E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	256
Total RAM Bits	-
Number of I/O	46
Number of Gates	6000
Voltage - Supply	2.3V ~ 2.7V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	64-LQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ex128-tqg64i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Ordering Information

eX Device Status

eX Devices	Status
eX64	Production
eX128	Production
eX256	Production

Plastic Device Resources

	User I/Os (Including Clock Buffers)		
Device	TQ64	TQ100	
eX64	41	56	
eX128	46	70	
eX256	_	81	

Note: TQ = Thin Quad Flat Pack

Temperature Grade Offerings

Device\ Package	TQ64	TQ100
eX64	C, I, A	C, I, A
eX128	C, I, A	C, I, A
eX256	C, I, A	C, I, A

Note: C = Commercial

l = Industrial

A = Automotive

Speed Grade and Temperature Grade Matrix

	-F	Std	-P
С	\checkmark	\checkmark	\checkmark
1		\checkmark	\checkmark
A		\checkmark	

Note: P = Approximately 30% faster than Standard

–F = Approximately 40% slower than Standard

Refer to the eX Automotive Family FPGAs datasheet for details on automotive temperature offerings.

Contact your local Microsemi representative for device availability.

Table of Contents

eX FPGA Architecture and Characteristics

General Description	1-1
eX Family Architecture	1-1
Other Architectural Features	1-5
Design Considerations	1-13
Related Documents	1-15
2.5 V / 3.3 V /5.0 V Operating Conditions	1-16
2.5 V LVCMOS2 Electrical Specifications	1-17
3.3 V LVTTL Electrical Specifications	1-18
5.0 V TTL Electrical Specifications	1-18
Power Dissipation	1-19
Thermal Characteristics	1-21
Package Thermal Characteristics	1-21
eX Timing Model	1-22
Output Buffer Delays	1-23
AC Test Loads	1-23
Input Buffer Delays	1-24
C-Cell Delays	1-24
Cell Timing Characteristics	1-25
Timing Characteristics	1-26
eX Family Timing Characteristics	1-27
Pin Description	1-31
Package Pin Assignments	
TQ64	2-1
TQ100	

Datasheet Information

List of Changes	3-1
Datasheet Categories	3-4
Export Administration Regulations (EAR)	3-4

Module Organization

C-cell and R-cell logic modules are arranged into horizontal banks called Clusters, each of which contains two C-cells and one R-cell in a C-R-C configuration.

Clusters are further organized into modules called SuperClusters for improved design efficiency and device performance, as shown in Figure 1-3. Each SuperCluster is a two-wide grouping of Clusters.

Figure 1-3 • Cluster Organization

Routing Resources

Clusters and SuperClusters can be connected through the use of two innovative local routing resources called FastConnect and DirectConnect, which enable extremely fast and predictable interconnection of modules within Clusters and SuperClusters (Figure 1-4). This routing architecture also dramatically reduces the number of antifuses required to complete a circuit, ensuring the highest possible performance.

DirectConnect is a horizontal routing resource that provides connections from a C-cell to its neighboring R-cell in a given SuperCluster. DirectConnect uses a hard-wired signal path requiring no programmable interconnection to achieve its fast signal propagation time of less than 0.1 ns (–P speed grade).

FastConnect enables horizontal routing between any two logic modules within a given SuperCluster and vertical routing with the SuperCluster immediately below it. Only one programmable connection is used in a FastConnect path, delivering maximum pin-to-pin propagation of 0.3 ns (–P speed grade).

In addition to DirectConnect and FastConnect, the architecture makes use of two globally oriented routing resources known as segmented routing and high-drive routing. The segmented routing structure of Microsemi provides a variety of track lengths for extremely fast routing between SuperClusters. The exact combination of track lengths and antifuses within each path is chosen by the fully automatic place-and-route software to minimize signal propagation delays.

