

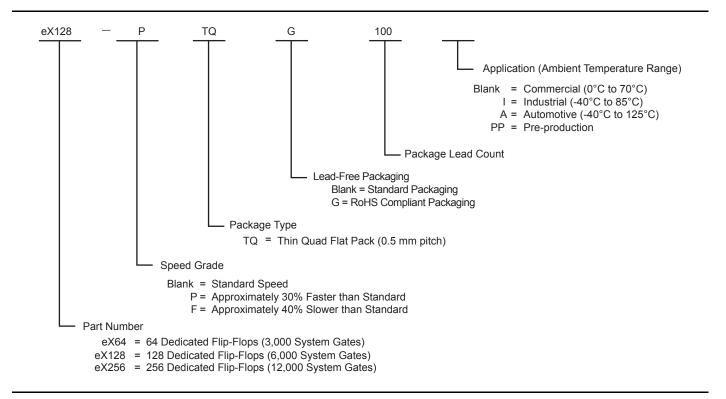
Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.


Details	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	128
Total RAM Bits	-
Number of I/O	41
Number of Gates	3000
Voltage - Supply	2.3V ~ 2.7V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	64-LQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ex64-tq64i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Ordering Information

eX Device Status

eX Devices	Status
eX64	Production
eX128	Production
eX256	Production

Plastic Device Resources

	User I/Os (Including Clock Buffers)			
Device	TQ64 TQ100			
eX64	41	56		
eX128	46	70		
eX256	- 81			

Note: TQ = Thin Quad Flat Pack

II Revision 10

Table 1-2 describes the I/O features of eX devices. For more information on I/Os, refer to *Microsemi eX, SX-A, and RT54SX-S I/Os* application note.

Table 1-2 • I/O Features

Function	Description
Input Buffer Threshold	• 5.0V TTL
Selection	3.3V LVTTL
	2.5V LVCMOS2
Nominal Output Drive	5.0V TTL/CMOS
	3.3V LVTTL
	• 2.5V LVCMOS 2
Output Buffer	"Hot-Swap" Capability
	I/O on an unpowered device does not sink current
	Can be used for "cold sparing"
	Selectable on an individual I/O basis
	Individually selectable low-slew option
Power-Up	Individually selectable pull ups and pull downs during power-up (default is to power up in tristate)
	Enables deterministic power-up of device
	V _{CCA} and V _{CCI} can be powered in any order

The eX family supports mixed-voltage operation and is designed to tolerate 5.0 V inputs in each case. A detailed description of the I/O pins in eX devices can be found in "Pin Description" on page 1-31.

Hot-Swapping

eX I/Os are configured to be hot-swappable. During power-up/down (or partial up/down), all I/Os are tristated, provided V_{CCA} ramps up within a diode drop of V_{CCI} . V_{CCA} and V_{CCI} do not have to be stable. during power-up/down, and they do not require a specific power-up or power-down sequence in order to avoid damage to the eX devices. In addition, all outputs can be programmed to have a weak resistor pullup or pull-down for output tristate at power-up. After the eX device is plugged into an electrically active system, the device will not degrade the reliability of or cause damage to the host system. The device's output pins are driven to a high impedance state until normal chip operating conditions are reached. Please see the application note, *Microsemi SX-A and RT54SX-S Devices in Hot-Swap and Cold-Sparing Applications*, which also applies to the eX devices, for more information on hot swapping.

Power Requirements

Power consumption is extremely low for the eX family due to the low capacitance of the antifuse interconnects. The antifuse architecture does not require active circuitry to hold a charge (as do SRAM or EPROM), making it the lowest-power FPGA architecture available today.

