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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Ordering Information 

eX Device Status

Plastic Device Resources

eX Devices Status

eX64 Production

eX128 Production

eX256 Production

Device 

User I/Os (Including Clock Buffers)

TQ64 TQ100

eX64 41 56

eX128 46 70

eX256 — 81

Note: TQ = Thin Quad Flat Pack 

eX128 TQ

Part Number

Package Type

TQ = Thin Quad Flat Pack (0.5 mm pitch) 

G 100

Package Lead Count

Application (Ambient Temperature Range)

I = Industrial (-40°C to 85°C) 
A = Automotive (-40°C to 125°C) 

PP = Pre-production 

Blank = Commercial (0°C to 70°C) 

Speed Grade

64 Dedicated Flip-Flops (3,000 System Gates)eX64 =
eX128 128 Dedicated Flip-Flops (6,000 System Gates)=
eX256 256 Dedicated Flip-Flops (12,000 System Gates)=

Standard SpeedBlank =
P Approximately 30% Faster than Standard=
F Approximately 40% Slower than Standard=

P

Lead-Free Packaging
 Blank = Standard Packaging
 G = RoHS Compliant Packaging
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eX Family FPGAs
Temperature Grade Offerings

Speed Grade and Temperature Grade Matrix 

Contact your local Microsemi representative for device availability.

Device\ Package TQ64 TQ100

eX64 C, I, A C, I, A

eX128 C, I, A C, I, A

eX256 C, I, A C, I, A

Note: C = Commercial

I = Industrial

A = Automotive

–F Std –P

C ✓ ✓ ✓

I ✓ ✓

A ✓

Note: P = Approximately 30% faster than Standard

–F = Approximately 40% slower than Standard

Refer to the eX Automotive Family FPGAs datasheet for details on automotive temperature offerings.
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eX Family FPGAs
Routing Resources
Clusters and SuperClusters can be connected through the use of two innovative local routing resources
called FastConnect and DirectConnect, which enable extremely fast and predictable interconnection of
modules within Clusters and SuperClusters (Figure 1-4). This routing architecture also dramatically
reduces the number of antifuses required to complete a circuit, ensuring the highest possible
performance. 

DirectConnect is a horizontal routing resource that provides connections from a C-cell to its neighboring
R-cell in a given SuperCluster. DirectConnect uses a hard-wired signal path requiring no programmable
interconnection to achieve its fast signal propagation time of less than 0.1 ns (–P speed grade).

FastConnect enables horizontal routing between any two logic modules within a given SuperCluster and
vertical routing with the SuperCluster immediately below it. Only one programmable connection is used
in a FastConnect path, delivering maximum pin-to-pin propagation of 0.3 ns (–P speed grade). 

In addition to DirectConnect and FastConnect, the architecture makes use of two globally oriented
routing resources known as segmented routing and high-drive routing. The segmented routing structure
of Microsemi provides a variety of track lengths for extremely fast routing between SuperClusters. The
exact combination of track lengths and antifuses within each path is chosen by the fully automatic place-
and-route software to minimize signal propagation delays.  

Clock Resources
eX’s high-drive routing structure provides three clock networks. The first clock, called HCLK, is hardwired
from the HCLK buffer to the clock select MUX in each R-Cell. HCLK cannot be connected to
combinational logic. This provides a fast propagation path for the clock signal, enabling the 3.9 ns clock-
to-out (pad-to-pad) performance of the eX devices. The hard-wired clock is tuned to provide a clock skew
of less than 0.1 ns worst case. If not used, the HCLK pin must be tied LOW or HIGH and must not be left
floating. Figure 1-5 describes the clock circuit used for the constant load HCLK. 

HCLK does not function until the fourth clock cycle each time the device is powered up to prevent false
output levels due to any possible slow power-on-reset signal and fast start-up clock circuit. To activate
HCLK from the first cycle, the TRST pin must be reserved in the Design software and the pin must be tied
to GND on the board. (See the "TRST, I/O Boundary Scan Reset Pin" on page 1-32). 

The remaining two clocks (CLKA, CLKB) are global routed clock networks that can be sourced from
external pins or from internal logic signals (via the CLKINT routed clock buffer) within the eX device.
CLKA and CLKB may be connected to sequential cells or to combinational logic. If CLKA or CLKB is
sourced from internal logic signals, the external clock pin cannot be used for any other input and must be
tied LOW or HIGH and must not float. Figure 1-6 describes the CLKA and CLKB circuit used in eX
devices. 

