r1)	23.00 pF	28.00 pF	35.00 pF
Routed array clock B (r2)	23.00 pF	28.00 pF	35.00 pF

Thermal Characteristics

The temperature variable in the Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because the heat generated from dynamic power consumption is usually hotter than the ambient temperature. EQ 1, shown below, can be used to calculate junction temperature.

Junction Temperature = $\Delta T + T_a(1)$

Where:

 T_a = Ambient Temperature

 ΔT = Temperature gradient between junction (silicon) and ambient = θ_{ja} * P

P = Power

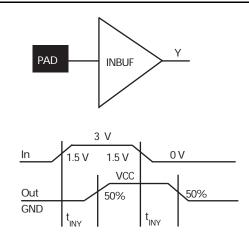
 θ_{ja} = Junction to ambient of package. θ_{ja} numbers are located in the "Package Thermal Characteristics" section below.

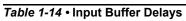
Package Thermal Characteristics

The device junction-to-case thermal characteristic is θ_{jc} , and the junction-to-ambient air characteristic is θ_{ja} . The thermal characteristics for θ_{ja} are shown with two different air flow rates. $\theta_{jc \ is \ provided \ for \ reference}$. The maximum junction temperature is 150°C.

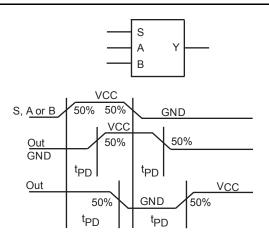
The maximum power dissipation allowed for eX devices is a function of θ_{ja} . A sample calculation of the absolute maximum power dissipation allowed for a TQFP 100-pin package at commercial temperature and still air is as follows:

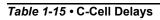
Maximum Power Allowed = $\frac{\text{Max. junction temp. } (^{\circ}\text{C}) - \text{Max. ambient temp. } (^{\circ}\text{C})}{\theta_{ja}(^{\circ}\text{C/W})} = \frac{150^{\circ}\text{C} - 70^{\circ}\text{C}}{33.5^{\circ}\text{C/W}} = 2.39\text{W}$


Package Type	Pin Count	θ _{jc}	Still Air	1.0 m/s 200 ft/min	2.5 m/s 500 ft/min	Units
Thin Quad Flat Pack (TQFP)	64	12.0	42.4	36.3	34.0	°C/W
Thin Quad Flat Pack (TQFP)	100	14.0	33.5	27.4	25.0	°C/W


EQ 1

🌜 Microsemi.


eX FPGA Architecture and Characteristics


Input Buffer Delays

C-Cell Delays

Cell Timing Characteristics

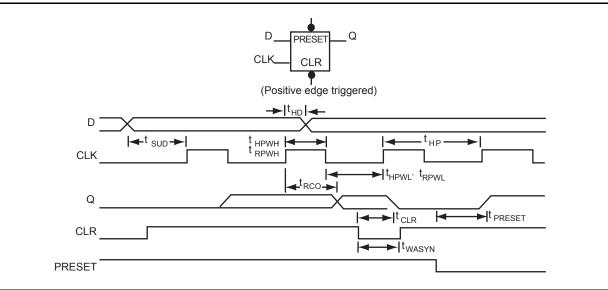


Figure 1-16 • Flip-Flops

eX FPGA Architecture and Characteristics

Timing Characteristics

Timing characteristics for eX devices fall into three categories: family-dependent, device-dependent, and design-dependent. The input and output buffer characteristics are common to all eX family members. Internal routing delays are device-dependent. Design dependency means actual delays are not determined until after placement and routing of the user's design are complete. Delay values may then be determined by using the Timer utility or performing simulation with post-layout delays.

Critical Nets and Typical Nets

Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most timing critical paths. Critical nets are determined by net property assignment prior to placement and routing. Up to six percent of the nets in a design may be designated as critical.

Long Tracks

Some nets in the design use long tracks. Long tracks are special routing resources that span multiple rows, columns, or modules. Long tracks employ three to five antifuse connections. This increases capacitance and resistance, resulting in longer net delays for macros connected to long tracks. Typically, no more than six percent of nets in a fully utilized device require long tracks. Long tracks contribute approximately 4 ns to 8.4 ns delay. This additional delay is represented statistically in higher fanout routing delays.

Timing Derating

eX devices are manufactured with a CMOS process. Therefore, device performance varies according to temperature, voltage, and process changes. Minimum timing parameters reflect maximum operating voltage, minimum operating temperature, and best-case processing. Maximum timing parameters reflect minimum operating voltage, maximum operating temperature, and worst-case processing.