Low Power Mode

The eX family has been designed with a Low Power Mode. This feature, activated with setting the special LP pin to HIGH for a period longer than 800 ns, is particularly useful for battery-operated systems where battery life is a primary concern. In this mode, the core of the device is turned off and the device consumes minimal power with low standby current. In addition, all input buffers are turned off, and all outputs and bidirectional buffers are tristated when the device enters this mode. Since the core of the device is turned off, the states of the registers are lost. The device must be re-initialized when returning to normal operating mode. I/Os can be driven during LP mode. For details, refer to the *Design for Low Power in Microsemi Antifuse FPGAs* application note under the section Using the LP Mode Pin on eX Devices. Clock pins should be driven either HIGH or LOW and should not float; otherwise, they will draw current and burn power. The device must be re-initialized when exiting LP mode.

1-6 Revision 10

To exit the LP mode, the LP pin must be driven LOW for over 200 μs to allow for the charge pumps to power-up and device initialization can begin.

Table 1-3 illustrates the standby current of eX devices in LP mode.

Table 1-3 • Standby Power of eX Devices in LP Mode Typical Conditions, V_{CCA} , V_{CCI} = 2.5 V, T_J = 25° C

Product	Low Power Standby Current	Units
eX64	100	μΑ
eX128	111	μΑ
eX256	134	μΑ

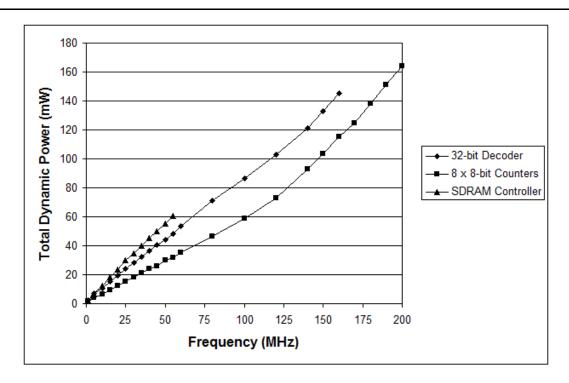


Figure 1-10 • Total Dynamic Power (mW)

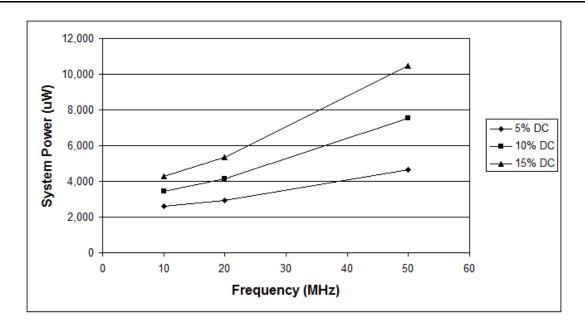


Figure 1-11 • System Power at 5%, 10%, and 15% Duty Cycle

Table 1-5 describes the different configuration requirements of BST pins and their functionality in different modes.

Table 1-5 • Boundary-Scan Pin Configurations and Functions

Mode	Designer "Reserve JTAG" Selection	TAP Controller State
Dedicated (JTAG)	Checked	Any
Flexible (User I/O)	Unchecked	Test-Logic-Reset
Flexible (JTAG)	Unchecked	Any EXCEPT Test-Logic-Reset

TRST Pin

The TRST pin functions as a dedicated Boundary-Scan Reset pin when the **Reserve JTAG Test Reset** option is selected, as shown in Figure 1-12. An internal pull-up resistor is permanently enabled on the TRST pin in this mode. It is recommended to connect this pin to GND in normal operation to keep the JTAG state controller in the Test-Logic-Reset state. When JTAG is being used, it can be left floating or be driven HIGH.

When the **Reserve JTAG Test Reset** option is not selected, this pin will function as a regular I/O. If unused as an I/O in the design, it will be configured as a tristated output.

JTAG Instructions

Table 1-6 lists the supported instructions with the corresponding IR codes for eX devices.

Table 1-6 • JTAG Instruction Code

Instructions (IR4: IR0)	Binary Code
EXTEST	00000
SAMPLE / PRELOAD	00001
INTEST	00010
USERCODE	00011
IDCODE	00100
HIGHZ	01110
CLAMP	01111
Diagnostic	10000
BYPASS	11111
Reserved	All others

Table 1-7 lists the codes returned after executing the IDCODE instruction for eX devices. Note that bit 0 is always "1." Bits 11-1 are always "02F", which is Microsemi SoC Products Group's manufacturer code.