Figure 1-4 • DirectConnect and FastConnect for SuperClusters

SuperClusters
DirectConnect
• No antifuses
• 0.1 ns routing delay 

FastConnect
• One antifuse
• 0.5 ns routing delay 

Routing Segments
• Typically 2 antifuses
• Max. 5 antifuses
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eX FPGA Architecture and Characteristics
Table 1-1 describes the possible connections of the routed clock networks, CLKA and CLKB.

Unused clock pins must not be left floating and must be tied to HIGH or LOW.  

Figure 1-5 • eX HCLK Clock Pad

Figure 1-6 • eX Routed Clock Buffer

Table 1-1 • Connections of Routed Clock Networks, CLKA and CLKB

Module Pins

C-Cell A0, A1, B0 and B1

R-Cell CLKA, CLKB, S0, S1, PSET, and CLR

I/O-Cell EN

Constant Load 
Clock Network

HCLKBUF

Clock Network

From Internal Logic

CLKBUF
CLKBUFI

CLKINT
CLKINTI
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eX Family FPGAs
Other Architectural Features

Performance
The combination of architectural features described above enables eX devices to operate with internal
clock frequencies exceeding 350 MHz for very fast execution of complex logic functions. The eX family is
an optimal platform upon which the functionality previously contained in CPLDs can be integrated. eX
devices meet the performance goals of gate arrays, and at the same time, present significant
improvements in cost and time to market. Using timing-driven place-and-route tools, designers can
achieve highly deterministic device performance.

User Security
Microsemi FuseLock advantage provides the highest level of protection in the FPGA industry against
unauthorized modifications. In addition to the inherent strengths of the architecture, special security
fuses that are intended to prevent internal probing and overwriting are hidden throughout the fabric of the
device. They are located such that they cannot be accessed or bypassed without destroying the rest of
the device, making Microsemi antifuse FPGAs highly resistant to both invasive and more subtle
noninvasive attacks.

Look for this symbol to ensure your valuable IP is secure. The FuseLock Symbol on the FPGA ensures
that the device is safeguarded to cryptographic attacks.

For more information, refer to Implementation of Security in Microsemi Antifuse FPGAs application note.

I/O Modules
Each I/O on an eX device can be configured as an input, an output, a tristate output, or a bidirectional
pin. Even without the inclusion of dedicated I/O registers, these I/Os, in combination with array registers,
can achieve clock-to-out (pad-to-pad) timing as fast as 3.9 ns. I/O cells in eX devices do not contain
embedded latches or flip-flops and can be inferred directly from HDL code. The device can easily
interface with any other device in the system, which in turn enables parallel design of system
components and reduces overall design time. 

All unused I/Os are configured as tristate outputs by Microsemi's Designer software, for maximum
flexibility when designing new boards or migrating existing designs. Each I/O module has an available
pull-up or pull-down resistor of approximately 50 k that can configure the I/O in a known state during
power-up. Just shortly before VCCA reaches 2.5 V, the resistors are disabled and the I/Os will be
controlled by user logic. 

Figure 1-7 • Fuselock

FuseLock
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eX Family FPGAs
To exit the LP mode, the LP pin must be driven LOW for over 200 µs to allow for the charge pumps to
power-up and device initialization can begin. 

Table 1-3 illustrates the standby current of eX devices in LP mode. 

Table 1-3 • Standby Power of eX Devices in LP Mode Typical Conditions, VCCA, VCCI = 2.5 V, 
TJ = 25C

Product Low Power Standby Current Units

eX64 100 µA

eX128 111 µA

eX256 134 µA
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eX Family FPGAs
Figure 1-10 • Total Dynamic Power (mW)

Figure 1-11 • System Power at 5%, 10%, and 15% Duty Cycle
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eX Family FPGAs
Table 1-5 describes the different configuration requirements of BST pins and their functionality in different
modes.

TRST Pin
The TRST pin functions as a dedicated Boundary-Scan Reset pin when the Reserve JTAG Test Reset
option is selected, as shown in Figure 1-12. An internal pull-up resistor is permanently enabled on the
TRST pin in this mode. It is recommended to connect this pin to GND in normal operation to keep the
JTAG state controller in the Test-Logic-Reset state. When JTAG is being used, it can be left floating or be
driven HIGH. 

