

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	256
Total RAM Bits	-
Number of I/O	70
Number of Gates	6000
Voltage - Supply	2.3V ~ 2.7V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	100-LQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ex128-tqg100i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

eX FPGA Architecture and Characteristics	
General Description	1-1
eX Family Architecture	1-1
Other Architectural Features	1-5
Design Considerations	1-13
Related Documents	1-15
2.5 V / 3.3 V /5.0 V Operating Conditions	1-16
2.5 V LVCMOS2 Electrical Specifications	1-17
3.3 V LVTTL Electrical Specifications	1-18
5.0 V TTL Electrical Specifications	1-18
Power Dissipation	1-19
Thermal Characteristics	
Package Thermal Characteristics	
eX Timing Model	
Output Buffer Delays	
AC Test Loads	
Input Buffer Delays	
C-Cell Delays	
Cell Timing Characteristics	
Timing Characteristics	
eX Family Timing Characteristics	
Pin Description	1-31
Package Pin Assignments	
TQ64	2-1
TQ100	2-3
Datasheet Information	
List of Changes	
Datasheet Categories	
Export Administration Regulations (EAR)	

Revision 10 IV

1 – eX FPGA Architecture and Characteristics

General Description

The eX family of FPGAs is a low-cost solution for low-power, high-performance designs. The inherent low power attributes of the antifuse technology, coupled with an additional low static power mode, make these devices ideal for power-sensitive applications. Fabricated with an advanced 0.22 mm CMOS antifuse technology, these devices achieve high performance with no power penalty.

eX Family Architecture

Microsemi eX family is implemented on a high-voltage twin-well CMOS process using 0.22 μ m design rules. The eX family architecture uses a "sea-of-modules" structure where the entire floor of the device is covered with a grid of logic modules with virtually no chip area lost to interconnect elements or routing. Interconnection among these logic modules is achieved using Microsemi patented metal-to-metal programmable antifuse interconnect elements. The antifuse interconnect is made up of a combination of amorphous silicon and dielectric material with barrier metals and has an "on" state resistance of 25Ω with a capacitance of 1.0fF for low-signal impedance. The antifuses are normally open circuit and, when programmed, form a permanent low-impedance connection. The eX family provides two types of logic modules, the register cell (R-cell) and the combinatorial cell (C-cell).

The R-cell contains a flip-flop featuring asynchronous clear, asynchronous preset, and clock enable (using the S0 and S1 lines) control signals (Figure 1-1). The R-cell registers feature programmable clock polarity selectable on a register-by-register basis. This provides additional flexibility while allowing mapping of synthesized functions into the eX FPGA. The clock source for the R-cell can be chosen from either the hard-wired clock or the routed clock.

The C-cell implements a range of combinatorial functions up to five inputs (Figure 1-2 on page 1-2). Inclusion of the DB input and its associated inverter function enables the implementation of more than 4,000 combinatorial functions in the eX architecture in a single module.

Two C-cells can be combined together to create a flip-flop to imitate an R-cell via the use of the CC macro. This is particularly useful when implementing non-timing-critical paths and when the design engineer is running out of R-cells. More information about the CC macro can be found in the *Maximizing Logic Utilization in eX, SX and SX-A FPGA Devices Using CC Macros* application note.

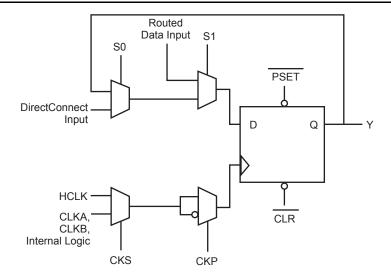


Figure 1-1 • R-Cell

Module Organization

C-cell and R-cell logic modules are arranged into horizontal banks called Clusters, each of which contains two C-cells and one R-cell in a C-R-C configuration.

Clusters are further organized into modules called SuperClusters for improved design efficiency and device performance, as shown in Figure 1-3. Each SuperCluster is a two-wide grouping of Clusters.

