

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	128
Total RAM Bits	-
Number of I/O	41
Number of Gates	3000
Voltage - Supply	2.3V ~ 2.7V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	64-LQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ex64-ptq64

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Temperature Grade Offerings

Device\ Package	TQ64	TQ100
eX64	C, I, A	C, I, A
eX128	C, I, A	C, I, A
eX256	C, I, A	C, I, A

Note: C = Commercial

l = Industrial

A = Automotive

Speed Grade and Temperature Grade Matrix

	-F	Std	-P
С	\checkmark	\checkmark	\checkmark
1		\checkmark	\checkmark
A		\checkmark	

Note: P = Approximately 30% faster than Standard

–F = Approximately 40% slower than Standard

Refer to the eX Automotive Family FPGAs datasheet for details on automotive temperature offerings.

Contact your local Microsemi representative for device availability.

1 – eX FPGA Architecture and Characteristics

General Description

The eX family of FPGAs is a low-cost solution for low-power, high-performance designs. The inherent low power attributes of the antifuse technology, coupled with an additional low static power mode, make these devices ideal for power-sensitive applications. Fabricated with an advanced 0.22 mm CMOS antifuse technology, these devices achieve high performance with no power penalty.

eX Family Architecture

Microsemi eX family is implemented on a high-voltage twin-well CMOS process using 0.22 μ m design rules. The eX family architecture uses a "sea-of-modules" structure where the entire floor of the device is covered with a grid of logic modules with virtually no chip area lost to interconnect elements or routing. Interconnection among these logic modules is achieved using Microsemi patented metal-to-metal programmable antifuse interconnect elements. The antifuse interconnect is made up of a combination of amorphous silicon and dielectric material with barrier metals and has an "on" state resistance of 25 Ω with a capacitance of 1.0fF for low-signal impedance. The antifuses are normally open circuit and, when programmed, form a permanent low-impedance connection. The eX family provides two types of logic modules, the register cell (R-cell) and the combinatorial cell (C-cell).

The R-cell contains a flip-flop featuring asynchronous clear, asynchronous preset, and clock enable (using the S0 and S1 lines) control signals (Figure 1-1). The R-cell registers feature programmable clock polarity selectable on a register-by-register basis. This provides additional flexibility while allowing mapping of synthesized functions into the eX FPGA. The clock source for the R-cell can be chosen from either the hard-wired clock or the routed clock.

The C-cell implements a range of combinatorial functions up to five inputs (Figure 1-2 on page 1-2). Inclusion of the DB input and its associated inverter function enables the implementation of more than 4,000 combinatorial functions in the eX architecture in a single module.

Two C-cells can be combined together to create a flip-flop to imitate an R-cell via the use of the CC macro. This is particularly useful when implementing non-timing-critical paths and when the design engineer is running out of R-cells. More information about the CC macro can be found in the *Maximizing Logic Utilization in eX, SX and SX-A FPGA Devices Using CC Macros* application note.

Figure 1-1 • R-Cell

eX FPGA Architecture and Characteristics

Table 1-1 describes the possible connections of the routed clock networks, CLKA and CLKB. Unused clock pins must not be left floating and must be tied to HIGH or LOW.

Figure 1-5 • eX HCLK Clock Pad

Figure 1-6 • eX Routed Clock Buffer

Table 1-1 • Connections of Routed Clock Networks, CLKA and CLKB

Module	Pins				
C-Cell	A0, A1, B0 and B1				
R-Cell	CLKA, CLKB, S0, S1, PSET, and CLR				
I/O-Cell	EN				

🌜 Microsemi.

eX FPGA Architecture and Characteristics

Table 1-2 describes the I/O features of eX devices. For more information on I/Os, refer to *Microsemi eX, SX-A, and RT54SX-S I/Os* application note.