When the Reserve JTAG Test Reset option is not selected, this pin will function as a regular I/O. If
unused as an I/O in the design, it will be configured as a tristated output.

JTAG Instructions
Table 1-6 lists the supported instructions with the corresponding IR codes for eX devices. 

Table 1-7 lists the codes returned after executing the IDCODE instruction for eX devices. Note that bit 0
is always “1.” Bits 11-1 are always “02F”, which is Microsemi SoC Products Group's manufacturer code. 

Table 1-5 • Boundary-Scan Pin Configurations and Functions

Mode Designer "Reserve JTAG" Selection TAP Controller State

Dedicated (JTAG) Checked Any

Flexible (User I/O) Unchecked Test-Logic-Reset

Flexible (JTAG) Unchecked Any EXCEPT Test-Logic-Reset

Table 1-6 • JTAG Instruction Code

Instructions (IR4: IR0) Binary Code

EXTEST 00000

SAMPLE / PRELOAD 00001

INTEST 00010

USERCODE 00011

IDCODE 00100

HIGHZ 01110

CLAMP 01111

Diagnostic 10000

BYPASS 11111

Reserved All others

Table 1-7 • IDCODE for eX Devices

Device Revision Bits 31-28 Bits 27-12

eX64 0 8 40B2, 42B2

eX128 0 9 40B0, 42B0

eX256 0 9 40B5, 42B5

eX64 1 A 40B2, 42B2

eX128 1 B 40B0, 42B0

eX256 1 B 40B5, 42B5
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eX FPGA Architecture and Characteristics
Programming
Device programming is supported through Silicon Sculptor series of programmers. In particular, Silicon
Sculptor II is a compact, robust, single-site and multi-site device programmer for the PC. 

With standalone software, Silicon Sculptor II allows concurrent programming of multiple units from the
same PC, ensuring the fastest programming times possible. Each fuse is subsequently verified by Silicon
Sculptor II to insure correct programming. In addition, integrity tests ensure that no extra fuses are
programmed. Silicon Sculptor II also provides extensive hardware self-testing capability. 

The procedure for programming an eX device using Silicon Sculptor II is as follows:

1. Load the *.AFM file

2. Select the device to be programmed

3. Begin programming

When the design is ready to go to production, Microsemi offers device volume-programming services
either through distribution partners or via in-house programming from the factory.

For more details on programming eX devices, please refer to the Programming Antifuse Devices
application note and the Silicon Sculptor II User's Guide.

Probing Capabilities
eX devices provide internal probing capability that is accessed with the JTAG pins. The Silicon Explorer II
Diagnostic hardware is used to control the TDI, TCK, TMS and TDO pins to select the desired nets for
debugging. The user simply assigns the selected internal nets in the Silicon Explorer II software to the
PRA/PRB output pins for observation. Probing functionality is activated when the BST pins are in JTAG
mode and the TRST pin is driven HIGH or left floating. If the TRST pin is held LOW, the TAP controller
will remain in the Test-Logic-Reset state so no probing can be performed. The Silicon Explorer II
automatically places the device into JTAG mode, but the user must drive the TRST pin HIGH or allow the
internal pull-up resistor to pull TRST HIGH. 

When you select the Reserve Probe Pin box, as shown in Figure 1-12 on page 1-10, the layout tool
reserves the PRA and PRB pins as dedicated outputs for probing. This reserve option is merely a
guideline. If the Layout tool requires that the PRA and PRB pins be user I/Os to achieve successful
layout, the tool will use these pins for user I/Os. If you assign user I/Os to the PRA and PRB pins and
select the Reserve Probe Pin option, Designer Layout will override the "Reserve Probe Pin" option and
place your user I/Os on those pins. 

To allow for probing capabilities, the security fuse must not be programmed. Programming the security
fuse will disable the probe circuitry. Table 1-8 on page 1-13 summarizes the possible device
configurations for probing once the device leaves the Test-Logic-Reset JTAG state.