Table 1-7 • IDCODE for eX Devices

Device	Revision	Bits 31-28	Bits 27-12
eX64	0	8	40B2, 42B2
eX128	0	9	40B0, 42B0
eX256	0	9	40B5, 42B5
eX64	1	А	40B2, 42B2
eX128	1	В	40B0, 42B0
eX256	1	В	40B5, 42B5

Design Considerations

The TDI, TCK, TDO, PRA, and PRB pins should not be used as input or bidirectional ports. Since these pins are active during probing, critical signals input through these pins are not available while probing. In addition, the Security Fuse should not be programmed because doing so disables the probe circuitry. It is recommended to use a series 70Ω termination resistor on every probe connector (TDI, TCK, TMS, TDO, PRA, PRB). The 70Ω series termination is used to prevent data transmission corruption during probing and reading back the checksum.

Table 1-8 • Device Configuration Options for Probe Capability (TRST pin reserved)

JTAG Mode	TRST ¹	Security Fuse Programmed	PRA, PRB ²	TDI, TCK, TDO ²
Dedicated	LOW	No	User I/O ³	Probing Unavailable
Flexible	LOW	No	User I/O ³	User I/O ³
Dedicated	HIGH	No	Probe Circuit Outputs	Probe Circuit Inputs
Flexible	HIGH	No	Probe Circuit Outputs	Probe Circuit Inputs
_	-	Yes	Probe Circuit Secured	Probe Circuit Secured

Notes:

- 1. If TRST pin is not reserved, the device behaves according to TRST = HIGH in the table.
- 2. Avoid using the TDI, TCK, TDO, PRA, and PRB pins as input or bidirectional ports. Since these pins are active during probing, input signals will not pass through these pins and may cause contention.
- 3. If no user signal is assigned to these pins, they will behave as unused I/Os in this mode. Unused pins are automatically tristated by Microsemi Designer software.



Figure 1-13 • Silicon Explorer II Probe Setup

Development Tool Support

The eX family of FPGAs is fully supported by both Libero® Integrated Design Environment and Designer FPGA Development software. Libero IDE is a design management environment that streamlines the design flow. Libero IDE provides an integrated design manager that seamlessly integrates design tools while guiding the user through the design flow, managing all design and log files, and passing necessary design data among tools. Additionally, Libero IDE allows users to integrate both schematic and HDL synthesis into a single flow and verify the entire design in a single environment. Libero IDE includes Synplify® for Microsemi from Synplicity®, ViewDraw for Microsemi from Mentor Graphics, ModelSim® HDL Simulator from Mentor Graphics®, WaveFormer Lite™ from SynaptiCAD™, and Designer software from Microsemi. Refer to the *Libero IDE flow* (located on Microsemi SoC Product Group's website) diagram for more information.

Related Documents

Datasheet

eX Automotive Family FPGAs www.microsemi.com/soc/documents/eX_Auto_DS.pdf

Application Notes

 $\textit{Maximizing Logic Utilization in eX}, \ \textit{SX} \ \textit{and SX-A FPGA Devices Using CC Macros}$

www.microsemi.com/soc/documents/CC_Macro_AN.pdf

Implementation of Security in Microsemi Antifuse FPGAs

www.microsemi.com/soc/documents/Antifuse_Security_AN.pdf

Microsemi eX, SX-A, and RT54SX-S I/Os

www.microsemi.com/soc/documents/antifuseIO AN.pdf

Microsemi SX-A and RT54SX-S Devices in Hot-Swap and Cold-Sparing Applications

www.microsemi.com/soc/documents/HotSwapColdSparing AN.pdf

Design For Low Power in Microsemi Antifuse FPGAs

www.microsemi.com/soc/documents/Low_Power_AN.pdf

Programming Antifuse Devices

www.microsemi.com/soc/documents/AntifuseProgram_AN.pdf

User Guides

Silicon Sculptor II User's Guide
www.microsemi.com/soc/documents/SiliSculptII_Sculpt3_ug.pdf