Table 1-2 • I/O Features

Function	Description			
Input Buffer Threshold	• 5.0V TTL			
Selection	• 3.3V LVTTL			
	2.5V LVCMOS2			
Nominal Output Drive	5.0V TTL/CMOS			
	• 3.3V LVTTL			
	• 2.5V LVCMOS 2			
Output Buffer	"Hot-Swap" Capability			
	 I/O on an unpowered device does not sink current 			
	Can be used for "cold sparing"			
	Selectable on an individual I/O basis			
	Individually selectable low-slew option			
Power-Up	Individually selectable pull ups and pull downs during power-up (default is to power up in tristate)			
	Enables deterministic power-up of device			
	V_{CCA} and V_{CCI} can be powered in any order			

The eX family supports mixed-voltage operation and is designed to tolerate 5.0 V inputs in each case. A detailed description of the I/O pins in eX devices can be found in "Pin Description" on page 1-31.

Hot-Swapping

eX I/Os are configured to be hot-swappable. During power-up/down (or partial up/down), all I/Os are tristated, provided V_{CCA} ramps up within a diode drop of V_{CCI} . V_{CCA} and V_{CCI} do not have to be stable. during power-up/down, and they do not require a specific power-up or power-down sequence in order to avoid damage to the eX devices. In addition, all outputs can be programmed to have a weak resistor pull-up or pull-down for output tristate at power-up. After the eX device is plugged into an electrically active system, the device will not degrade the reliability of or cause damage to the host system. The device's output pins are driven to a high impedance state until normal chip operating conditions are reached. Please see the application note, *Microsemi SX-A and RT54SX-S Devices in Hot-Swap and Cold-Sparing Applications*, which also applies to the eX devices, for more information on hot swapping.

Power Requirements

Power consumption is extremely low for the eX family due to the low capacitance of the antifuse interconnects. The antifuse architecture does not require active circuitry to hold a charge (as do SRAM or EPROM), making it the lowest-power FPGA architecture available today.

Low Power Mode

The eX family has been designed with a Low Power Mode. This feature, activated with setting the special LP pin to HIGH for a period longer than 800 ns, is particularly useful for battery-operated systems where battery life is a primary concern. In this mode, the core of the device is turned off and the device consumes minimal power with low standby current. In addition, all input buffers are turned off, and all outputs and bidirectional buffers are tristated when the device enters this mode. Since the core of the device is turned off, the states of the registers are lost. The device must be re-initialized when returning to normal operating mode. I/Os can be driven during LP mode. For details, refer to the *Design for Low Power in Microsemi Antifuse FPGAs* application note under the section Using the LP Mode Pin on eX Devices. Clock pins should be driven either HIGH or LOW and should not float; otherwise, they will draw current and burn power. The device must be re-initialized when exiting LP mode.

Table 1-5 describes the different configuration requirements of BST pins and their functionality in different modes.

Mode	Designer "Reserve JTAG" Selection	TAP Controller State		
Dedicated (JTAG)	Checked	Any		
Flexible (User I/O)	Unchecked	Test-Logic-Reset		
Flexible (JTAG)	Unchecked	Any EXCEPT Test-Logic-Reset		

Table 1-5 • Boundary-Scan Pin Configurations and Functions

TRST Pin

The TRST pin functions as a dedicated Boundary-Scan Reset pin when the **Reserve JTAG Test Reset** option is selected, as shown in Figure 1-12. An internal pull-up resistor is permanently enabled on the TRST pin in this mode. It is recommended to connect this pin to GND in normal operation to keep the JTAG state controller in the Test-Logic-Reset state. When JTAG is being used, it can be left floating or be driven HIGH.

When the **Reserve JTAG Test Reset** option is not selected, this pin will function as a regular I/O. If unused as an I/O in the design, it will be configured as a tristated output.

JTAG Instructions

Table 1-6 lists the supported instructions with the corresponding IR codes for eX devices.

Table 1	-6 •	JTAG	Instruction	Code
	-	• • • • •		

Instructions (IR4: IR0)	Binary Code
EXTEST	00000
SAMPLE / PRELOAD	00001
INTEST	00010
USERCODE	00011
IDCODE	00100
HIGHZ	01110
CLAMP	01111
Diagnostic	10000
BYPASS	11111
Reserved	All others

Table 1-7 lists the codes returned after executing the IDCODE instruction for eX devices. Note that bit 0 is always "1." Bits 11-1 are always "02F", which is Microsemi SoC Products Group's manufacturer code.