Silicon Explorer II Probe
Silicon Explorer II is an integrated hardware and software solution that, in conjunction with Microsemi
Designer software tools, allow users to examine any of the internal nets of the device while it is operating
in a prototype or a production system. The user can probe into an eX device via the PRA and PRB pins
without changing the placement and routing of the design and without using any additional resources.
Silicon Explorer II's noninvasive method does not alter timing or loading effects, thus shortening the
debug cycle.

Silicon Explorer II does not require re-layout or additional MUXes to bring signals out to an external pin,
which is necessary when using programmable logic devices from other suppliers.

Silicon Explorer II samples data at 100 MHz (asynchronous) or 66 MHz (synchronous). Silicon Explorer II
attaches to a PC's standard COM port, turning the PC into a fully functional 18-channel logic analyzer.
Silicon Explorer II allows designers to complete the design verification process at their desks and
reduces verification time from several hours per cycle to a few seconds. 

The Silicon Explorer II tool uses the boundary scan ports (TDI, TCK, TMS and TDO) to select the desired
nets for verification. The selected internal nets are assigned to the PRA/PRB pins for observation.
Figure 1-13 on page 1-13 illustrates the interconnection between Silicon Explorer II and the eX device to
perform in-circuit verification. 
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eX FPGA Architecture and Characteristics
Designer software is a place-and-route tool and provides a comprehensive suite of backend support
tools for FPGA development. The Designer software includes timing-driven place-and-route, and a
world-class integrated static timing analyzer and constraints editor. With the Designer software, a user
can lock his/her design pins before layout while minimally impacting the results of place-and-route.
Additionally, the back-annotation flow is compatible with all the major simulators and the simulation
results can be cross-probed with Silicon Explorer II, Microsemi integrated verification and logic analysis
tool. Another tool included in the Designer software is the SmartGen core generator, which easily creates
popular and commonly used logic functions for implementation into your schematic or HDL design.
Microsemi's Designer software is compatible with the most popular FPGA design entry and verification
tools from companies such as Mentor Graphics, Synplicity, Synopsys, and Cadence Design Systems.
The Designer software is available for both the Windows and UNIX operating systems.
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eX Family FPGAs
2.5 V LVCMOS2 Electrical Specifications

 Symbol

Commercial Industrial

UnitsParameter Min. Max. Min. Max.

VOH VCCI = MIN, VI = VIH or VIL (IOH = –100 mA) 2.1 2.1 V

VCCI = MIN, VI = VIH or VIL (IOH = –1 mA) 2.0 2.0 V

VCCI = MIN, VI = VIH or VIL (IOH = –2 mA) 1.7 1.7 V

VOL VCCI = MIN, VI = VIH or VIL (IOL = 100 mA) 0.2 0.2 V

VCCI = MIN, VI = VIH or VIL (IOL = 1mA) 0.4 0.4 V

VCCI = MIN,VI = VIH or VIL (IOL = 2 mA) 0.7 0.7 V

VIL Input Low Voltage, VOUT  VOL (max.) –0.3 0.7 -0.3 0.7 V

VIH Input High Voltage, VOUT VOH (min.) 1.7 VCCI + 0.3 1.7 VCCI + 0.3 V

IIL/ IIH Input Leakage Current, VIN = VCCI or
GND

–10 10 –10 10 µA

IOZ 3-State Output Leakage Current,
VOUT = VCCI or GND 

–10 10 –10 10 µA

tR, tF1,2 Input Transition Time 10 10 ns

CIO I/O Capacitance 10 10 pF

ICC3,4 Standby Current 1.0 3.0 mA

IV Curve Can be derived from the IBIS model at www.microsemi.com/soc/custsup/models/ibis.html.

Notes:

1. tR is the transition time from 0.7 V to 1.7 V.
2. tF is the transition time from 1.7 V to 0.7 V.

3. ICC max Commercial –F = 5.0 mA

4. ICC = ICCI + ICCA
Revision 10 1-17

http://www.microsemi.com/soc/custsup/models/ibis.html


eX Family FPGAs
Power Dissipation
Power consumption for eX devices can be divided into two components: static and dynamic.

Static Power Component
The power due to standby current is typically a small component of the overall power. Typical standby
current for eX devices is listed in the Table 1-11 on page 1-16. For example, the typical static power for
eX128 at 3.3 V VCCI is: 

ICC * VCCA = 795 µA x 2.5 V = 1.99 mW

Dynamic Power Component
Power dissipation in CMOS devices is usually dominated by the dynamic power dissipation. This
component is frequency-dependent and a function of the logic and the external I/O. Dynamic power
dissipation results from charging internal chip capacitance due to PC board traces and load device
inputs. An additional component of the dynamic power dissipation is the totem pole current in the CMOS
transistor pairs. The net effect can be associated with an equivalent capacitance that can be combined
with frequency and voltage to represent dynamic power dissipation.