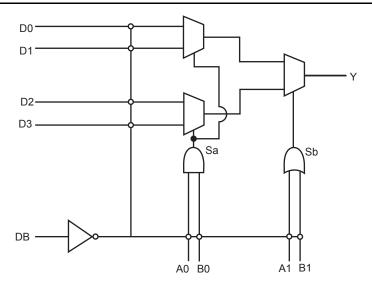


Figure 1-2 • C-Cell

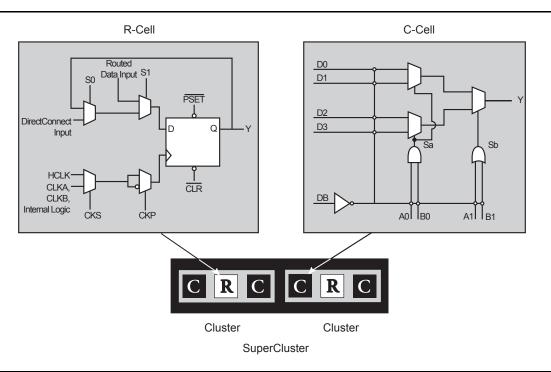


Figure 1-3 • Cluster Organization

1-2 Revision 10

Table 1-2 describes the I/O features of eX devices. For more information on I/Os, refer to *Microsemi eX, SX-A, and RT54SX-S I/Os* application note.

Table 1-2 • I/O Features

Function	Description
Input Buffer Threshold	• 5.0V TTL
Selection	3.3V LVTTL
	2.5V LVCMOS2
Nominal Output Drive	5.0V TTL/CMOS
	3.3V LVTTL
	• 2.5V LVCMOS 2
Output Buffer	"Hot-Swap" Capability
	I/O on an unpowered device does not sink current
	Can be used for "cold sparing"
	Selectable on an individual I/O basis
	Individually selectable low-slew option
Power-Up	Individually selectable pull ups and pull downs during power-up (default is to power up in tristate)
	Enables deterministic power-up of device
	V _{CCA} and V _{CCI} can be powered in any order

The eX family supports mixed-voltage operation and is designed to tolerate 5.0 V inputs in each case. A detailed description of the I/O pins in eX devices can be found in "Pin Description" on page 1-31.

Hot-Swapping

eX I/Os are configured to be hot-swappable. During power-up/down (or partial up/down), all I/Os are tristated, provided V_{CCA} ramps up within a diode drop of V_{CCI} . V_{CCA} and V_{CCI} do not have to be stable. during power-up/down, and they do not require a specific power-up or power-down sequence in order to avoid damage to the eX devices. In addition, all outputs can be programmed to have a weak resistor pull-up or pull-down for output tristate at power-up. After the eX device is plugged into an electrically active system, the device will not degrade the reliability of or cause damage to the host system. The device's output pins are driven to a high impedance state until normal chip operating conditions are reached. Please see the application note, *Microsemi SX-A and RT54SX-S Devices in Hot-Swap and Cold-Sparing Applications*, which also applies to the eX devices, for more information on hot swapping.

Power Requirements

Power consumption is extremely low for the eX family due to the low capacitance of the antifuse interconnects. The antifuse architecture does not require active circuitry to hold a charge (as do SRAM or EPROM), making it the lowest-power FPGA architecture available today.

Low Power Mode

The eX family has been designed with a Low Power Mode. This feature, activated with setting the special LP pin to HIGH for a period longer than 800 ns, is particularly useful for battery-operated systems where battery life is a primary concern. In this mode, the core of the device is turned off and the device consumes minimal power with low standby current. In addition, all input buffers are turned off, and all outputs and bidirectional buffers are tristated when the device enters this mode. Since the core of the device is turned off, the states of the registers are lost. The device must be re-initialized when returning to normal operating mode. I/Os can be driven during LP mode. For details, refer to the *Design for Low Power in Microsemi Antifuse FPGAs* application note under the section Using the LP Mode Pin on eX Devices. Clock pins should be driven either HIGH or LOW and should not float; otherwise, they will draw current and burn power. The device must be re-initialized when exiting LP mode.