Device	Revision	Bits 31-28	Bits 27-12
eX64	0	8	40B2, 42B2
eX128	0	9	40B0, 42B0
eX256	0	9	40B5, 42B5
eX64	1	А	40B2, 42B2
eX128	1	В	40B0, 42B0
eX256	1	В	40B5, 42B5

Table 1-7 • IDCODE for eX Devices

Microsemi eX Family FPGAs

2.5 V LVCMOS2 Electrical Specifications

			Co	mmercial	In	dustrial	
Symbol	Parameter		Min.	Max.	Min.	Max.	Units
VOH	VCCI = MIN, VI = VIH or VIL	(IOH = -100 mA)	2.1		2.1		V
	VCCI = MIN, VI = VIH or VIL	(IOH = -1 mA)	2.0		2.0		V
	VCCI = MIN, VI = VIH or VIL	(IOH = -2 mA)	1.7		1.7		V
VOL	VCCI = MIN, VI = VIH or VIL	(IOL = 100 mA)		0.2		0.2	V
	VCCI = MIN, VI = VIH or VIL	(IOL = 1mA)		0.4		0.4	V
	VCCI = MIN,VI = VIH or VIL	(IOL = 2 mA)		0.7		0.7	V
VIL	Input Low Voltage, VOUT \leq VOL (max.)		-0.3	0.7	-0.3	0.7	V
VIH	Input High Voltage, VOUT \ge VOH (min.)		1.7	VCCI + 0.3	1.7	VCCI + 0.3	V
IIL/ IIH	Input Leakage Current, VIN = VCCI or GND		-10	10	-10	10	μA
IOZ	3-State Output Leakage Current, VOUT = VCCI or GND		-10	10	-10	10	μA
t _R , t _{F1,2}	Input Transition Time			10		10	ns
C _{IO}	I/O Capacitance			10		10	pF
ICC ^{3,4}	Standby Current			1.0		3.0	mA
IV Curve	Can be derived from the IBIS model at www.microsemi.com/soc/custsup/models/ibis.html.						

Notes:

1. t_R is the transition time from 0.7 V to 1.7 V.

2. t_F is the transition time from 1.7 V to 0.7 V.

3. I_{CC} max Commercial -F = 5.0 mA

 $4. \quad I_{CC} = I_{CCI} + I_{CCA}$

Thermal Characteristics

The temperature variable in the Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because the heat generated from dynamic power consumption is usually hotter than the ambient temperature. EQ 1, shown below, can be used to calculate junction temperature.

Junction Temperature = $\Delta T + T_a(1)$

Where:

 T_a = Ambient Temperature

 ΔT = Temperature gradient between junction (silicon) and ambient = θ_{ja} * P

P = Power

 θ_{ja} = Junction to ambient of package. θ_{ja} numbers are located in the "Package Thermal Characteristics" section below.

Package Thermal Characteristics

The device junction-to-case thermal characteristic is θ_{jc} , and the junction-to-ambient air characteristic is θ_{ja} . The thermal characteristics for θ_{ja} are shown with two different air flow rates. $\theta_{jc \ is \ provided \ for \ reference}$. The maximum junction temperature is 150°C.

The maximum power dissipation allowed for eX devices is a function of θ_{ja} . A sample calculation of the absolute maximum power dissipation allowed for a TQFP 100-pin package at commercial temperature and still air is as follows:

Maximum Power Allowed = $\frac{\text{Max. junction temp. } (^{\circ}\text{C}) - \text{Max. ambient temp. } (^{\circ}\text{C})}{\theta_{ja}(^{\circ}\text{C/W})} = \frac{150^{\circ}\text{C} - 70^{\circ}\text{C}}{33.5^{\circ}\text{C/W}} = 2.39\text{W}$

Package Type	Pin Count	θ _{jc}	Still Air	1.0 m/s 200 ft/min	2.5 m/s 500 ft/min	Units
Thin Quad Flat Pack (TQFP)	64	12.0	42.4	36.3	34.0	°C/W
Thin Quad Flat Pack (TQFP)	100	14.0	33.5	27.4	25.0	°C/W

