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Ordering Information 

eX Device Status

Plastic Device Resources

eX Devices Status

eX64 Production

eX128 Production

eX256 Production

Device 

User I/Os (Including Clock Buffers)

TQ64 TQ100

eX64 41 56

eX128 46 70

eX256 — 81

Note: TQ = Thin Quad Flat Pack 

eX128 TQ

Part Number

Package Type

TQ = Thin Quad Flat Pack (0.5 mm pitch) 

G 100

Package Lead Count

Application (Ambient Temperature Range)

I = Industrial (-40°C to 85°C) 
A = Automotive (-40°C to 125°C) 

PP = Pre-production 

Blank = Commercial (0°C to 70°C) 

Speed Grade

64 Dedicated Flip-Flops (3,000 System Gates)eX64 =
eX128 128 Dedicated Flip-Flops (6,000 System Gates)=
eX256 256 Dedicated Flip-Flops (12,000 System Gates)=

Standard SpeedBlank =
P Approximately 30% Faster than Standard=
F Approximately 40% Slower than Standard=

P

Lead-Free Packaging
 Blank = Standard Packaging
 G = RoHS Compliant Packaging
I I Revision 10



eX Family FPGAs
Temperature Grade Offerings

Speed Grade and Temperature Grade Matrix 

Contact your local Microsemi representative for device availability.

Device\ Package TQ64 TQ100

eX64 C, I, A C, I, A

eX128 C, I, A C, I, A

eX256 C, I, A C, I, A

Note: C = Commercial

I = Industrial

A = Automotive

–F Std –P

C ✓ ✓ ✓

I ✓ ✓

A ✓

Note: P = Approximately 30% faster than Standard

–F = Approximately 40% slower than Standard

Refer to the eX Automotive Family FPGAs datasheet for details on automotive temperature offerings.
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eX FPGA Architecture and Characteristics
Module Organization
C-cell and R-cell logic modules are arranged into horizontal banks called Clusters, each of which
contains two C-cells and one R-cell in a C-R-C configuration.

Clusters are further organized into modules called SuperClusters for improved design efficiency and
device performance, as shown in Figure 1-3. Each SuperCluster is a two-wide grouping of Clusters.  

Figure 1-2 • C-Cell

Figure 1-3 • Cluster Organization
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eX Family FPGAs
Routing Resources
Clusters and SuperClusters can be connected through the use of two innovative local routing resources
called FastConnect and DirectConnect, which enable extremely fast and predictable interconnection of
modules within Clusters and SuperClusters (Figure 1-4). This routing architecture also dramatically
reduces the number of antifuses required to complete a circuit, ensuring the highest possible
performance. 

DirectConnect is a horizontal routing resource that provides connections from a C-cell to its neighboring
R-cell in a given SuperCluster. DirectConnect uses a hard-wired signal path requiring no programmable
interconnection to achieve its fast signal propagation time of less than 0.1 ns (–P speed grade).

FastConnect enables horizontal routing between any two logic modules within a given SuperCluster and
vertical routing with the SuperCluster immediately below it. Only one programmable connection is used
in a FastConnect path, delivering maximum pin-to-pin propagation of 0.3 ns (–P speed grade). 

In addition to DirectConnect and FastConnect, the architecture makes use of two globally oriented
routing resources known as segmented routing and high-drive routing. The segmented routing structure
of Microsemi provides a variety of track lengths for extremely fast routing between SuperClusters. The
exact combination of track lengths and antifuses within each path is chosen by the fully automatic place-
and-route software to minimize signal propagation delays.  

Clock Resources
eX’s high-drive routing structure provides three clock networks. The first clock, called HCLK, is hardwired
from the HCLK buffer to the clock select MUX in each R-Cell. HCLK cannot be connected to
combinational logic. This provides a fast propagation path for the clock signal, enabling the 3.9 ns clock-
to-out (pad-to-pad) performance of the eX devices. The hard-wired clock is tuned to provide a clock skew
of less than 0.1 ns worst case. If not used, the HCLK pin must be tied LOW or HIGH and must not be left
floating. Figure 1-5 describes the clock circuit used for the constant load HCLK. 