1-6 Revision 10

To exit the LP mode, the LP pin must be driven LOW for over 200 μs to allow for the charge pumps to power-up and device initialization can begin.

Table 1-3 illustrates the standby current of eX devices in LP mode.

Table 1-3 • Standby Power of eX Devices in LP Mode Typical Conditions, V_{CCA} , V_{CCI} = 2.5 V, T_J = 25° C

Product	Low Power Standby Current	Units
eX64	100	μΑ
eX128	111	μΑ
eX256	134	μΑ

Designer software is a place-and-route tool and provides a comprehensive suite of backend support tools for FPGA development. The Designer software includes timing-driven place-and-route, and a world-class integrated static timing analyzer and constraints editor. With the Designer software, a user can lock his/her design pins before layout while minimally impacting the results of place-and-route. Additionally, the back-annotation flow is compatible with all the major simulators and the simulation results can be cross-probed with Silicon Explorer II, Microsemi integrated verification and logic analysis tool. Another tool included in the Designer software is the SmartGen core generator, which easily creates popular and commonly used logic functions for implementation into your schematic or HDL design. Microsemi's Designer software is compatible with the most popular FPGA design entry and verification tools from companies such as Mentor Graphics, Synopsys, and Cadence Design Systems. The Designer software is available for both the Windows and UNIX operating systems.

1-14 Revision 10

Related Documents

Datasheet

eX Automotive Family FPGAs www.microsemi.com/soc/documents/eX_Auto_DS.pdf

Application Notes

Maximizing Logic Utilization in eX, SX and SX-A FPGA Devices Using CC Macros www.microsemi.com/soc/documents/CC_Macro_AN.pdf
Implementation of Security in Microsemi Antifuse FPGAs

www.microsemi.com/soc/documents/Antifuse_Security_AN.pdf

Microsemi eX, SX-A, and RT54SX-S I/Os

www.microsemi.com/soc/documents/antifuseIO AN.pdf

Microsemi SX-A and RT54SX-S Devices in Hot-Swap and Cold-Sparing Applications

www.microsemi.com/soc/documents/HotSwapColdSparing AN.pdf

Design For Low Power in Microsemi Antifuse FPGAs

www.microsemi.com/soc/documents/Low_Power_AN.pdf

Programming Antifuse Devices

www.microsemi.com/soc/documents/AntifuseProgram AN.pdf

User Guides

Silicon Sculptor II User's Guide
www.microsemi.com/soc/documents/SiliSculptII_Sculpt3_ug.pdf

Miscellaneous

Libero IDE flow

www.microsemi.com/soc/products/tools/libero/flow.html

2.5 V / 3.3 V /5.0 V Operating Conditions

Table 1-9 • Absolute Maximum Ratings*

Symbol	Parameter	Limits	Units
VCCI	DC Supply Voltage for I/Os	-0.3 to +6.0	V
VCCA	DC Supply Voltage for Array	-0.3 to +3.0	V
VI	Input Voltage	-0.5 to +5.75	V
VO	Output Voltage	-0.5 to +V _{CCI}	V
T _{STG}	Storage Temperature	-65 to +150	°C

Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the Recommended Operating Conditions.

Table 1-10 • Recommended Operating Conditions

Parameter	Commercial	Industrial	Units
Temperature Range*	0 to +70	-40 to +85	°C
2.5V Power Supply Range (VCCA, VCCI)	2.3 to 2.7	2.3 to 2.7	V
3.3V Power Supply Range (VCCI)	3.0 to 3.6	3.0 to 3.6	V
5.0V Power Supply Range (VCCI)	4.75 to 5.25	4.75 to 5.25	V

Note: *Ambient temperature (T_A) .