Figure 1-4 • DirectConnect and FastConnect for SuperClusters

Clock Resources

eX's high-drive routing structure provides three clock networks. The first clock, called HCLK, is hardwired from the HCLK buffer to the clock select MUX in each R-Cell. HCLK cannot be connected to combinational logic. This provides a fast propagation path for the clock signal, enabling the 3.9 ns clock-to-out (pad-to-pad) performance of the eX devices. The hard-wired clock is tuned to provide a clock skew of less than 0.1 ns worst case. If not used, the HCLK pin must be tied LOW or HIGH and must not be left floating. Figure 1-5 describes the clock circuit used for the constant load HCLK.

HCLK does not function until the fourth clock cycle each time the device is powered up to prevent false output levels due to any possible slow power-on-reset signal and fast start-up clock circuit. To activate HCLK from the first cycle, the TRST pin must be reserved in the Design software and the pin must be tied to GND on the board. (See the "TRST, I/O Boundary Scan Reset Pin" on page 1-32).

The remaining two clocks (CLKA, CLKB) are global routed clock networks that can be sourced from external pins or from internal logic signals (via the CLKINT routed clock buffer) within the eX device. CLKA and CLKB may be connected to sequential cells or to combinational logic. If CLKA or CLKB is sourced from internal logic signals, the external clock pin cannot be used for any other input and must be tied LOW or HIGH and must not float. Figure 1-6 describes the CLKA and CLKB circuit used in eX devices.

Figure 1-10 • Total Dynamic Power (mW)

Figure 1-11 • System Power at 5%, 10%, and 15% Duty Cycle

Table 1-5 describes the different configuration requirements of BST pins and their functionality in different modes.

Mode	Designer "Reserve JTAG" Selection	TAP Controller State
Dedicated (JTAG)	Checked	Any
Flexible (User I/O)	Unchecked	Test-Logic-Reset
Flexible (JTAG)	Unchecked	Any EXCEPT Test-Logic-Reset

Table 1-5 • Boundary-Scan Pin Configurations and Functions

TRST Pin

The TRST pin functions as a dedicated Boundary-Scan Reset pin when the **Reserve JTAG Test Reset** option is selected, as shown in Figure 1-12. An internal pull-up resistor is permanently enabled on the TRST pin in this mode. It is recommended to connect this pin to GND in normal operation to keep the JTAG state controller in the Test-Logic-Reset state. When JTAG is being used, it can be left floating or be driven HIGH.

When the **Reserve JTAG Test Reset** option is not selected, this pin will function as a regular I/O. If unused as an I/O in the design, it will be configured as a tristated output.

JTAG Instructions

Table 1-6 lists the supported instructions with the corresponding IR codes for eX devices.

Table 1	-6 •	JTAG	Instruction	Code
	-	• • • • •		

Instructions (IR4: IR0)	Binary Code
EXTEST	00000
SAMPLE / PRELOAD	00001
INTEST	00010
USERCODE	00011
IDCODE	00100
HIGHZ	01110
CLAMP	01111
Diagnostic	10000
BYPASS	11111
Reserved	All others

Table 1-7 lists the codes returned after executing the IDCODE instruction for eX devices. Note that bit 0 is always "1." Bits 11-1 are always "02F", which is Microsemi SoC Products Group's manufacturer code.

Device	Revision	Bits 31-28	Bits 27-12
eX64	0	8	40B2, 42B2
eX128	0	9	40B0, 42B0
eX256	0	9	40B5, 42B5
eX64	1	А	40B2, 42B2
eX128	1	В	40B0, 42B0
eX256	1	В	40B5, 42B5

Table 1-7 • IDCODE for eX Devices

Related Documents

Datasheet

eX Automotive Family FPGAs www.microsemi.com/soc/documents/eX_Auto_DS.pdf

Application Notes

Maximizing Logic Utilization in eX, SX and SX-A FPGA Devices Using CC Macros www.microsemi.com/soc/documents/CC_Macro_AN.pdf Implementation of Security in Microsemi Antifuse FPGAs www.microsemi.com/soc/documents/Antifuse_Security_AN.pdf Microsemi eX, SX-A, and RT54SX-S I/Os www.microsemi.com/soc/documents/antifuseIO_AN.pdf Microsemi SX-A and RT54SX-S Devices in Hot-Swap and Cold-Sparing Applications www.microsemi.com/soc/documents/HotSwapColdSparing_AN.pdf Design For Low Power in Microsemi Antifuse FPGAs www.microsemi.com/soc/documents/Low_Power_AN.pdf Programming Antifuse Devices www.microsemi.com/soc/documents/AntifuseProgram_AN.pdf