HCLK does not function until the fourth clock cycle each time the device is powered up to prevent false
output levels due to any possible slow power-on-reset signal and fast start-up clock circuit. To activate
HCLK from the first cycle, the TRST pin must be reserved in the Design software and the pin must be tied
to GND on the board. (See the "TRST, I/O Boundary Scan Reset Pin" on page 1-32). 

The remaining two clocks (CLKA, CLKB) are global routed clock networks that can be sourced from
external pins or from internal logic signals (via the CLKINT routed clock buffer) within the eX device.
CLKA and CLKB may be connected to sequential cells or to combinational logic. If CLKA or CLKB is
sourced from internal logic signals, the external clock pin cannot be used for any other input and must be
tied LOW or HIGH and must not float. Figure 1-6 describes the CLKA and CLKB circuit used in eX
devices. 

Figure 1-4 • DirectConnect and FastConnect for SuperClusters

SuperClusters
DirectConnect
• No antifuses
• 0.1 ns routing delay 

FastConnect
• One antifuse
• 0.5 ns routing delay 

Routing Segments
• Typically 2 antifuses
• Max. 5 antifuses
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eX Family FPGAs
Figure 1-10 • Total Dynamic Power (mW)

Figure 1-11 • System Power at 5%, 10%, and 15% Duty Cycle
Revision 10 1-9



eX Family FPGAs
Table 1-5 describes the different configuration requirements of BST pins and their functionality in different
modes.

TRST Pin
The TRST pin functions as a dedicated Boundary-Scan Reset pin when the Reserve JTAG Test Reset
option is selected, as shown in Figure 1-12. An internal pull-up resistor is permanently enabled on the
TRST pin in this mode. It is recommended to connect this pin to GND in normal operation to keep the
JTAG state controller in the Test-Logic-Reset state. When JTAG is being used, it can be left floating or be
driven HIGH. 

When the Reserve JTAG Test Reset option is not selected, this pin will function as a regular I/O. If
unused as an I/O in the design, it will be configured as a tristated output.

JTAG Instructions
Table 1-6 lists the supported instructions with the corresponding IR codes for eX devices. 

Table 1-7 lists the codes returned after executing the IDCODE instruction for eX devices. Note that bit 0
is always “1.” Bits 11-1 are always “02F”, which is Microsemi SoC Products Group's manufacturer code. 

Table 1-5 • Boundary-Scan Pin Configurations and Functions

Mode Designer "Reserve JTAG" Selection TAP Controller State

Dedicated (JTAG) Checked Any

Flexible (User I/O) Unchecked Test-Logic-Reset

Flexible (JTAG) Unchecked Any EXCEPT Test-Logic-Reset

Table 1-6 • JTAG Instruction Code

Instructions (IR4: IR0) Binary Code

EXTEST 00000

SAMPLE / PRELOAD 00001

INTEST 00010

USERCODE 00011

IDCODE 00100

HIGHZ 01110

CLAMP 01111

Diagnostic 10000

BYPASS 11111

Reserved All others

Table 1-7 • IDCODE for eX Devices

Device Revision Bits 31-28 Bits 27-12

eX64 0 8 40B2, 42B2

eX128 0 9 40B0, 42B0

eX256 0 9 40B5, 42B5

eX64 1 A 40B2, 42B2

eX128 1 B 40B0, 42B0

eX256 1 B 40B5, 42B5
Revision 10 1-11
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eX FPGA Architecture and Characteristics
2.5 V / 3.3 V /5.0 V Operating Conditions
Table 1-9 • Absolute Maximum Ratings*

Symbol Parameter Limits Units

VCCI DC Supply Voltage for I/Os –0.3 to +6.0 V

VCCA DC Supply Voltage for Array –0.3 to +3.0 V

VI Input Voltage –0.5 to +5.75 V

VO Output Voltage –0.5 to +VCCI V

TSTG Storage Temperature –65 to +150 °C

Note: *Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.
Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices
should not be operated outside the Recommended Operating Conditions.