Table 1-11 • Typical eX Standby Current at 25°C

Product	VCCA= 2.5 V VCCI = 2.5 V	VCCA = 2.5 V VCCI = 3.3 V	VCCA = 2.5 V VCCI = 5.0 V
eX64	397 μΑ	497 μA	700 μA
eX128	696 μΑ	795 μA	1,000 μΑ
eX256	698 µA	796 µA	2,000 μΑ

1-16 Revision 10

2.5 V LVCMOS2 Electrical Specifications

			Co	mmercial	In	dustrial	
Symbol	Parameter		Min.	Max.	Min.	Max.	Units
VOH	VCCI = MIN, VI = VIH or VIL	(IOH = -100 mA)	2.1		2.1		V
	VCCI = MIN, VI = VIH or VIL	(IOH = -1 mA)	2.0		2.0		V
	VCCI = MIN, VI = VIH or VIL	(IOH = -2 mA)	1.7		1.7		V
VOL	VCCI = MIN, VI = VIH or VIL	(IOL = 100 mA)		0.2		0.2	V
	VCCI = MIN, VI = VIH or VIL	(IOL = 1mA)		0.4		0.4	V
	VCCI = MIN,VI = VIH or VIL	(IOL = 2 mA)		0.7		0.7	V
VIL	Input Low Voltage, VOUT \leq VOL (max.)		-0.3	0.7	-0.3	0.7	V
VIH	Input High Voltage, VOUT ≥ VOH (min.)		1.7	VCCI + 0.3	1.7	VCCI + 0.3	V
IIL/ IIH	Input Leakage Current, VIN = VCCI or GND		-10	10	-10	10	μA
IOZ	3-State Output Leakage Current, VOUT = VCCI or GND		-10	10	-10	10	μA
t _R , t _{F1,2}	Input Transition Time			10		10	ns
C _{IO}	I/O Capacitance			10		10	pF
ICC ^{3,4}	Standby Current			1.0		3.0	mA
IV Curve	Can be derived from the IBIS model at v	www.microsemi.com	n/soc/cu	ıstsup/models	/ibis.ht	ml.	

Notes

- 1. t_R is the transition time from 0.7 V to 1.7 V.
- 2. t_F is the transition time from 1.7 V to 0.7 V.
- 3. I_{CC} max Commercial -F = 5.0 mA
- 4. $I_{CC} = I_{CCI} + I_{CCA}$

3.3 V LVTTL Electrical Specifications

			Con	nmercial	Ind	ustrial	
Symbol	Parameter		Min.	Max.	Min.	Max.	Units
VOH	VCCI = MIN, VI = VIH or VIL	(IOH = -8 mA)	2.4		2.4	•	V
VOL	VCCI = MIN, VI = VIH or VIL	(IOL = 12 mA)		0.4		0.4	V
VIL	Input Low Voltage			0.8		0.8	V
VIH	Input High Voltage		2.0	VCCI +0.5	2.0	VCCI +0.5	V
IIL/ IIH	Input Leakage Current, VIN = VCCI or GND		–10	10	–10	10	μΑ
IOZ	3-State Output Leakage Current, VOUT = VCCI or GND		-10	10	-10	10	μA
t _R , t _{F1,2}	Input Transition Time			10		10	ns
C _{IO}	I/O Capacitance			10		10	pF
ICC ^{3,4}	Standby Current			1.5		10	mA
IV Curve	Can be derived from the IBIS model at ww	w.microsemi.cor	m/soc/cu	stsup/models	/ibis.htm	l.	

Notes:

- 1. t_R is the transition time from 0.8 V to 2.0 V.
- 2. t_F is the transition time from 2.0 V to 0.8 V.
- 3. ICC max Commercial -F = 5.0 mA
- 4. ICC = ICCI + ICCA
- 5. JTAG pins comply with LVTTL/TTL I/O specification regardless of whether they are used as a user I/O or a JTAG I/O.