Miscellaneous

Libero IDE flow

www.microsemi.com/soc/products/tools/libero/flow.html

2.5 V / 3.3 V /5.0 V Operating Conditions

Table 1-9 • Absolute Maximum Ratings*

Symbol	Parameter	Limits	Units
VCCI	DC Supply Voltage for I/Os	-0.3 to +6.0	V
VCCA	DC Supply Voltage for Array	-0.3 to +3.0	V
VI	Input Voltage	-0.5 to +5.75	V
VO	Output Voltage	-0.5 to +V _{CCI}	V
T _{STG}	Storage Temperature	-65 to +150	°C

Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the Recommended Operating Conditions.

Table 1-10 • Recommended Operating Conditions

Parameter	Commercial	Industrial	Units
Temperature Range*	0 to +70	-40 to +85	°C
2.5V Power Supply Range (VCCA, VCCI)	2.3 to 2.7	2.3 to 2.7	V
3.3V Power Supply Range (VCCI)	3.0 to 3.6	3.0 to 3.6	V
5.0V Power Supply Range (VCCI)	4.75 to 5.25	4.75 to 5.25	V

Note: *Ambient temperature (T_A) .

Table 1-11 • Typical eX Standby Current at 25°C

Product	VCCA= 2.5 V VCCI = 2.5 V	VCCA = 2.5 V VCCI = 3.3 V	VCCA = 2.5 V VCCI = 5.0 V
eX64	397 μΑ	497 μA	700 μA
eX128	696 μΑ	795 μA	1,000 μΑ
eX256	698 µA	796 μA	2,000 μΑ

1-16 Revision 10

2.5 V LVCMOS2 Electrical Specifications

			Co	mmercial	In	dustrial	
Symbol	Parameter		Min.	Max.	Min.	Max.	Units
VOH	VCCI = MIN, VI = VIH or VIL	(IOH = -100 mA)	2.1		2.1		V
	VCCI = MIN, VI = VIH or VIL	(IOH = -1 mA)	2.0		2.0		V
	VCCI = MIN, VI = VIH or VIL	(IOH = -2 mA)	1.7		1.7		V
VOL	VCCI = MIN, VI = VIH or VIL	(IOL = 100 mA)		0.2		0.2	V
	VCCI = MIN, VI = VIH or VIL	(IOL = 1mA)		0.4		0.4	V
	VCCI = MIN,VI = VIH or VIL	(IOL = 2 mA)		0.7		0.7	V
VIL	Input Low Voltage, VOUT \leq VOL (max.)		-0.3	0.7	-0.3	0.7	V
VIH	Input High Voltage, VOUT ≥ VOH (min.)		1.7	VCCI + 0.3	1.7	VCCI + 0.3	V
IIL/ IIH	Input Leakage Current, VIN = VCCI or GND		-10	10	-10	10	μΑ
IOZ	3-State Output Leakage Current, VOUT = VCCI or GND		–10	10	-10	10	μA
t _R , t _{F1,2}	Input Transition Time			10		10	ns
C _{IO}	I/O Capacitance			10		10	pF
ICC ^{3,4}	Standby Current			1.0		3.0	mA
IV Curve	Can be derived from the IBIS model at v	www.microsemi.com	/soc/cu	ıstsup/models	/ibis.ht	ml.	

Notes

- 1. t_R is the transition time from 0.7 V to 1.7 V.
- 2. t_F is the transition time from 1.7 V to 0.7 V.
- 3. I_{CC} max Commercial -F = 5.0 mA
- 4. $I_{CC} = I_{CCI} + I_{CCA}$

The estimation of the dynamic power dissipation is a piece-wise linear summation of the power dissipation of each component.