EQ 1

🌜 Microsemi.

eX FPGA Architecture and Characteristics

eX Timing Model

Note: Values shown for eX128–P, worst-case commercial conditions (5.0 V, 35 pF Pad Load). Figure 1-14 • eX Timing Model

Hardwired Clock

External Setup = $t_{INYH} + t_{IRD1} + t_{SUD} - t_{HCKH}$ = 0.7 + 0.3 + 0.5 - 1.1 = 0.4 ns Clock-to-Out (Pad-to-Pad), typical = $t_{HCKH} + t_{RCO} + t_{RD1} + t_{DHL}$

= 1.1 + 0.6 + 0.3 + 2.6 = 4.6 ns

Routed Clock

External Setup = $t_{INYH} + t_{IRD2} + t_{SUD} - t_{RCKH}$ = 0.7 + 0.4 + 0.5 - 1.3= 0.3 ns

Clock-to-Out (Pad-to-Pad), typical

 $= t_{RCKH} + t_{RCO} + t_{RD1} + t_{DHL}$

= 1.3+ 0.6 + 0.3 + 2.6 = 4.8 ns

🌜 Microsemi.

eX FPGA Architecture and Characteristics

Input Buffer Delays

C-Cell Delays

Cell Timing Characteristics

Figure 1-16 • Flip-Flops

eX FPGA Architecture and Characteristics

Timing Characteristics

Timing characteristics for eX devices fall into three categories: family-dependent, device-dependent, and design-dependent. The input and output buffer characteristics are common to all eX family members. Internal routing delays are device-dependent. Design dependency means actual delays are not determined until after placement and routing of the user's design are complete. Delay values may then be determined by using the Timer utility or performing simulation with post-layout delays.

Critical Nets and Typical Nets

Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most timing critical paths. Critical nets are determined by net property assignment prior to placement and routing. Up to six percent of the nets in a design may be designated as critical.

Long Tracks

Some nets in the design use long tracks. Long tracks are special routing resources that span multiple rows, columns, or modules. Long tracks employ three to five antifuse connections. This increases capacitance and resistance, resulting in longer net delays for macros connected to long tracks. Typically, no more than six percent of nets in a fully utilized device require long tracks. Long tracks contribute approximately 4 ns to 8.4 ns delay. This additional delay is represented statistically in higher fanout routing delays.

Timing Derating

eX devices are manufactured with a CMOS process. Therefore, device performance varies according to temperature, voltage, and process changes. Minimum timing parameters reflect maximum operating voltage, minimum operating temperature, and best-case processing. Maximum timing parameters reflect minimum operating voltage, maximum operating temperature, and worst-case processing.

Temperature and Voltage Derating Factors

Table 1-16 • Temperature and Voltage Derating Factors

(Normalized to Worst-Case Commercial, T_J = 70°C, VCCA = 2.3V)

	Junction Temperature (T _J)							
VCCA	-55	-40	0	25	70	85	125	
2.3	0.79	0.80	0.87	0.88	1.00	1.04	1.13	
2.5	0.74	0.74	0.81	0.83	0.93	0.97	1.06	
2.7	0.69	0.70	0.76	0.78	0.88	0.91	1.00	

🔨 Microsemi

eX FPGA Architecture and Characteristics

Table 1-18 • eX Family Timing Characteristics (Worst-Case Commercial Conditions VCCA = 2.3 V, VCCI = 4.75 V, T_J = 70°C)