5.0 V TTL Electrical Specifications

			Con	nmercial	Ind	ustrial	
Symbol	Parameter		Min.	Max.	Min.	Max.	Units
VOH	VCCI = MIN, VI = VIH or VIL	(IOH = -8 mA)	2.4	•	2.4		V
VOL	VCCI = MIN, VI = VIH or VIL	(IOL= 12 mA)		0.4		0.4	V
VIL	Input Low Voltage			0.8		0.8	V
VIH	Input High Voltage		2.0	VCCI +0.5	2.0	VCCI +0.5	V
IIL/ IIH	Input Leakage Current, VIN = VCCI or GND		-10	10	-10	10	μΑ
IOZ	3-State Output Leakage Current, VOUT = VCCI or GND		-10	10	-10	10	μΑ
t_R , $t_{F1,2}$	Input Transition Time			10		10	ns
C _{IO}	I/O Capacitance			10		10	pF
ICC ^{3,4}	Standby Current			15		20	mA
IV Curve	Can be derived from the IBIS model at www	.microsemi.com/	soc/cus	tsup/models/	ibis.html		

Note:

- 1. t_R is the transition time from 0.8 V to 2.0 V.
- 2. t_F is the transition time from 2.0 V to 0.8 V.
- 3. ICC max Commercial -F=20mA
- 4. ICC = ICCI + ICCA
- 5. JTAG pins comply with LVTTL/TTL I/O specification regardless of whether they are used as a user I/O or a JTAG I/O.

1-18 Revision 10

Power Dissipation

Power consumption for eX devices can be divided into two components: static and dynamic.

Static Power Component

The power due to standby current is typically a small component of the overall power. Typical standby current for eX devices is listed in the Table 1-11 on page 1-16. For example, the typical static power for eX128 at 3.3 V V_{CCl} is:

ICC * VCCA = $795 \mu A \times 2.5 V = 1.99 mW$

Dynamic Power Component

Power dissipation in CMOS devices is usually dominated by the dynamic power dissipation. This component is frequency-dependent and a function of the logic and the external I/O. Dynamic power dissipation results from charging internal chip capacitance due to PC board traces and load device inputs. An additional component of the dynamic power dissipation is the totem pole current in the CMOS transistor pairs. The net effect can be associated with an equivalent capacitance that can be combined with frequency and voltage to represent dynamic power dissipation.

Dynamic power dissipation = CEQ * VCCA² x F

where:

CEQ = Equivalent capacitance

= switching frequency

Equivalent capacitance is calculated by measuring ICCA at a specified frequency and voltage for each circuit component of interest. Measurements have been made over a range of frequencies at a fixed value of VCC. Equivalent capacitance is frequency-independent, so the results can be used over a wide range of operating conditions. Equivalent capacitance values are shown below.

CEQ Values for eX Devices

Combinatorial modules (Ceqcm) 1.70 pF
Sequential modules (Ceqsm) 1.70 pF
Input buffers (Ceqi) 1.30 pF
Output buffers (Ceqo) 7.40 pF
Routed array clocks (Ceqcr) 1.05 pF

The variable and fixed capacitance of other device components must also be taken into account when estimating the dynamic power dissipation.

Table 1-12 shows the capacitance of the clock components of eX devices.

Table 1-12 • Capacitance of Clock Components of eX Devices

	eX64	eX128	eX256
Dedicated array clock – variable (Ceqhv)	0.85 pF	0.85 pF	0.85 pF
Dedicated array clock – fixed (Ceqhf)	18.00 pF	20.00 pF	25.00 pF
Routed array clock A (r1)	23.00 pF	28.00 pF	35.00 pF
Routed array clock B (r2)	23.00 pF	28.00 pF	35.00 pF

Thermal Characteristics

The temperature variable in the Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because the heat generated from dynamic power consumption is usually hotter than the ambient temperature. EQ 1, shown below, can be used to calculate junction temperature.