Dynamic power dissipation = CEQ * VCCA2 x F

where: 

Equivalent capacitance is calculated by measuring ICCA at a specified frequency and voltage for each
circuit component of interest. Measurements have been made over a range of frequencies at a fixed
value of VCC. Equivalent capacitance is frequency-independent, so the results can be used over a wide
range of operating conditions. Equivalent capacitance values are shown below.

CEQ Values for eX Devices

The variable and fixed capacitance of other device components must also be taken into account when
estimating the dynamic power dissipation.

Table 1-12 shows the capacitance of the clock components of eX devices.

CEQ = Equivalent capacitance 

F = switching frequency

Combinatorial modules (Ceqcm) 1.70 pF

Sequential modules (Ceqsm) 1.70 pF

Input buffers (Ceqi) 1.30 pF

Output buffers (Ceqo) 7.40 pF 

Routed array clocks (Ceqcr) 1.05 pF

Table 1-12 • Capacitance of Clock Components of eX Devices

eX64 eX128 eX256

Dedicated array clock – variable (Ceqhv) 0.85 pF 0.85 pF 0.85 pF

Dedicated array clock – fixed (Ceqhf) 18.00 pF 20.00 pF 25.00 pF

Routed array clock A (r1) 23.00 pF 28.00 pF 35.00 pF

Routed array clock B (r2) 23.00 pF 28.00 pF 35.00 pF
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eX FPGA Architecture and Characteristics
The estimation of the dynamic power dissipation is a piece-wise linear summation of the power
dissipation of each component.

Dynamic power dissipation = VCCA2 * [(mc * Ceqcm * fmC)Comb Modules + (ms * Ceqsm * fmS)Seq Modules 

+ (n * Ceqi * fn)Input Buffers + (0.5 * (q1 * Ceqcr * fq1) + (r1 * fq1))RCLKA + (0.5 * (q2 * Ceqcr * fq2) 

+ (r2 * fq2))RCLKB + (0.5 * (s1 * Ceqhv * fs1)+(Ceqhf * fs1))HCLK] + VCCI
2 * [(p * (Ceqo + CL) 

* fp)Output Buffers]

where:

The eX, SX-A and RTSX-S Power Calculator can be used to estimate the total power dissipation (static
and dynamic) of eX devices: www.microsemi.com/soc/techdocs/calculators.aspx.

mc = Number of combinatorial cells switching at frequency fm, typically 20% of C-cells

ms = Number of sequential cells switching at frequency fm, typically 20% of R-cells

n = Number of input buffers switching at frequency fn, typically number of inputs / 4

p = Number of output buffers switching at frequency fp, typically number of outputs / 4

q1  = Number of R-cells driven by routed array clock A

q2  =  Number of R-cells driven by routed array clock B

r1  =  Fixed capacitance due to routed array clock A

r2  =  Fixed capacitance due to routed array clock B

s1  =  Number of R-cells driven by dedicated array clock

Ceqcm  =  Equivalent capacitance of combinatorial modules

Ceqsm  =  Equivalent capacitance of sequential modules

Ceqi  =  Equivalent capacitance of input buffers

Ceqcr  =  Equivalent capacitance of routed array clocks

Ceqhv  =  Variable capacitance of dedicated array clock

Ceqhf  =  Fixed capacitance of dedicated array clock

Ceqo  =  Equivalent capacitance of output buffers

CL  =  Average output loading capacitance, typically 10 pF

fmc  =  Average C-cell switching frequency, typically F/10

fms = Average R-cell switching frequency, typically F/10

fn  =  Average input buffer switching frequency, typically F/5

fp  = Average output buffer switching frequency, typically F/5

fq1  =  Frequency of routed clock A

fq2  = Frequency of routed clock B

fs1  =  Frequency of dedicated array clock
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eX FPGA Architecture and Characteristics
Input Buffer Delays