 $Dynamic\ power\ dissipation = VCCA^2*[(m_c*C_{eqcm}*fm_C)_{Comb\ Modules} + (m_s*C_{eqsm}*fm_S)_{Seq\ Modules}]$ + $(n * C_{eqi} * fn)_{Input Buffers}$ + $(0.5 * (q1 * C_{eqcr} * fq1) + (r1 * fq1))_{RCLKA}$ + $(0.5 * (q2 * C_{eqcr} * fq2))_{RCLKA}$ + $(r2 * fq2))_{RCLKB}$ + $(0.5 * (s1 * C_{eqhv} * fs1) + (C_{eqhf} * fs1))_{HCLK}]$ + V_{CCl}^2 * $[(p * (C_{eqo} + C_L))]_{RCLKB}$ * fp)Output Buffers]

where:

fp

 m_c = Number of combinatorial cells switching at frequency fm, typically 20% of C-cells = Number of sequential cells switching at frequency fm, typically 20% of R-cells m_s = Number of input buffers switching at frequency fn, typically number of inputs / 4 n = Number of output buffers switching at frequency fp, typically number of outputs / 4

a1 = Number of R-cells driven by routed array clock A = Number of R-cells driven by routed array clock B q2 = Fixed capacitance due to routed array clock A r1 r2 = Fixed capacitance due to routed array clock B s1 = Number of R-cells driven by dedicated array clock C_{eqcm} Equivalent capacitance of combinatorial modules

= Equivalent capacitance of sequential modules

 C_{eqsm} = Equivalent capacitance of input buffers C_{eqi}

= Equivalent capacitance of routed array clocks Ceacr = Variable capacitance of dedicated array clock Ceahy = Fixed capacitance of dedicated array clock C_{eahf} C_{eqo} = Equivalent capacitance of output buffers

= Average output loading capacitance, typically 10 pF C_{l} = Average C-cell switching frequency, typically F/10 fm_c = Average R-cell switching frequency, typically F/10 fm_s fn = Average input buffer switching frequency, typically F/5

= Average output buffer switching frequency, typically F/5

= Frequency of routed clock A fq1 = Frequency of routed clock B fq2

fs1 = Frequency of dedicated array clock

The eX, SX-A and RTSX-S Power Calculator can be used to estimate the total power dissipation (static and dynamic) of eX devices: www.microsemi.com/soc/techdocs/calculators.aspx.

1-20 Revision 10

Thermal Characteristics

The temperature variable in the Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because the heat generated from dynamic power consumption is usually hotter than the ambient temperature. EQ 1, shown below, can be used to calculate junction temperature.

EQ 1

Junction Temperature = $\Delta T + T_a(1)$

Where:

T_a = Ambient Temperature

 ΔT = Temperature gradient between junction (silicon) and ambient = θ_{ja} * P

P = Power

 θ_{ja} = Junction to ambient of package. θ_{ja} numbers are located in the "Package Thermal Characteristics" section below

Package Thermal Characteristics

The device junction-to-case thermal characteristic is θ_{jc} , and the junction-to-ambient air characteristic is θ_{ja} . The thermal characteristics for θ_{ja} are shown with two different air flow rates. θ_{jc} is provided for reference. The maximum junction temperature is 150°C.

The maximum power dissipation allowed for eX devices is a function of θ_{ja} . A sample calculation of the absolute maximum power dissipation allowed for a TQFP 100-pin package at commercial temperature and still air is as follows:

$$\text{Maximum Power Allowed } = \frac{\text{Max. junction temp. (°C) - Max. ambient temp. (°C)}}{\theta_{ja}(°C/W)} = \frac{150°C - 70°C}{33.5°C/W} = 2.39W$$

			θ_{ja}			
Package Type	Pin Count	$ heta_{ extsf{jc}}$	Still Air	1.0 m/s 200 ft/min	2.5 m/s 500 ft/min	Units
Thin Quad Flat Pack (TQFP)	64	12.0	42.4	36.3	34.0	°C/W
Thin Quad Flat Pack (TQFP)	100	14.0	33.5	27.4	25.0	°C/W