Temperature and Voltage Derating Factors

Table 1-16 • Temperature and Voltage Derating Factors

(Normalized to Worst-Case Commercial, T_J = 70°C, VCCA = 2.3V)

	Junction Temperature (T _J)						
VCCA	-55	-40	0	25	70	85	125
2.3	0.79	0.80	0.87	0.88	1.00	1.04	1.13
2.5	0.74	0.74	0.81	0.83	0.93	0.97	1.06
2.7	0.69	0.70	0.76	0.78	0.88	0.91	1.00

		'-P' Speed		'Std' Speed		'-F' Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated (H	lard-Wired) Array Clock Networks							
t _{нскн}	Input LOW to HIGH (Pad to R-Cell Input)		1.1		1.6		2.3	ns
t _{HCKL}	Input HIGH to LOW (Pad to R-Cell Input)		1.1		1.6		2.3	ns
t _{HPWH}	Minimum Pulse Width HIGH	1.4		2.0		2.8		ns
t _{HPWL}	Minimum Pulse Width LOW	1.4		2.0		2.8		ns
t _{HCKSW}	Maximum Skew		<0.1		<0.1		<0.1	ns
t _{HP}	Minimum Period	2.8		4.0		5.6		ns
f _{HMAX}	Maximum Frequency		357		250		178	MHz
Routed Array	y Clock Networks							
t _{RCKH}	Input LOW to HIGH (Light Load) (Pad to R-Cell Input) MAX.		1.0		1.4		2.0	ns
t _{RCKL}	Input HIGH to LOW (Light Load) (Pad to R-Cell Input) MAX.		1.0		1.4		2.0	ns
t _{RCKH}	Input LOW to HIGH (50% Load) (Pad to R-Cell Input) MAX.		1.2		1.7		2.4	ns
t _{RCKL}	Input HIGH to LOW (50% Load) (Pad to R-Cell Input) MAX.		1.2		1.7		2.4	ns
t _{RCKH}	Input LOW to HIGH (100% Load) (Pad to R-Cell Input) MAX.		1.4		2.0		2.8	ns
t _{RCKL}	Input HIGH to LOW (100% Load) (Pad to R-Cell Input) MAX.		1.4		2.0		2.8	ns
t _{RPWH}	Min. Pulse Width HIGH	1.4		2.0		2.8		ns
t _{RPWL}	Min. Pulse Width LOW	1.4		2.0		2.8		ns
t _{RCKSW} *	Maximum Skew (Light Load)		0.2		0.3		0.4	ns
t _{RCKSW} *	Maximum Skew (50% Load)		0.2		0.2		0.3	ns
t _{RCKSW} *	Maximum Skew (100% Load)		0.1		0.1		0.2	ns

Table 1-19 • eX Family Timing Characteristics (Worst-Case Commercial Conditions VCCA = 2.3V, VCCI = 2.3 V or 3.0V, T_J = 70°C)

Note: *Clock skew improves as the clock network becomes more heavily loaded.

TMS Test Mode Select

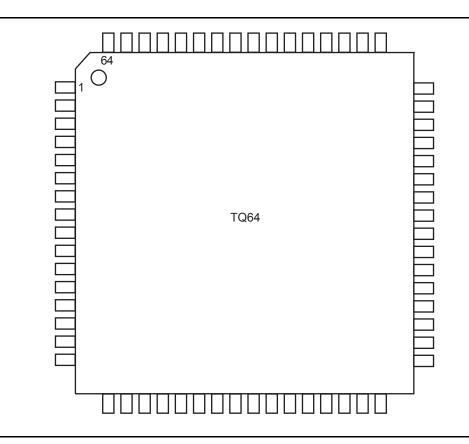
The TMS pin controls the use of the IEEE 1149.1 Boundary scan pins (TCK, TDI, TDO, TRST). In flexible mode when the TMS pin is set LOW, the TCK, TDI, and TDO pins are boundary scan pins (refer to Table 1-4 on page 1-10). Once the boundary scan pins are in test mode, they will remain in that mode until the internal boundary scan state machine reaches the "logic reset" state. At this point, the boundary scan pins will be released and will function as regular I/O pins. The "logic reset" state is reached five TCK cycles after the TMS pin is set HIGH. In dedicated test mode, TMS functions as specified in the IEEE 1149.1 specifications.