		–P S	peed	Std S	Std Speed –F Speed		peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated (H	ard-Wired) Array Clock Networks							
t _{НСКН}	Input LOW to HIGH (Pad to R-Cell Input)		1.1		1.6		2.3	ns
t _{HCKL}	Input HIGH to LOW (Pad to R-Cell Input)		1.1		1.6		2.3	ns
t _{HPWH}	Minimum Pulse Width HIGH	1.4		2.0		2.8		ns
t _{HPWL}	Minimum Pulse Width LOW	1.4		2.0		2.8		ns
t _{HCKSW}	Maximum Skew		<0.1		<0.1		<0.1	ns
t _{HP}	Minimum Period	2.8		4.0		5.6		ns
f _{HMAX}	Maximum Frequency		357		250		178	MHz
Routed Array	/ Clock Networks							
t _{RCKH}	Input LOW to HIGH (Light Load) (Pad to R-Cell Input) MAX.		1.1		1.6		2.2	ns
t _{RCKL}	Input HIGH to LOW (Light Load) (Pad to R-Cell Input) MAX.		1.0		1.4		2.0	ns
t _{RCKH}	Input LOW to HIGH (50% Load) (Pad to R-Cell Input) MAX.		1.2		1.7		2.4	ns
t _{RCKL}	Input HIGH to LOW (50% Load) (Pad to R-Cell Input) MAX.		1.2		1.7		2.4	ns
t _{RCKH}	Input LOW to HIGH (100% Load) (Pad to R-Cell Input) MAX.		1.3		1.9		2.6	ns
t _{RCKL}	Input HIGH to LOW (100% Load) (Pad to R-Cell Input) MAX.		1.3		1.9		2.6	ns
t _{RPWH}	Min. Pulse Width HIGH	1.5		2.1		3.0		ns
t _{RPWL}	Min. Pulse Width LOW	1.5		2.1		3.0		ns
t _{RCKSW} *	Maximum Skew (Light Load)		0.2		0.3		0.4	ns
t _{RCKSW} *	Maximum Skew (50% Load)		0.1		0.2		0.3	ns
t _{RCKSW} *	Maximum Skew (100% Load)		0.1		0.1		0.2	ns

Note: *Clock skew improves as the clock network becomes more heavily loaded.

Package Pin Assignments

	TQ64		TQ64		
Pin Number	eX64 Function	eX128 Function	Pin Number	eX64 Function	eX128 Function
1	GND	GND	33	GND	GND
2	TDI, I/O	TDI, I/O	34	I/O	I/O
3	I/O	I/O	35	I/O	I/O
4	TMS	TMS	36	VCCA	VCCA
5	GND	GND	37	VCCI	VCCI
6	VCCI	VCCI	38	I/O	I/O
7	I/O	I/O	39	I/O	I/O
8	I/O	I/O	40	NC	I/O
9	NC	I/O	41	NC	I/O
10	NC	I/O	42	I/O	I/O
11	TRST, I/O	TRST, I/O	43	I/O	I/O
12	I/O	I/O	44	VCCA	VCCA
13	NC	I/O	45*	GND/LP	GND/ LP
14	GND	GND	46	GND	GND
15	I/O	I/O	47	I/O	I/O
16	I/O	I/O	48	I/O	I/O
17	I/O	I/O	49	I/O	I/O
18	I/O	I/O	50	I/O	I/O
19	VCCI	VCCI	51	I/O	I/O
20	I/O	I/O	52	VCCI	VCCI
21	PRB, I/O	PRB, I/O	53	I/O	I/O
22	VCCA	VCCA	54	I/O	I/O
23	GND	GND	55	CLKA	CLKA
24	I/O	I/O	56	CLKB	CLKB
25	HCLK	HCLK	57	VCCA	VCCA
26	I/O	I/O	58	GND	GND
27	I/O	I/O	59	PRA, I/O	PRA, I/O
28	I/O	I/O	60	I/O	I/O
29	I/O	I/O	61	VCCI	VCCI
30	I/O	I/O	62	I/O	I/O
31	I/O	I/O	63	I/O	I/O
32	TDO, I/O	TDO, I/O	64	TCK, I/O	TCK, I/O

Note: *Please read the LP pin descriptions for restrictions on their use.