User Guides

Silicon Sculptor II User's Guide www.microsemi.com/soc/documents/SiliSculptII_Sculpt3_ug.pdf

Miscellaneous

Libero IDE flow www.microsemi.com/soc/products/tools/libero/flow.html

🌜 Microsemi.

eX FPGA Architecture and Characteristics

2.5 V / 3.3 V /5.0 V Operating Conditions

Symbol	Parameter	Limits	Units
VCCI	DC Supply Voltage for I/Os	-0.3 to +6.0	V
VCCA	DC Supply Voltage for Array	-0.3 to +3.0	V
VI	Input Voltage	-0.5 to +5.75	V
VO	Output Voltage	–0.5 to +V _{CCI}	V
T _{STG}	Storage Temperature	-65 to +150	°C

Table 1-9 • Absolute Maximum Ratings*

Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the Recommended Operating Conditions.

Table 1-10 • Recommended Operating Conditions

Parameter	Commercial	Industrial	Units
Temperature Range*	0 to +70	–40 to +85	°C
2.5V Power Supply Range (VCCA, VCCI)	2.3 to 2.7	2.3 to 2.7	V
3.3V Power Supply Range (VCCI)	3.0 to 3.6	3.0 to 3.6	V
5.0V Power Supply Range (VCCI)	4.75 to 5.25	4.75 to 5.25	V

Note: **Ambient temperature* (T_A) *.*

Table 1-11 • Typical eX Standby Current at 25°C

Product	VCCA= 2.5 V VCCI = 2.5 V	VCCA = 2.5 V VCCI = 3.3 V	VCCA = 2.5 V VCCI = 5.0 V
eX64	397 µA	497 µA	700 µA
eX128	696 µA	795 µA	1,000 µA
eX256	698 µA	796 µA	2,000 µA

Microsemi eX Family FPGAs

2.5 V LVCMOS2 Electrical Specifications

			Co	mmercial	Industrial		
Symbol	Parameter		Min.	Max.	Min.	Max.	Units
VOH	VCCI = MIN, VI = VIH or VIL	(IOH = -100 mA)	2.1		2.1		V
	VCCI = MIN, VI = VIH or VIL	(IOH = -1 mA)	2.0		2.0		V
	VCCI = MIN, VI = VIH or VIL	(IOH = -2 mA)	1.7		1.7		V
VOL	VCCI = MIN, VI = VIH or VIL	(IOL = 100 mA)		0.2		0.2	V
	VCCI = MIN, VI = VIH or VIL	(IOL = 1mA)		0.4		0.4	V
	VCCI = MIN,VI = VIH or VIL	(IOL = 2 mA)		0.7		0.7	V
VIL	Input Low Voltage, VOUT \leq VOL (max.)		-0.3	0.7	-0.3	0.7	V
VIH	Input High Voltage, VOUT \ge VOH (min.)		1.7	VCCI + 0.3	1.7	VCCI + 0.3	V
IIL/ IIH	Input Leakage Current, VIN = VCCI or GND		-10	10	-10	10	μA
IOZ	3-State Output Leakage Current, VOUT = VCCI or GND		-10	10	-10	10	μA
t _R , t _{F1,2}	Input Transition Time			10		10	ns
C _{IO}	I/O Capacitance			10		10	pF
ICC ^{3,4}	Standby Current			1.0		3.0	mA
IV Curve	Can be derived from the IBIS model at w	www.microsemi.com	/soc/cu	istsup/models	/ibis.ht	ml.	

Notes:

1. t_R is the transition time from 0.7 V to 1.7 V.

2. t_F is the transition time from 1.7 V to 0.7 V.