Table 1-10 • Recommended Operating Conditions

Parameter Commercial Industrial Units

Temperature Range* 0 to +70 –40 to +85 C

2.5V Power Supply Range (VCCA, VCCI) 2.3 to 2.7 2.3 to 2.7 V

3.3V Power Supply Range (VCCI) 3.0 to 3.6 3.0 to 3.6 V

5.0V Power Supply Range (VCCI) 4.75 to 5.25 4.75 to 5.25 V

Note: *Ambient temperature (TA).

Table 1-11 • Typical eX Standby Current at 25°C

Product
VCCA= 2.5 V
VCCI = 2.5 V

VCCA = 2.5 V
VCCI = 3.3 V

VCCA = 2.5 V
VCCI = 5.0 V

eX64 397 µA 497 µA 700 µA

eX128 696 µA 795 µA 1,000 µA

eX256 698 µA 796 µA 2,000 µA
1-16 Revision 10



eX Family FPGAs
2.5 V LVCMOS2 Electrical Specifications

 Symbol

Commercial Industrial

UnitsParameter Min. Max. Min. Max.

VOH VCCI = MIN, VI = VIH or VIL (IOH = –100 mA) 2.1 2.1 V

VCCI = MIN, VI = VIH or VIL (IOH = –1 mA) 2.0 2.0 V

VCCI = MIN, VI = VIH or VIL (IOH = –2 mA) 1.7 1.7 V

VOL VCCI = MIN, VI = VIH or VIL (IOL = 100 mA) 0.2 0.2 V

VCCI = MIN, VI = VIH or VIL (IOL = 1mA) 0.4 0.4 V

VCCI = MIN,VI = VIH or VIL (IOL = 2 mA) 0.7 0.7 V

VIL Input Low Voltage, VOUT  VOL (max.) –0.3 0.7 -0.3 0.7 V

VIH Input High Voltage, VOUT VOH (min.) 1.7 VCCI + 0.3 1.7 VCCI + 0.3 V

IIL/ IIH Input Leakage Current, VIN = VCCI or
GND

–10 10 –10 10 µA

IOZ 3-State Output Leakage Current,
VOUT = VCCI or GND 

–10 10 –10 10 µA

tR, tF1,2 Input Transition Time 10 10 ns

CIO I/O Capacitance 10 10 pF

ICC3,4 Standby Current 1.0 3.0 mA

IV Curve Can be derived from the IBIS model at www.microsemi.com/soc/custsup/models/ibis.html.

Notes:

1. tR is the transition time from 0.7 V to 1.7 V.
2. tF is the transition time from 1.7 V to 0.7 V.

3. ICC max Commercial –F = 5.0 mA

4. ICC = ICCI + ICCA
Revision 10 1-17
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eX FPGA Architecture and Characteristics
3.3 V LVTTL Electrical Specifications 

5.0 V TTL Electrical Specifications      

 Symbol Parameter

Commercial Industrial

Min. Max. Min. Max. Units

VOH VCCI = MIN, VI = VIH or VIL (IOH = –8 mA) 2.4 2.4 V

VOL VCCI = MIN, VI = VIH or VIL (IOL = 12 mA) 0.4 0.4 V

VIL Input Low Voltage 0.8 0.8 V

VIH Input High Voltage 2.0 VCCI +0.5 2.0 VCCI +0.5 V

IIL/ IIH Input Leakage Current, VIN = VCCI or
GND

–10 10 –10 10 µA

IOZ 3-State Output Leakage Current,
VOUT = VCCI or GND 

–10 10 –10 10 µA

tR, tF1,2 Input Transition Time 10 10 ns

CIO I/O Capacitance 10 10 pF

ICC3,4 Standby Current 1.5 10 mA

IV Curve Can be derived from the IBIS model at www.microsemi.com/soc/custsup/models/ibis.html.