Package Pin Assignments

	тс	2100		TQ100			
Pin Number	eX64 Function	eX128 Function	eX256 Function	Pin Number	eX64 Function	eX128 Function	eX256 Function
1	GND	GND	GND	36	GND	GND	GND
2	TDI, I/O	TDI, I/O	TDI, I/O	37	NC	NC	NC
3	NC	NC	I/O	38	I/O	I/O	I/O
4	NC	NC	I/O	39	HCLK	HCLK	HCLK
5	NC	NC	I/O	40	I/O	I/O	I/O
6	I/O	I/O	I/O	41	I/O	I/O	I/O
7	TMS	TMS	TMS	42	I/O	I/O	I/O
8	VCCI	VCCI	VCCI	43	I/O	I/O	I/O
9	GND	GND	GND	44	VCCI	VCCI	VCCI
10	NC	I/O	I/O	45	I/O	I/O	I/O
11	NC	I/O	I/O	46	I/O	I/O	I/O
12	I/O	I/O	I/O	47	I/O	I/O	I/O
13	NC	I/O	I/O	48	I/O	I/O	I/O
14	I/O	I/O	I/O	49	TDO, I/O	TDO, I/O	TDO, I/O
15	NC	I/O	I/O	50	NC	I/O	I/O
16	TRST, I/O	TRST, I/O	TRST, I/O	51	GND	GND	GND
17	NC	I/O	I/O	52	NC	NC	I/O
18	I/O	I/O	I/O	53	NC	NC	I/O
19	NC	I/O	I/O	54	NC	NC	I/O
20	VCCI	VCCI	VCCI	55	I/O	I/O	I/O
21	I/O	I/O	I/O	56	I/O	I/O	I/O
22	NC	I/O	I/O	57	VCCA	VCCA	VCCA
23	NC	NC	I/O	58	VCCI	VCCI	VCCI
24	NC	NC	I/O	59	NC	I/O	I/O
25	I/O	I/O	I/O	60	I/O	I/O	I/O
26	I/O	I/O	I/O	61	NC	I/O	I/O
27	I/O	I/O	I/O	62	I/O	I/O	I/O
28	I/O	I/O	I/O	63	NC	I/O	I/O
29	I/O	I/O	I/O	64	I/O	I/O	I/O
30	I/O	I/O	I/O	65	NC	I/O	I/O
31	I/O	I/O	I/O	66	I/O	I/O	I/O
32	I/O	I/O	I/O	67	VCCA	VCCA	VCCA
33	I/O	I/O	I/O	68	GND/LP	GND/LP	GND/LP
34	PRB, I/O	PRB, I/O	PRB, I/O	69	GND	GND	GND
35	VCCA	VCCA	VCCA	70	I/O	I/O	I/O

Note: *Please read the LP pin descriptions for restrictions on their use.

TQ100						
Pin Number	eX64 Function	eX128 Function	eX256 Function			
71	I/O	I/O	I/O			
72	NC	I/O	I/O			
73	NC	NC	I/O			
74	NC	NC	I/O			
75	NC	NC	I/O			
76	NC	I/O	I/O			
77	I/O	I/O	I/O			
78	I/O	I/O	I/O			
79	I/O	I/O	I/O			
80	I/O	I/O	I/O			
81	I/O	I/O	I/O			
82	VCCI	VCCI	VCCI			
83	I/O	I/O	I/O			
84	I/O	I/O	I/O			
85	I/O	I/O	I/O			
86	I/O	I/O	I/O			
87	CLKA	CLKA	CLKA			
88	CLKB	CLKB	CLKB			
89	NC	NC	NC			
90	VCCA	VCCA	VCCA			
91	GND	GND	GND			
92	PRA, I/O	PRA, I/O	PRA, I/O			
93	I/O	I/O	I/O			
94	I/O	I/O	I/O			
95	I/O	I/O	I/O			
96	I/O	I/O	I/O			
97	I/O	I/O	I/O			
98	I/O	I/O	I/O			
99	I/O	I/O	I/O			
100	TCK, I/O	TCK, I/O	TCK, I/O			

Note: *Please read the LP pin descriptions for restrictions on their use.