3. I_{CC} max Commercial -F = 5.0 mA

 $4. \quad I_{CC} = I_{CCI} + I_{CCA}$

3.3 V LVTTL Electrical Specifications

		Com	mercial	Ind			
Symbol	Parameter		Min.	Max.	Min.	Max.	Units
VOH	VCCI = MIN, VI = VIH or VIL	(IOH =8 mA)	2.4		2.4	•	V
VOL	VCCI = MIN, VI = VIH or VIL	(IOL = 12 mA)		0.4		0.4	V
VIL	Input Low Voltage			0.8		0.8	V
VIH	Input High Voltage		2.0	VCCI +0.5	2.0	VCCI +0.5	V
IIL/ IIH	Input Leakage Current, VIN = VCCI or GND		-10	10	-10	10	μA
IOZ	3-State Output Leakage Current, VOUT = VCCI or GND		-10	10	-10	10	μA
t _R , t _{F1,2}	Input Transition Time			10		10	ns
C _{IO}	I/O Capacitance			10		10	pF
ICC ^{3,4}	Standby Current			1.5		10	mA
IV Curve	Can be derived from the IBIS model at ww	w.microsemi.com	m/soc/cu	stsup/models	/ibis.html		

Notes:

1. t_R is the transition time from 0.8 V to 2.0 V.

2. t_F is the transition time from 2.0 V to 0.8 V.

3. ICC max Commercial -F = 5.0 mA

4. ICC = *ICCI* + *ICCA*

5. JTAG pins comply with LVTTL/TTL I/O specification regardless of whether they are used as a user I/O or a JTAG I/O.

5.0 V TTL Electrical Specifications

		Com	mercial	Ind			
Symbol	Parameter		Min.	Max.	Min.	Max.	Units
VOH	VCCI = MIN, VI = VIH or VIL	(IOH = –8 mA)	2.4		2.4	•	V
VOL	VCCI = MIN, VI = VIH or VIL	(IOL= 12 mA)		0.4		0.4	V
VIL	Input Low Voltage			0.8		0.8	V
VIH	Input High Voltage		2.0	VCCI +0.5	2.0	VCCI +0.5	V
IIL/ IIH	Input Leakage Current, VIN = VCCI or GND		-10	10	-10	10	μA
IOZ	3-State Output Leakage Current, VOUT = VCCI or GND		-10	10	-10	10	μA
t _R , t _{F1,2}	Input Transition Time			10		10	ns
C _{IO}	I/O Capacitance			10		10	pF
ICC ^{3,4}	Standby Current			15		20	mA
IV Curve	Can be derived from the IBIS model at www	.microsemi.com	/soc/cust	sup/models/	ibis.html	I.	

Note:

1. t_R is the transition time from 0.8 V to 2.0 V.

2. t_F is the transition time from 2.0 V to 0.8 V.

3. ICC max Commercial -F=20mA

4. *ICC* = *ICCI* + *ICCA*

5. JTAG pins comply with LVTTL/TTL I/O specification regardless of whether they are used as a user I/O or a JTAG I/O.

Power Dissipation

Power consumption for eX devices can be divided into two components: static and dynamic.

Static Power Component

The power due to standby current is typically a small component of the overall power. Typical standby current for eX devices is listed in the Table 1-11 on page 1-16. For example, the typical static power for eX128 at 3.3 V V_{CCl} is:

ICC * VCCA = 795 µA x 2.5 V = 1.99 mW

Dynamic Power Component

Power dissipation in CMOS devices is usually dominated by the dynamic power dissipation. This component is frequency-dependent and a function of the logic and the external I/O. Dynamic power dissipation results from charging internal chip capacitance due to PC board traces and load device inputs. An additional component of the dynamic power dissipation is the totem pole current in the CMOS transistor pairs. The net effect can be associated with an equivalent capacitance that can be combined with frequency and voltage to represent dynamic power dissipation.

Dynamic power dissipation = CEQ * VCCA² x F

where:

CEQ = Equivalent capacitance

F = switching frequency

Equivalent capacitance is calculated by measuring ICCA at a specified frequency and voltage for each circuit component of interest. Measurements have been made over a range of frequencies at a fixed value of VCC. Equivalent capacitance is frequency-independent, so the results can be used over a wide range of operating conditions. Equivalent capacitance values are shown below.