Output Buffer Delays

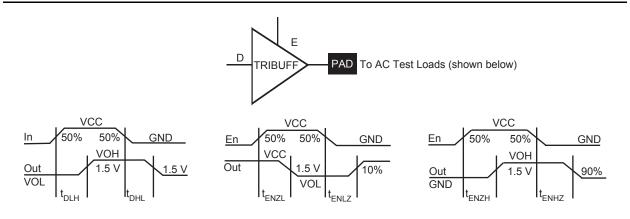


Table 1-13 • Output Buffer Delays

AC Test Loads

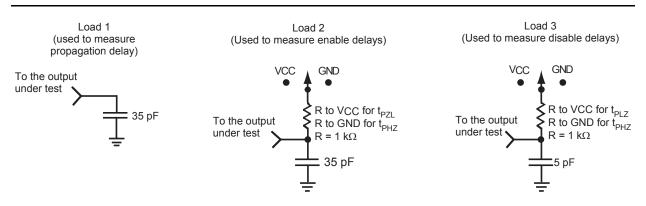


Figure 1-15 • AC Test Loads

Timing Characteristics

Timing characteristics for eX devices fall into three categories: family-dependent, device-dependent, and design-dependent. The input and output buffer characteristics are common to all eX family members. Internal routing delays are device-dependent. Design dependency means actual delays are not determined until after placement and routing of the user's design are complete. Delay values may then be determined by using the Timer utility or performing simulation with post-layout delays.

Critical Nets and Typical Nets

Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most timing critical paths. Critical nets are determined by net property assignment prior to placement and routing. Up to six percent of the nets in a design may be designated as critical.

Long Tracks

Some nets in the design use long tracks. Long tracks are special routing resources that span multiple rows, columns, or modules. Long tracks employ three to five antifuse connections. This increases capacitance and resistance, resulting in longer net delays for macros connected to long tracks. Typically, no more than six percent of nets in a fully utilized device require long tracks. Long tracks contribute approximately 4 ns to 8.4 ns delay. This additional delay is represented statistically in higher fanout routing delays.

Timing Derating

eX devices are manufactured with a CMOS process. Therefore, device performance varies according to temperature, voltage, and process changes. Minimum timing parameters reflect maximum operating voltage, minimum operating temperature, and best-case processing. Maximum timing parameters reflect minimum operating voltage, maximum operating temperature, and worst-case processing.

Temperature and Voltage Derating Factors

Table 1-16 • Temperature and Voltage Derating Factors
(Normalized to Worst-Case Commercial, T., = 70°C, VCCA = 2.3V)

	Junction Temperature (T _J)							
VCCA	-55	-40	0	25	70	85	125	
2.3	0.79	0.80	0.87	0.88	1.00	1.04	1.13	
2.5	0.74	0.74	0.81	0.83	0.93	0.97	1.06	
2.7	0.69	0.70	0.76	0.78	0.88	0.91	1.00	

1-26 Revision 10

Table 1-18 • eX Family Timing Characteristics (Worst-Case Commercial Conditions VCCA = 2.3 V, VCCI = 4.75 V, $T_J = 70$ °C)