C-Cell Delays

Table 1-14 • Input Buffer Delays

Table 1-15 • C-Cell Delays

PAD
Y

INBUF

In

3  V

0 V1.5 V

Out
GND

50%

1.5 V

50%

t
INY

t
INY

VCC

S

A

B

Y

S, A or B

Out
GND

50%

Out

GND

GND

50%

50% 50%

50% 50%

tPD tPD

tPDtPD

VCC

VCC

VCC
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eX Family FPGAs
Cell Timing Characteristics

Figure 1-16 • Flip-Flops

(Positive edge triggered)
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eX Family FPGAs
eX Family Timing Characteristics 
Table 1-17 • eX Family Timing Characteristics

(Worst-Case Commercial Conditions, VCCA = 2.3 V, TJ = 70C)

–P Speed Std Speed –F Speed

UnitsParameter Description Min. Max. Min. Max. Min. Max.

C-Cell Propagation Delays1

tPD Internal Array Module 0.7 1.0 1.4 ns

Predicted Routing Delays2

tDC FO=1 Routing Delay, DirectConnect 0.1 0.1 0.2 ns

tFC FO=1 Routing Delay, FastConnect 0.3 0.5 0.7 ns

tRD1 FO=1 Routing Delay 0.3 0.5 0.7 ns

tRD2 FO=2 Routing Delay 0.4 0.6 0.8 ns

tRD3 FO=3 Routing Delay 0.5 0.8 1.1 ns

tRD4 FO=4 Routing Delay 0.7 1.0 1.3 ns

tRD8 FO=8 Routing Delay 1.2 1.7 2.4 ns

tRD12 FO=12 Routing Delay 1.7 2.5 3.5 ns

R-Cell Timing

tRCO Sequential Clock-to-Q 0.6 0.9 1.3 ns

tCLR Asynchronous Clear-to-Q 0.6 0.8 1.2 ns

tPRESET Asynchronous Preset-to-Q 0.7 0.9 1.3 ns

tSUD Flip-Flop Data Input Set-Up 0.5 0.7 1.0 ns

tHD Flip-Flop Data Input Hold 0.0 0.0 0.0 ns

tWASYN Asynchronous Pulse Width 1.3 1.9 2.6 ns

tRECASYN Asynchronous Recovery Time 0.3 0.5 0.7 ns

tHASYN Asynchronous Hold Time 0.3 0.5 0.7 ns

2.5 V Input Module Propagation Delays 

tINYH Input Data Pad-to-Y HIGH 0.6 0.9 1.3 ns

tINYL Input Data Pad-to-Y LOW 0.8 1.1 1.5 ns

3.3 V Input Module Propagation Delays 

tINYH Input Data Pad-to-Y HIGH 0.7 1.0 1.4 ns

tINYL Input Data Pad-to-Y LOW 0.9 1.3 1.8 ns

5.0 V Input Module Propagation Delays 

tINYH Input Data Pad-to-Y HIGH 0.7 1.0 1.4 ns

tINYL Input Data Pad-to-Y LOW 0.9 1.3 1.8 ns

Input Module Predicted Routing Delays2

tIRD1 FO=1 Routing Delay 0.3 0.4 0.5 ns

tIRD2 FO=2 Routing Delay 0.4 0.6 0.8 ns

tIRD3 FO=3 Routing Delay 0.5 0.8 1.1 ns

tIRD4 FO=4 Routing Delay 0.7 1.0 1.3 ns

tIRD8 FO=8 Routing Delay 1.2 1.7 2.4 ns

tIRD12 FO=12 Routing Delay 1.7 2.5 3.5 ns

Notes:

1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for

estimating device performance.   Post-route timing analysis or simulation is required to determine actual worst-case
performance.
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eX FPGA Architecture and Characteristics
   

Table 1-18 • eX Family Timing Characteristics
(Worst-Case Commercial Conditions VCCA = 2.3 V, VCCI = 4.75 V, TJ = 70°C)

–P Speed Std Speed –F Speed

Parameter Description Min. Max. Min. Max. Min. Max. Units

Dedicated (Hard-Wired) Array Clock Networks

tHCKH Input LOW to HIGH
(Pad to R-Cell Input)

1.1 1.6 2.3 ns

tHCKL Input HIGH to LOW
(Pad to R-Cell Input)

1.1 1.6 2.3 ns

tHPWH Minimum Pulse Width HIGH 1.4 2.0 2.8 ns

tHPWL Minimum Pulse Width LOW 1.4 2.0 2.8 ns

tHCKSW Maximum Skew <0.1 <0.1 <0.1 ns

tHP Minimum Period 2.8 4.0 5.6 ns

fHMAX Maximum Frequency 357 250 178 MHz

Routed Array Clock Networks

tRCKH Input LOW to HIGH (Light Load)
(Pad to R-Cell Input) MAX.