CEQ Values for eX Devices

Combinatorial modules (Ceqcm)	1.70 pF
Sequential modules (Ceqsm)	1.70 pF
Input buffers (Ceqi)	1.30 pF
Output buffers (Ceqo)	7.40 pF
Routed array clocks (Ceqcr)	1.05 pF

The variable and fixed capacitance of other device components must also be taken into account when estimating the dynamic power dissipation.

Table 1-12 shows the capacitance of the clock components of eX devices.

Table 1-12 • Capacitance of Clock Components of eX Devices

	eX64	eX128	eX256
Dedicated array clock – variable (Ceqhv)	0.85 pF	0.85 pF	0.85 pF
Dedicated array clock – fixed (Ceqhf)	18.00 pF	20.00 pF	25.00 pF
Routed array clock A (r1)	23.00 pF	28.00 pF	35.00 pF
Routed array clock B (r2)	23.00 pF	28.00 pF	35.00 pF

🌜 Microsemi.

eX FPGA Architecture and Characteristics

The estimation of the dynamic power dissipation is a piece-wise linear summation of the power dissipation of each component.

Dynamic power dissipation = VCCA² * [(m_c * C_{eqcm} * fm_C)_{Comb Modules} + (m_s * C_{eqsm} * fm_S)_{Seq Modules}

- + (n * C_{eqi} * fn)_{Input Buffers} + (0.5 * (q1 * C_{eacr} * fq1) + (r1 * fq1))_{RCLKA} + (0.5 * (q2 * C_{eacr} * fq2)
- + $(r2 * fq2))_{RCLKB}$ + $(0.5 * (s1 * C_{eqhv} * fs1)+(C_{eqhf} * fs1))_{HCLK}]$ + $V_{CCl}^2 * [(p * (C_{eqo} + C_L))]_{RCLKB}$

* fp)_{Output Buffers}]

where:

m	=	Number	٥f	combinatorial	cells	switching	at free	nuencv	fm	typically	120%	of	C-cells
III _C	-	NULLING	UI.	combinatonai	CEIIS	Switching	atilet	Juency	· IIII,	typically	20/0	01	C-CEII3

- m_s = Number of sequential cells switching at frequency fm, typically 20% of R-cells
- n = Number of input buffers switching at frequency fn, typically number of inputs / 4
- p = Number of output buffers switching at frequency fp, typically number of outputs / 4
- q1 = Number of R-cells driven by routed array clock A
- q2 = Number of R-cells driven by routed array clock B
- r1 = Fixed capacitance due to routed array clock A
- r2 = Fixed capacitance due to routed array clock B
- s1 = Number of R-cells driven by dedicated array clock
- C_{eacm} = Equivalent capacitance of combinatorial modules
- C_{eqsm} = Equivalent capacitance of sequential modules
- C_{eqi} = Equivalent capacitance of input buffers
- C_{egcr} = Equivalent capacitance of routed array clocks
- C_{eghv} = Variable capacitance of dedicated array clock
- C_{eghf} = Fixed capacitance of dedicated array clock
- C_{eqo} = Equivalent capacitance of output buffers
- C_L = Average output loading capacitance, typically 10 pF
- fm_c = Average C-cell switching frequency, typically F/10
- fm_s = Average R-cell switching frequency, typically F/10
- fn = Average input buffer switching frequency, typically F/5
- fp = Average output buffer switching frequency, typically F/5
- fq1 = Frequency of routed clock A
- fq2 = Frequency of routed clock B
- fs1 = Frequency of dedicated array clock

The eX, SX-A and RTSX-S Power Calculator can be used to estimate the total power dissipation (static and dynamic) of eX devices: www.microsemi.com/soc/techdocs/calculators.aspx.

Thermal Characteristics

The temperature variable in the Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because the heat generated from dynamic power consumption is usually hotter than the ambient temperature. EQ 1, shown below, can be used to calculate junction temperature.

Junction Temperature = $\Delta T + T_a(1)$

Where:

 T_a = Ambient Temperature

 ΔT = Temperature gradient between junction (silicon) and ambient = θ_{ja} * P

P = Power

 θ_{ja} = Junction to ambient of package. θ_{ja} numbers are located in the "Package Thermal Characteristics" section below.