Notes:

1. tR is the transition time from 0.8 V to 2.0 V.
2. tF is the transition time from 2.0 V to 0.8 V.

3. ICC max Commercial –F = 5.0 mA

4. ICC = ICCI + ICCA

5. JTAG pins comply with LVTTL/TTL I/O specification regardless of whether they are used as a user I/O or a JTAG I/O.

 Symbol Parameter

Commercial Industrial

Min. Max. Min. Max. Units

VOH VCCI = MIN, VI = VIH or VIL (IOH = –8 mA) 2.4 2.4 V

VOL VCCI = MIN, VI = VIH or VIL (IOL= 12 mA) 0.4 0.4 V

VIL Input Low Voltage 0.8 0.8 V

VIH Input High Voltage 2.0 VCCI +0.5 2.0 VCCI +0.5 V

IIL/ IIH Input Leakage Current, VIN = VCCI or GND –10 10 –10 10 µA

IOZ 3-State Output Leakage Current,
VOUT = VCCI or GND 

–10 10 –10 10 µA

tR, tF1,2 Input Transition Time 10 10 ns

CIO I/O Capacitance 10 10 pF

ICC3,4 Standby Current 15 20 mA

IV Curve Can be derived from the IBIS model at www.microsemi.com/soc/custsup/models/ibis.html.

Note:

1. tR is the transition time from 0.8 V to 2.0 V.
2. tF is the transition time from 2.0 V to 0.8 V.

3. ICC max Commercial –F=20mA

4. ICC = ICCI + ICCA

5. JTAG pins comply with LVTTL/TTL I/O specification regardless of whether they are used as a user I/O or a JTAG I/O.
1-18 Revision 10
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eX Family FPGAs
Power Dissipation
Power consumption for eX devices can be divided into two components: static and dynamic.

Static Power Component
The power due to standby current is typically a small component of the overall power. Typical standby
current for eX devices is listed in the Table 1-11 on page 1-16. For example, the typical static power for
eX128 at 3.3 V VCCI is: 

ICC * VCCA = 795 µA x 2.5 V = 1.99 mW

Dynamic Power Component
Power dissipation in CMOS devices is usually dominated by the dynamic power dissipation. This
component is frequency-dependent and a function of the logic and the external I/O. Dynamic power
dissipation results from charging internal chip capacitance due to PC board traces and load device
inputs. An additional component of the dynamic power dissipation is the totem pole current in the CMOS
transistor pairs. The net effect can be associated with an equivalent capacitance that can be combined
with frequency and voltage to represent dynamic power dissipation.

Dynamic power dissipation = CEQ * VCCA2 x F

where: 

Equivalent capacitance is calculated by measuring ICCA at a specified frequency and voltage for each
circuit component of interest. Measurements have been made over a range of frequencies at a fixed
value of VCC. Equivalent capacitance is frequency-independent, so the results can be used over a wide
range of operating conditions. Equivalent capacitance values are shown below.

CEQ Values for eX Devices

The variable and fixed capacitance of other device components must also be taken into account when
estimating the dynamic power dissipation.

Table 1-12 shows the capacitance of the clock components of eX devices.

CEQ = Equivalent capacitance 

F = switching frequency

Combinatorial modules (Ceqcm) 1.70 pF

Sequential modules (Ceqsm) 1.70 pF

Input buffers (Ceqi) 1.30 pF

Output buffers (Ceqo) 7.40 pF 

Routed array clocks (Ceqcr) 1.05 pF

Table 1-12 • Capacitance of Clock Components of eX Devices

eX64 eX128 eX256

Dedicated array clock – variable (Ceqhv) 0.85 pF 0.85 pF 0.85 pF

Dedicated array clock – fixed (Ceqhf) 18.00 pF 20.00 pF 25.00 pF

Routed array clock A (r1) 23.00 pF 28.00 pF 35.00 pF

Routed array clock B (r2) 23.00 pF 28.00 pF 35.00 pF
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The estimation of the dynamic power dissipation is a piece-wise linear summation of the power
dissipation of each component.