EQ 1

Junction Temperature = $\Delta T + T_a(1)$

Where:

T_a = Ambient Temperature

 ΔT = Temperature gradient between junction (silicon) and ambient = θ_{ja} * P

P = Power

 θ_{ja} = Junction to ambient of package. θ_{ja} numbers are located in the "Package Thermal Characteristics" section below

Package Thermal Characteristics

The device junction-to-case thermal characteristic is θ_{jc} , and the junction-to-ambient air characteristic is θ_{ja} . The thermal characteristics for θ_{ja} are shown with two different air flow rates. θ_{jc} is provided for reference. The maximum junction temperature is 150°C.

The maximum power dissipation allowed for eX devices is a function of θ_{ja} . A sample calculation of the absolute maximum power dissipation allowed for a TQFP 100-pin package at commercial temperature and still air is as follows:

$$\text{Maximum Power Allowed } = \frac{\text{Max. junction temp. (°C) - Max. ambient temp. (°C)}}{\theta_{ja}(°C/W)} = \frac{150°C - 70°C}{33.5°C/W} = 2.39W$$

Package Type	Pin Count	$ heta_{ extsf{jc}}$	Still Air	1.0 m/s 200 ft/min	2.5 m/s 500 ft/min	Units
Thin Quad Flat Pack (TQFP)	64	12.0	42.4	36.3	34.0	°C/W
Thin Quad Flat Pack (TQFP)	100	14.0	33.5	27.4	25.0	°C/W

Input Buffer Delays

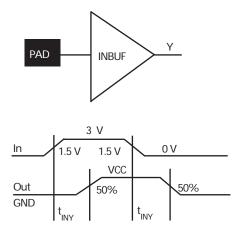


Table 1-14 • Input Buffer Delays

C-Cell Delays

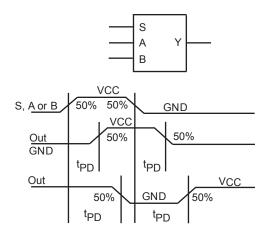


Table 1-15 • C-Cell Delays

1-24 Revision 10

Cell Timing Characteristics

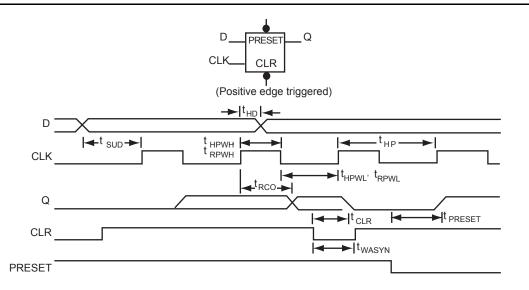
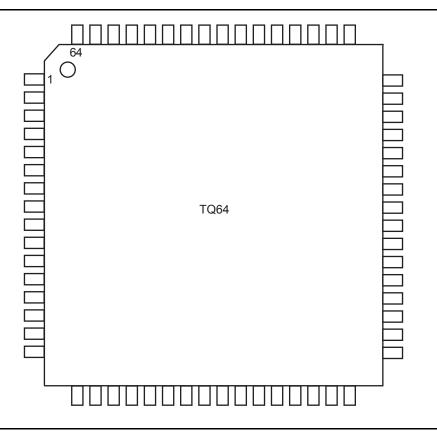


Figure 1-16 • Flip-Flops

Table 1-19 • eX Family Timing Characteristics (Worst-Case Commercial Conditions VCCA = 2.3V, VCCI = 2.3 V or 3.0V, $T_J = 70^{\circ}C$)