Package Thermal Characteristics

The device junction-to-case thermal characteristic is θ_{jc} , and the junction-to-ambient air characteristic is θ_{ja} . The thermal characteristics for θ_{ja} are shown with two different air flow rates. $\theta_{jc \ is \ provided \ for \ reference}$. The maximum junction temperature is 150°C.

The maximum power dissipation allowed for eX devices is a function of θ_{ja} . A sample calculation of the absolute maximum power dissipation allowed for a TQFP 100-pin package at commercial temperature and still air is as follows:

Maximum Power Allowed = $\frac{\text{Max. junction temp. } (^{\circ}\text{C}) - \text{Max. ambient temp. } (^{\circ}\text{C})}{\theta_{ja}(^{\circ}\text{C/W})} = \frac{150^{\circ}\text{C} - 70^{\circ}\text{C}}{33.5^{\circ}\text{C/W}} = 2.39\text{W}$

Package Type	Pin Count	θ _{jc}	Still Air	1.0 m/s 200 ft/min	2.5 m/s 500 ft/min	Units
Thin Quad Flat Pack (TQFP)	64	12.0	42.4	36.3	34.0	°C/W
Thin Quad Flat Pack (TQFP)	100	14.0	33.5	27.4	25.0	°C/W

EQ 1

🌜 Microsemi.

eX FPGA Architecture and Characteristics

Input Buffer Delays

C-Cell Delays

Table 1-15 • C-Cell Delays

eX FPGA Architecture and Characteristics

Timing Characteristics

Timing characteristics for eX devices fall into three categories: family-dependent, device-dependent, and design-dependent. The input and output buffer characteristics are common to all eX family members. Internal routing delays are device-dependent. Design dependency means actual delays are not determined until after placement and routing of the user's design are complete. Delay values may then be determined by using the Timer utility or performing simulation with post-layout delays.

Critical Nets and Typical Nets

Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most timing critical paths. Critical nets are determined by net property assignment prior to placement and routing. Up to six percent of the nets in a design may be designated as critical.

Long Tracks

Some nets in the design use long tracks. Long tracks are special routing resources that span multiple rows, columns, or modules. Long tracks employ three to five antifuse connections. This increases capacitance and resistance, resulting in longer net delays for macros connected to long tracks. Typically, no more than six percent of nets in a fully utilized device require long tracks. Long tracks contribute approximately 4 ns to 8.4 ns delay. This additional delay is represented statistically in higher fanout routing delays.

Timing Derating

eX devices are manufactured with a CMOS process. Therefore, device performance varies according to temperature, voltage, and process changes. Minimum timing parameters reflect maximum operating voltage, minimum operating temperature, and best-case processing. Maximum timing parameters reflect minimum operating voltage, maximum operating temperature, and worst-case processing.

Temperature and Voltage Derating Factors

Table 1-16 • Temperature and Voltage Derating Factors

(Normalized to Worst-Case Commercial, T_J = 70°C, VCCA = 2.3V)

	Junction Temperature (T _J)							
VCCA	-55	-40	0	25	70	85	125	
2.3	0.79	0.80	0.87	0.88	1.00	1.04	1.13	
2.5	0.74	0.74	0.81	0.83	0.93	0.97	1.06	
2.7	0.69	0.70	0.76	0.78	0.88	0.91	1.00	

Pin Description

CLKA/B Routed Clock A and B

These pins are clock inputs for clock distribution networks. Input levels are compatible with standard TTL or LVTTL specifications. The clock input is buffered prior to clocking the R-cells. If not used, this pin must be set LOW or HIGH on the board. It must not be left floating.

GND Ground

LOW supply voltage.

HCLK Dedicated (Hardwired) Array Clock

This pin is the clock input for sequential modules. Input levels are compatible with standard TTL or LVTTL specifications. This input is directly wired to each R-cell and offers clock speeds independent of the number of R-cells being driven. If not used, this pin must be set LOW or HIGH on the board. It must not be left floating.