Dynamic power dissipation = VCCA2 * [(mc * Ceqcm * fmC)Comb Modules + (ms * Ceqsm * fmS)Seq Modules 

+ (n * Ceqi * fn)Input Buffers + (0.5 * (q1 * Ceqcr * fq1) + (r1 * fq1))RCLKA + (0.5 * (q2 * Ceqcr * fq2) 

+ (r2 * fq2))RCLKB + (0.5 * (s1 * Ceqhv * fs1)+(Ceqhf * fs1))HCLK] + VCCI
2 * [(p * (Ceqo + CL) 

* fp)Output Buffers]

where:

The eX, SX-A and RTSX-S Power Calculator can be used to estimate the total power dissipation (static
and dynamic) of eX devices: www.microsemi.com/soc/techdocs/calculators.aspx.

mc = Number of combinatorial cells switching at frequency fm, typically 20% of C-cells

ms = Number of sequential cells switching at frequency fm, typically 20% of R-cells

n = Number of input buffers switching at frequency fn, typically number of inputs / 4

p = Number of output buffers switching at frequency fp, typically number of outputs / 4

q1  = Number of R-cells driven by routed array clock A

q2  =  Number of R-cells driven by routed array clock B

r1  =  Fixed capacitance due to routed array clock A

r2  =  Fixed capacitance due to routed array clock B

s1  =  Number of R-cells driven by dedicated array clock

Ceqcm  =  Equivalent capacitance of combinatorial modules

Ceqsm  =  Equivalent capacitance of sequential modules

Ceqi  =  Equivalent capacitance of input buffers

Ceqcr  =  Equivalent capacitance of routed array clocks

Ceqhv  =  Variable capacitance of dedicated array clock

Ceqhf  =  Fixed capacitance of dedicated array clock

Ceqo  =  Equivalent capacitance of output buffers

CL  =  Average output loading capacitance, typically 10 pF

fmc  =  Average C-cell switching frequency, typically F/10

fms = Average R-cell switching frequency, typically F/10

fn  =  Average input buffer switching frequency, typically F/5

fp  = Average output buffer switching frequency, typically F/5

fq1  =  Frequency of routed clock A

fq2  = Frequency of routed clock B

fs1  =  Frequency of dedicated array clock
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Thermal Characteristics
The temperature variable in the Designer software refers to the junction temperature, not the ambient
temperature. This is an important distinction because the heat generated from dynamic power
consumption is usually hotter than the ambient temperature. EQ 1, shown below, can be used to
calculate junction temperature.

EQ 1

Junction Temperature = T + Ta(1)

Where:

Ta = Ambient Temperature

T = Temperature gradient between junction (silicon) and ambient = ja * P

P = Power 

ja = Junction to ambient of package. ja numbers are located in the "Package Thermal Characteristics"
section below.

Package Thermal Characteristics
The device junction-to-case thermal characteristic is jc, and the junction-to-ambient air characteristic is
ja. The thermal characteristics for ja are shown with two different air flow rates. jc is provided for reference.

The maximum junction temperature is 150C. 