Datasheet Information

Revision	Changes	Page
v4.0 (continued)	The "Flexible Mode" section was updated.	1-10
	Table 1-5 •Boundary-Scan Pin Configurations and Functions is new.	1-11
	The "TRST Pin" section was updated.	1-11
	The "Probing Capabilities" section is new.	1-12
	The "Programming" section was updated.	1-12
	The "Probing Capabilities" section was updated.	1-12
	The "Silicon Explorer II Probe" section was updated.	1-12
	The "Design Considerations" section was updated.	1-13
	The "Development Tool Support" section was updated.	1-13
	The "Absolute Maximum Ratings*" section was updated.	1-16
	The "Temperature and Voltage Derating Factors" section was updated.	1-26
	The "TDI, I/O Test Data Input" section was updated.	
	The "TDO, I/O Test Data Output" section was updated.	1-31
	The "TMS Test Mode Select" section was updated.	1-32
	The "TRST, I/O Boundary Scan Reset Pin" section was updated.	1-32
	All VSV pins were changed to VCCA. The change affected the following pins:	
	64-Pin TQFP – Pin 36	
	100-Pin TQFP – Pin 57	
	49-Pin CSP – Pin D5	
	128-Pin CSP- Pin H11 and Pin J1 for eX256	
	180-Pin CSP – Pins J12 and K2	
v3.0	The "Recommended Operating Conditions" section has been changed.	1-16
	The "3.3 V LVTTL Electrical Specifications" section has been updated.	1-18
	The "5.0 V TTL Electrical Specifications" section has been updated.	1-18
	The "Total Dynamic Power (mW)" section is new.	1-9
	The "System Power at 5%, 10%, and 15% Duty Cycle" section is new.	1-9
	The "eX Timing Model" section has been updated.	1-22
v2.0.1	The I/O Features table, Table 1-2 on page 1-6, was updated.	1-6
	The table, "Standby Power of eX Devices in LP Mode Typical Conditions, VCCA, VCCI = 2.5 V , TJ = 25° C " section, was updated.	1-7
	"Typical eX Standby Current at 25°C" section is a new table.	1-16
	The table in the section, "Package Thermal Characteristics" section has been updated for the 49-Pin CSP.	1-21
	The "eX Timing Model" section has been updated.	1-22
	The timing numbers found in, "eX Family Timing Characteristics" section have been updated.	1-27
	The V _{SV} pin has been added to the "Pin Description" section.	1-31
	Please see the following pin tables for the V_{SV} pin and an important footnote including the pin: "TQ64", "TQ100", "128-Pin CSP", and "180-Pin CSP".	2-1, 2-3, 2-6, 2-11
	The figure, "TQ64" section has been updated.	2-1

Revision	Changes	Page
Advance v0.4	In the Product Profile, the Maximum User I/Os for eX64 was changed to 84.	
	In the Product Profile table, the Maximum User I/Os for eX128 was changed to 100.	
Advance v0.3	The Mechanical Drawings section has been removed from the data sheet. The mechanical drawings are now contained in a separate document, "Package Characteristics and Mechanical Drawings," available on the Actel web site.	
	A new section describing "Clock Resources"has been added.	1-3
	A new table describing "I/O Features"has been added.	1-6
	The "Pin Description"section has been updated and clarified.	1-31
	The original Electrical Specifications table was separated into two tables (2.5V and 3.3/5.0V). In both tables, several different currents are specified for V_{OH} and V_{OL} .	Page 8 and 9
	A new table listing 2.5V low power specifications and associated power graphs were added.	page 9
	Pin functions for eX256 TQ100 have been added to the "TQ100"table.	2-3
	A CS49 pin drawing and pin assignment table including eX64 and eX128 pin functions have been added.	page 26
	A CS128 pin drawing and pin assignment table including eX64, eX128, and eX256 pin functions have been added.	pages 26-27
	A CS180 pin drawing and pin assignment table for eX256 pin functions have been added.	pages 27, 31
Advance v0.2	The following table note was added to the eX Timing Characteristics table for clarification: Clock skew improves as the clock network becomes more heavily loaded.	pages 14-15

Datasheet Categories

Categories

In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device, as highlighted in the "eX Device Status" table on page II, is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

Production

This version contains information that is considered to be final.

Export Administration Regulations (EAR)

The product described in this datasheet is subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at **www.microsemi.com**.

© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.