		'-P' Speed		'Std' Speed		'-F' Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated (Hard-Wired) Array Clock Networks								
t _{HCKH}	Input LOW to HIGH (Pad to R-Cell Input)		1.1		1.6		2.3	ns
t _{HCKL}	Input HIGH to LOW (Pad to R-Cell Input)		1.1		1.6		2.3	ns
t _{HPWH}	Minimum Pulse Width HIGH	1.4		2.0		2.8		ns
t _{HPWL}	Minimum Pulse Width LOW	1.4		2.0		2.8		ns
t _{HCKSW}	Maximum Skew		<0.1		<0.1		<0.1	ns
t _{HP}	Minimum Period	2.8		4.0		5.6		ns
f _{HMAX}	Maximum Frequency		357		250		178	MHz
Routed Array	Routed Array Clock Networks							
t _{RCKH}	Input LOW to HIGH (Light Load) (Pad to R-Cell Input) MAX.		1.0		1.4		2.0	ns
t _{RCKL}	Input HIGH to LOW (Light Load) (Pad to R-Cell Input) MAX.		1.0		1.4		2.0	ns
t _{RCKH}	Input LOW to HIGH (50% Load) (Pad to R-Cell Input) MAX.		1.2		1.7		2.4	ns
t _{RCKL}	Input HIGH to LOW (50% Load) (Pad to R-Cell Input) MAX.		1.2		1.7		2.4	ns
t _{RCKH}	Input LOW to HIGH (100% Load) (Pad to R-Cell Input) MAX.		1.4		2.0		2.8	ns
t _{RCKL}	Input HIGH to LOW (100% Load) (Pad to R-Cell Input) MAX.		1.4		2.0		2.8	ns
t _{RPWH}	Min. Pulse Width HIGH	1.4		2.0		2.8		ns
t _{RPWL}	Min. Pulse Width LOW	1.4		2.0		2.8		ns
t _{RCKSW} *	Maximum Skew (Light Load)		0.2		0.3		0.4	ns
t _{RCKSW} *	Maximum Skew (50% Load)		0.2		0.2		0.3	ns
t _{RCKSW} *	Maximum Skew (100% Load)		0.1		0.1		0.2	ns

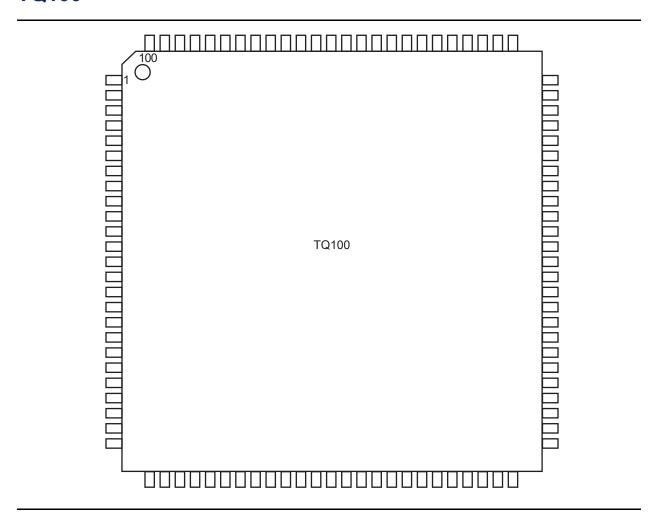
Note: *Clock skew improves as the clock network becomes more heavily loaded.

2 – Package Pin Assignments

TQ64

Note: For Package Manufacturing and Environmental information, visit Resource center at www.microsemi.com/soc/products/rescenter/package/index.html.

TQ64						
Pin Number	eX64 Function	eX128 Function				
1	GND	GND				
2	TDI, I/O	TDI, I/O				
3	I/O	I/O				
4	TMS	TMS				
5	GND	GND				
6	VCCI	VCCI				
7	I/O	I/O				
8	I/O	I/O				
9	NC	I/O				
10	NC	I/O				
11	TRST, I/O	TRST, I/O				
12	I/O	I/O				
13	NC	I/O				
14	GND	GND				
15	I/O	I/O				
16	I/O	I/O				
17	I/O	I/O				
18	I/O	I/O				
19	VCCI	VCCI				
20	I/O	I/O				
21	PRB, I/O	PRB, I/O				
22	VCCA	VCCA				
23	GND	GND				
24	I/O	I/O				
25	HCLK	HCLK				
26	I/O	I/O				
27	I/O	I/O				
28	I/O	I/O				
29	I/O	I/O				
30	I/O	I/O				
31	I/O	I/O				
32	TDO, I/O	TDO, I/O				
1						