I/O Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Based on certain configurations, input and output levels are compatible with standard TTL or LVTTL specifications. Unused I/O pins are automatically tristated by the Designer software.

LP Low Power Pin

Controls the low power mode of the eX devices. The device is placed in the low power mode by connecting the LP pin to logic HIGH. In low power mode, all I/Os are tristated, all input buffers are turned OFF, and the core of the device is turned OFF. To exit the low power mode, the LP pin must be set LOW. The device enters the low power mode 800 ns after the LP pin is driven to a logic HIGH. It will resume normal operation 200 μ s after the LP pin is driven to a logic LOW. LP pin should not be left floating. Under normal operating condition it should be tied to GND via 10 k Ω resistor.

NC No Connection

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.

PRA/PRB, I/O Probe A/B

The Probe pin is used to output data from any user-defined design node within the device. This diagnostic pin can be used independently or in conjunction with the other probe pin to allow real-time diagnostic output of any signal path within the device. The Probe pin can be used as a user-defined I/O when verification has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality.

TCK, I/O Test Clock

Test clock input for diagnostic probe and device programming. In flexible mode, TCK becomes active when the TMS pin is set LOW (refer to Table 1-4 on page 1-10). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state.

TDI, I/O Test Data Input

Serial input for boundary scan testing and diagnostic probe. In flexible mode, TDI is active when the TMS pin is set LOW (refer to Table 1-4 on page 1-10). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state.

TDO, I/O Test Data Output

Serial output for boundary scan testing. In flexible mode, TDO is active when the TMS pin is set LOW (refer to Table 1-4 on page 1-10). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state. When Silicon Explorer is being used, TDO will act as an output when the "checksum" command is run. It will return to user I/O when "checksum" is complete.

3 – Datasheet Information

List of Changes

The following table lists critical changes that were made in the current version of the document.

Revision	Changes	Page
Revision 10 (October 2012)	The "User Security" section was revised to clarify that although no existing security measures can give an absolute guarantee, Microsemi FPGAs implement industry standard security (SAR 34677).	1-5
	Package names used in the "Product Profile" section and "Package Pin Assignments" section were revised to match standards given in <i>Package Mechanical Drawings</i> (SAR 34779).	І 2-1
Revision 9 (June 2011)	The versioning system for datasheets has been changed. Datasheets are assigned a revision number that increments each time the datasheet is revised. The "eX Device Status" table indicates the status for each device in the device family.	II
	The Chip Scale packages (CS49, CS128, CS181) are no longer offered for eX devices. They have been removed from the product family information. Pin tables for CSP packages have been removed from the datasheet (SAR 32002).	N/A
Revision 8 (v4.3, June 2006)	The "Ordering Information" was updated with RoHS information. The TQFP measurement was also updated.	Ш
	The "Dedicated Test Mode" was updated.	1-10
	Note 5 was added to the "3.3 V LVTTL Electrical Specifications" and "5.0 V TTL Electrical Specifications" tables	1-18
	The "LP Low Power Pin" description was updated.	1-31
Revision 7 (v4.2, June 2004)	The "eX Timing Model" was updated.	1-22
v4.1	The "Development Tool Support" section was updated.	1-13
	The "Package Thermal Characteristics" section was updated.	1-21
v4.0	The "Product Profile" section was updated.	1-I
	The "Ordering Information" section was updated.	1-II
	The "Temperature Grade Offerings" section is new.	1-111
	The "Speed Grade and Temperature Grade Matrix" section is new.	1-111
	The "eX FPGA Architecture and Characteristics" section was updated.	1-1
	The "Clock Resources" section was updated.	1-3
	Table 1-1 •Connections of Routed Clock Networks, CLKA and CLKB is new.	1-4
	The "User Security" section was updated.	1-5
	The "I/O Modules" section was updated.	1-5
	The "Hot-Swapping" section was updated.	1-6
	The "Power Requirements" section was updated.	1-6
	The "Low Power Mode" section was updated.	1-6
	The "Boundary Scan Testing (BST)" section was updated.	1-10
	The "Dedicated Test Mode" section was updated.	1-10