The maximum power dissipation allowed for eX devices is a function of ja. A sample calculation of the
absolute maximum power dissipation allowed for a TQFP 100-pin package at commercial temperature
and still air is as follows:

Package Type Pin Count jc

ja

UnitsStill Air
1.0 m/s

200 ft/min
2.5 m/s

500 ft/min

Thin Quad Flat Pack (TQFP) 64 12.0 42.4 36.3 34.0 C/W

Thin Quad Flat Pack (TQFP) 100 14.0 33.5 27.4 25.0 C/W

Maximum Power Allowed
Max. junction temp.  (C) Max. ambient temp. (C)–

ja(C/W)
------------------------------------------------------------------------------------------------------------------------------------------ 150C 70C–

33.5C/W
------------------------------------- 2.39W===
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Input Buffer Delays

C-Cell Delays

Table 1-14 • Input Buffer Delays

Table 1-15 • C-Cell Delays

PAD
Y

INBUF

In

3  V

0 V1.5 V

Out
GND

50%

1.5 V

50%

t
INY

t
INY

VCC

S

A

B

Y

S, A or B

Out
GND

50%

Out

GND

GND

50%

50% 50%

50% 50%

tPD tPD

tPDtPD

VCC

VCC

VCC
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Timing Characteristics
Timing characteristics for eX devices fall into three categories: family-dependent, device-dependent, and
design-dependent. The input and output buffer characteristics are common to all eX family members.
Internal routing delays are device-dependent. Design dependency means actual delays are not
determined until after placement and routing of the user’s design are complete. Delay values may then
be determined by using the Timer utility or performing simulation with post-layout delays.

Critical Nets and Typical Nets
Propagation delays are expressed only for typical nets, which are used for initial design performance
evaluation. Critical net delays can then be applied to the most timing critical paths. Critical nets are
determined by net property assignment prior to placement and routing. Up to six percent of the nets in a
design may be designated as critical.

Long Tracks
Some nets in the design use long tracks. Long tracks are special routing resources that span multiple
rows, columns, or modules. Long tracks employ three to five antifuse connections. This increases
capacitance and resistance, resulting in longer net delays for macros connected to long tracks. Typically,
no more than six percent of nets in a fully utilized device require long tracks. Long tracks contribute
approximately 4 ns to 8.4 ns delay. This additional delay is represented statistically in higher fanout
routing delays.

Timing Derating
eX devices are manufactured with a CMOS process. Therefore, device performance varies according to
temperature, voltage, and process changes. Minimum timing parameters reflect maximum operating
voltage, minimum operating temperature, and best-case processing. Maximum timing parameters reflect
minimum operating voltage, maximum operating temperature, and worst-case processing.

Temperature and Voltage Derating Factors 

Table 1-16 • Temperature and Voltage Derating Factors
(Normalized to Worst-Case Commercial, TJ = 70C, VCCA = 2.3V)

VCCA

Junction Temperature (TJ)

–55 –40 0 25 70 85 125

2.3 0.79 0.80 0.87 0.88 1.00 1.04 1.13

2.5 0.74 0.74 0.81 0.83 0.93 0.97 1.06

2.7 0.69 0.70 0.76 0.78 0.88 0.91 1.00
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Pin Description
CLKA/B Routed Clock A and B

These pins are clock inputs for clock distribution networks. Input levels are compatible with standard TTL
or LVTTL specifications. The clock input is buffered prior to clocking the R-cells. If not used, this pin must
be set LOW or HIGH on the board. It must not be left floating.

GND Ground 

LOW supply voltage.

HCLK Dedicated (Hardwired) 
Array Clock

This pin is the clock input for sequential modules. Input levels are compatible with standard TTL or
LVTTL specifications. This input is directly wired to each R-cell and offers clock speeds independent of
the number of R-cells being driven. If not used, this pin must be set LOW or HIGH on the board. It must
not be left floating.

I/O Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Based on certain configurations,
input and output levels are compatible with standard TTL or LVTTL specifications. Unused I/O pins are
automatically tristated by the Designer software.

LP Low Power Pin

Controls the low power mode of the eX devices. The device is placed in the low power mode by
connecting the LP pin to logic HIGH. In low power mode, all I/Os are tristated, all input buffers are turned
OFF, and the core of the device is turned OFF. To exit the low power mode, the LP pin must be set LOW.
The device enters the low power mode 800 ns after the LP pin is driven to a logic HIGH. It will resume
normal operation 200 s after the LP pin is driven to a logic LOW. LP pin should not be left floating.
Under normal operating condition it should be tied to GND via 10 k resistor.