TRST, I/O Boundary Scan Reset Pin

Once it is configured as the JTAG Reset pin, the TRST pin functions as an active-low input to asynchronously initialize or reset the boundary scan circuit. The TRST pin is equipped with an internal pull-up resistor. This pin functions as an I/O when the **Reserve JTAG Reset** Pin is not selected in the Designer software.

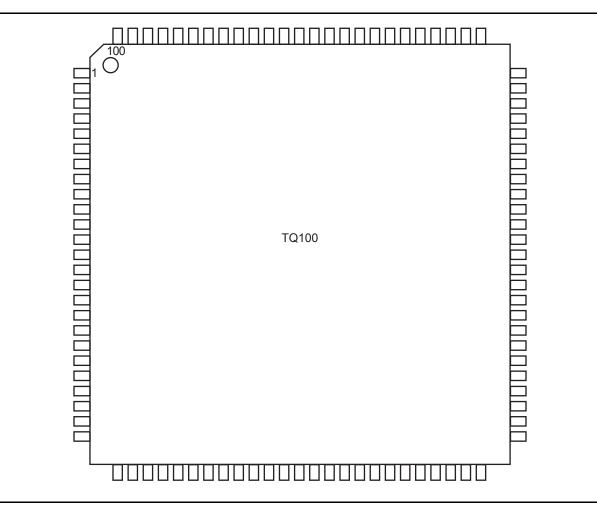
VCCI Supply Voltage

Supply voltage for I/Os.


VCCA Supply Voltage

Supply voltage for Array.

2 – Package Pin Assignments


TQ64

Note: For Package Manufacturing and Environmental information, visit Resource center at www.microsemi.com/soc/products/rescenter/package/index.html.

TQ100

Note: For Package Manufacturing and Environmental information, visit Resource center at www.microsemi.com/soc/products/rescenter/package/index.html.

3 – Datasheet Information

List of Changes

The following table lists critical changes that were made in the current version of the document.

Revision	Changes	Page		
Revision 10 (October 2012)	The "User Security" section was revised to clarify that although no existing security measures can give an absolute guarantee, Microsemi FPGAs implement industry standard security (SAR 34677).			
	Package names used in the "Product Profile" section and "Package Pin Assignments"			
	section were revised to match standards given in <i>Package Mechanical Drawings</i> (SAR 34779).			
Revision 9 (June 2011)	The versioning system for datasheets has been changed. Datasheets are assigned a revision number that increments each time the datasheet is revised. The "eX Device Status" table indicates the status for each device in the device family.			
	The Chip Scale packages (CS49, CS128, CS181) are no longer offered for eX devices. They have been removed from the product family information. Pin tables for CSP packages have been removed from the datasheet (SAR 32002).			
Revision 8 (v4.3, June 2006)	The "Ordering Information" was updated with RoHS information. The TQFP measurement was also updated.			
	The "Dedicated Test Mode" was updated.	1-10		
	Note 5 was added to the "3.3 V LVTTL Electrical Specifications" and "5.0 V TTL Electrical Specifications" tables			
	The "LP Low Power Pin" description was updated.	1-31		
Revision 7 (v4.2, June 2004)	The "eX Timing Model" was updated.	1-22		
v4.1	The "Development Tool Support" section was updated.			
	The "Package Thermal Characteristics" section was updated.	1-21		
v4.0	The "Product Profile" section was updated.			
	The "Ordering Information" section was updated.			
	The "Temperature Grade Offerings" section is new.			
	The "Speed Grade and Temperature Grade Matrix" section is new.			
	The "eX FPGA Architecture and Characteristics" section was updated.			
	The "Clock Resources" section was updated.	1-3		
	Table 1-1 •Connections of Routed Clock Networks, CLKA and CLKB is new.			
	The "User Security" section was updated.			
	The "I/O Modules" section was updated.			
	The "Hot-Swapping" section was updated.			
	The "Power Requirements" section was updated.			
	The "Low Power Mode" section was updated.	1-6		
	The "Boundary Scan Testing (BST)" section was updated.	1-10		
	The "Dedicated Test Mode" section was updated.	1-10		

Datasheet Categories

Categories

In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device, as highlighted in the "eX Device Status" table on page II, is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

Production

This version contains information that is considered to be final.

Export Administration Regulations (EAR)

The product described in this datasheet is subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at **www.microsemi.com**.

© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.