TQ64						
Pin Number	eX64 Function	eX128 Function				
33	GND	GND				
34	I/O	I/O				
35	I/O	I/O				
36	VCCA	VCCA				
37	VCCI	VCCI				
38	I/O	I/O				
39	I/O	I/O				
40	NC	I/O				
41	NC	I/O				
42	I/O	I/O				
43	I/O	I/O				
44	VCCA	VCCA				
45*	GND/LP	GND/ LP				
46	GND	GND				
47	I/O	I/O				
48	I/O	I/O				
49	I/O	I/O				
50	I/O	I/O				
51	I/O	I/O				
52	VCCI	VCCI				
53	I/O	I/O				
54	I/O	I/O				
55	CLKA	CLKA				
56	CLKB	CLKB				
57	VCCA	VCCA				
58	GND	GND				
59	PRA, I/O	PRA, I/O				
60	I/O	I/O				
61	VCCI	VCCI				
62	I/O	I/O				
63	I/O	I/O				
64	TCK, I/O	TCK, I/O				

Note: *Please read the LP pin descriptions for restrictions on their use.

2-2 Revision 10

TQ100

Note: For Package Manufacturing and Environmental information, visit Resource center at www.microsemi.com/soc/products/rescenter/package/index.html.

3 – Datasheet Information

List of Changes

The following table lists critical changes that were made in the current version of the document.

Revision	Changes	Page
Revision 10 (October 2012)	The "User Security" section was revised to clarify that although no existing security measures can give an absolute guarantee, Microsemi FPGAs implement industry standard security (SAR 34677).	1-5
	Package names used in the "Product Profile" section and "Package Pin Assignments" section were revised to match standards given in <i>Package Mechanical Drawings</i> (SAR 34779).	l 2-1
Revision 9 (June 2011)	The versioning system for datasheets has been changed. Datasheets are assigned a revision number that increments each time the datasheet is revised. The "eX Device Status" table indicates the status for each device in the device family.	II
	The Chip Scale packages (CS49, CS128, CS181) are no longer offered for eX devices. They have been removed from the product family information. Pin tables for CSP packages have been removed from the datasheet (SAR 32002).	N/A
Revision 8 (v4.3, June 2006)	The "Ordering Information" was updated with RoHS information. The TQFP measurement was also updated.	П
	The "Dedicated Test Mode" was updated.	1-10
	Note 5 was added to the "3.3 V LVTTL Electrical Specifications" and "5.0 V TTL Electrical Specifications" tables	1-18
	The "LP Low Power Pin" description was updated.	1-31
Revision 7 (v4.2, June 2004)	The "eX Timing Model" was updated.	1-22
v4.1	The "Development Tool Support" section was updated.	1-13
	The "Package Thermal Characteristics" section was updated.	1-21
v4.0	The "Product Profile" section was updated.	1-I
	The "Ordering Information" section was updated.	1-II
	The "Temperature Grade Offerings" section is new.	1-III
	The "Speed Grade and Temperature Grade Matrix" section is new.	1-III
	The "eX FPGA Architecture and Characteristics" section was updated.	1-1
	The "Clock Resources" section was updated.	1-3
	Table 1-1 •Connections of Routed Clock Networks, CLKA and CLKB is new.	1-4
	The "User Security" section was updated.	1-5
	The "I/O Modules" section was updated.	1-5
	The "Hot-Swapping" section was updated.	1-6
	The "Power Requirements" section was updated.	1-6
	The "Low Power Mode" section was updated.	1-6
	The "Boundary Scan Testing (BST)" section was updated.	1-10
	The "Dedicated Test Mode" section was updated.	1-10

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at www.microsemi.com.

© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.