NC No Connection

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be
left floating with no effect on the operation of the device.

PRA/PRB, I/O Probe A/B

The Probe pin is used to output data from any user-defined design node within the device. This
diagnostic pin can be used independently or in conjunction with the other probe pin to allow real-time
diagnostic output of any signal path within the device. The Probe pin can be used as a user-defined I/O
when verification has been completed. The pin’s probe capabilities can be permanently disabled to
protect programmed design confidentiality. 

TCK, I/O Test Clock

Test clock input for diagnostic probe and device programming. In flexible mode, TCK becomes active
when the TMS pin is set LOW (refer to Table 1-4 on page 1-10). This pin functions as an I/O when the
boundary scan state machine reaches the “logic reset” state.

TDI, I/O Test Data Input 

Serial input for boundary scan testing and diagnostic probe. In flexible mode, TDI is active when the TMS
pin is set LOW (refer to Table 1-4 on page 1-10). This pin functions as an I/O when the boundary scan
state machine reaches the “logic reset” state. 

TDO, I/O Test Data Output

Serial output for boundary scan testing. In flexible mode, TDO is active when the TMS pin is set LOW
(refer to Table 1-4 on page 1-10). This pin functions as an I/O when the boundary scan state machine
reaches the "logic reset" state. When Silicon Explorer is being used, TDO will act as an output when the
"checksum" command is run. It will return to user I/O when "checksum" is complete. 
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3 – Datasheet Information

List of Changes
The following table lists critical changes that were made in the current version of the document.

Revision Changes Page

Revision 10
(October 2012)

The "User Security" section was revised to clarify that although no existing security
measures can give an absolute guarantee, Microsemi FPGAs implement industry
standard security (SAR 34677).

1-5

Package names used in the "Product Profile" section and "Package Pin Assignments"
section were revised to match standards given in Package Mechanical Drawings (SAR
34779).

I

2-1

Revision 9
(June 2011)

The versioning system for datasheets has been changed. Datasheets are assigned a
revision number that increments each time the datasheet is revised. The "eX Device
Status" table indicates the status for each device in the device family.

II

The Chip Scale packages (CS49, CS128, CS181) are no longer offered for eX devices.
They have been removed from the product family information. Pin tables for CSP
packages have been removed from the datasheet (SAR 32002).

N/A

Revision 8
(v4.3, June 2006)

The "Ordering Information" was updated with RoHS information. The TQFP
measurement was also updated.

II

The "Dedicated Test Mode" was updated. 1-10

Note 5 was added to the "3.3 V LVTTL Electrical Specifications" and "5.0 V TTL
Electrical Specifications" tables

1-18

The "LP Low Power Pin" description was updated. 1-31

Revision 7
(v4.2, June 2004)

The "eX Timing Model" was updated. 1-22

v4.1 The "Development Tool Support" section was updated. 1-13

The "Package Thermal Characteristics" section was updated. 1-21

v4.0 The "Product Profile" section was updated. 1-I

The "Ordering Information" section was updated. 1-II

The "Temperature Grade Offerings" section is new. 1-III

The "Speed Grade and Temperature Grade Matrix" section is new. 1-III

The "eX FPGA Architecture and Characteristics" section was updated. 1-1

The "Clock Resources" section was updated. 1-3

Table 1-1 •Connections of Routed Clock Networks, CLKA and CLKB is new. 1-4

The "User Security" section was updated. 1-5

The "I/O Modules" section was updated. 1-5

The "Hot-Swapping" section was updated. 1-6

The "Power Requirements" section was updated. 1-6

The "Low Power Mode" section was updated. 1-6

The "Boundary Scan Testing (BST)" section was updated. 1-10

The "Dedicated Test Mode" section was updated. 1-10
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