1.1 1.6 2.2 ns

tRCKL Input HIGH to LOW (Light Load)
(Pad to R-Cell Input) MAX.

1.0 1.4 2.0 ns

tRCKH Input LOW to HIGH (50% Load)
(Pad to R-Cell Input) MAX.

1.2 1.7 2.4 ns

tRCKL Input HIGH to LOW (50% Load)
(Pad to R-Cell Input) MAX.

1.2 1.7 2.4 ns

tRCKH Input LOW to HIGH (100% Load)
(Pad to R-Cell Input) MAX.

1.3 1.9 2.6 ns

tRCKL Input HIGH to LOW (100% Load)
(Pad to R-Cell Input) MAX.

1.3 1.9 2.6 ns

tRPWH Min. Pulse Width HIGH 1.5 2.1 3.0 ns

tRPWL Min. Pulse Width LOW 1.5 2.1 3.0 ns

tRCKSW* Maximum Skew (Light Load) 0.2 0.3 0.4 ns

tRCKSW* Maximum Skew (50% Load) 0.1 0.2 0.3 ns

tRCKSW* Maximum Skew (100% Load) 0.1 0.1 0.2 ns

Note: *Clock skew improves as the clock network becomes more heavily loaded.
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Datasheet Information
v4.0
(continued)

The "Flexible Mode" section was updated. 1-10

Table 1-5 •Boundary-Scan Pin Configurations and Functions is new. 1-11

The "TRST Pin" section was updated. 1-11

The "Probing Capabilities" section is new. 1-12

The "Programming" section was updated. 1-12

The "Probing Capabilities" section was updated. 1-12

The "Silicon Explorer II Probe" section was updated. 1-12

The "Design Considerations" section was updated. 1-13

The "Development Tool Support" section was updated. 1-13

The "Absolute Maximum Ratings*" section was updated. 1-16

The "Temperature and Voltage Derating Factors" section was updated. 1-26

The "TDI, I/O Test Data Input" section was updated. 1-31

The "TDO, I/O Test Data Output" section was updated. 1-31

The "TMS Test Mode Select" section was updated. 1-32

The "TRST, I/O Boundary Scan Reset Pin" section was updated. 1-32

All VSV pins were changed to VCCA. The change affected the following pins:

64-Pin TQFP – Pin 36

100-Pin TQFP – Pin 57

49-Pin CSP – Pin D5 

128-Pin CSP– Pin H11 and Pin J1 for eX256 

180-Pin CSP – Pins J12 and K2 

v3.0 The "Recommended Operating Conditions" section has been changed. 1-16

The "3.3 V LVTTL Electrical Specifications" section has been updated. 1-18

The "5.0 V TTL Electrical Specifications" section has been updated. 1-18

The "Total Dynamic Power (mW)" section is new. 1-9

The "System Power at 5%, 10%, and 15% Duty Cycle" section is new. 1-9

The "eX Timing Model" section has been updated. 1-22

v2.0.1 The I/O Features table, Table 1-2 on page 1-6, was updated. 1-6

The table, "Standby Power of eX Devices in LP Mode Typical Conditions, VCCA, VCCI
= 2.5 V,  TJ = 25° C" section, was updated.

1-7

"Typical eX Standby Current at 25°C" section is a new table. 1-16

The table in the section, "Package Thermal Characteristics" section has been updated
for the 49-Pin CSP.

1-21

The "eX Timing Model" section has been updated. 1-22

The timing numbers found in, "eX Family Timing Characteristics" section have been
updated.

1-27

The VSV pin has been added to the "Pin Description" section. 1-31

Please see the following pin tables for the VSV pin and an important footnote including
the pin: "TQ64", "TQ100", "128-Pin CSP", and "180-Pin CSP".

2-1, 2-3, 
2-6, 2-11

The figure, "TQ64" section has been updated. 2-1
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