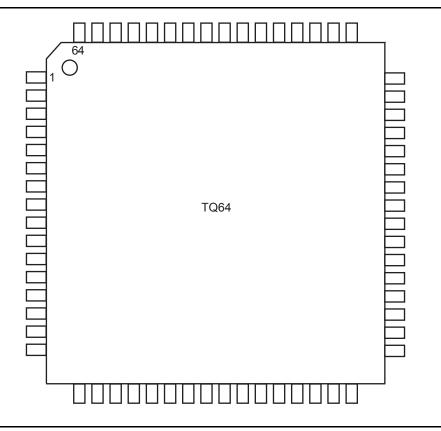
		−P S	peed	Std S	Speed	-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated (H	lard-Wired) Array Clock Networks							
t _{HCKH}	Input LOW to HIGH (Pad to R-Cell Input)		1.1		1.6		2.3	ns
t _{HCKL}	Input HIGH to LOW (Pad to R-Cell Input)		1.1		1.6		2.3	ns
t _{HPWH}	Minimum Pulse Width HIGH	1.4		2.0		2.8		ns
t _{HPWL}	Minimum Pulse Width LOW	1.4		2.0		2.8		ns
t _{HCKSW}	Maximum Skew		<0.1		<0.1		<0.1	ns
t _{HP}	Minimum Period	2.8		4.0		5.6		ns
f_{HMAX}	Maximum Frequency		357		250		178	MHz
Routed Arra	y Clock Networks							
t _{RCKH}	Input LOW to HIGH (Light Load) (Pad to R-Cell Input) MAX.		1.1		1.6		2.2	ns
t _{RCKL}	Input HIGH to LOW (Light Load) (Pad to R-Cell Input) MAX.		1.0		1.4		2.0	ns
t _{RCKH}	Input LOW to HIGH (50% Load) (Pad to R-Cell Input) MAX.		1.2		1.7		2.4	ns
t _{RCKL}	Input HIGH to LOW (50% Load) (Pad to R-Cell Input) MAX.		1.2		1.7		2.4	ns
t _{RCKH}	Input LOW to HIGH (100% Load) (Pad to R-Cell Input) MAX.		1.3		1.9		2.6	ns
t _{RCKL}	Input HIGH to LOW (100% Load) (Pad to R-Cell Input) MAX.		1.3		1.9		2.6	ns
t _{RPWH}	Min. Pulse Width HIGH	1.5		2.1		3.0		ns
t _{RPWL}	Min. Pulse Width LOW	1.5		2.1		3.0		ns
t _{RCKSW} *	Maximum Skew (Light Load)		0.2		0.3		0.4	ns
t _{RCKSW} *	Maximum Skew (50% Load)		0.1		0.2		0.3	ns
t _{RCKSW} *	Maximum Skew (100% Load)		0.1		0.1		0.2	ns

Note: *Clock skew improves as the clock network becomes more heavily loaded.

1-28 Revision 10

Table 1-20 • eX Family Timing Characteristics (Worst-Case Commercial Conditions VCCA = 2.3 V, $T_J = 70^{\circ}$ C)

		-P Speed	Std Speed	-F Speed	
Parameter	Description	Min. Max.	Min. Max.	Min. Max.	Units
2.5 V LVCMO	S Output Module Timing ¹ (VCCI = 2.3 V)				
t _{DLH}	Data-to-Pad LOW to HIGH	3.3	4.7	6.6	ns
t _{DHL}	Data-to-Pad HIGH to LOW	3.5	5.0	7.0	ns
t _{DHLS}	Data-to-Pad HIGH to LOW—Low Slew	11.6	16.6	23.2	ns
t _{ENZL}	Enable-to-Pad, Z to L	2.5	3.6	5.1	ns
t _{ENZLS}	Enable-to-Pad Z to L—Low Slew	11.8	16.9	23.7	ns
t _{ENZH}	Enable-to-Pad, Z to H	3.4	4.9	6.9	ns
t _{ENLZ}	Enable-to-Pad, L to Z	2.1	3.0	4.2	ns
t _{ENHZ}	Enable-to-Pad, H to Z	2.4	5.67	7.94	ns
d_{TLH}	Delta Delay vs. Load LOW to HIGH	0.034	0.046	0.066	ns/pF
d_THL	Delta Delay vs. Load HIGH to LOW	0.016	0.022	0.05	ns/pF
d _{THLS}	Delta Delay vs. Load HIGH to LOW—Low Slew	0.05	0.072	0.1	ns/pF
3.3 V LVTTL (Output Module Timing ¹ (VCCI = 3.0 V)				
t _{DLH}	Data-to-Pad LOW to HIGH	2.8	4.0	5.6	ns
t _{DHL}	Data-to-Pad HIGH to LOW	2.7	3.9	5.4	ns
t _{DHLS}	Data-to-Pad HIGH to LOW—Low Slew	9.7	13.9	19.5	ns
t _{ENZL}	Enable-to-Pad, Z to L	2.2	3.2	4.4	ns
t _{ENZLS}	Enable-to-Pad Z to L—Low Slew	9.7	13.9	19.6	ns
t _{ENZH}	Enable-to-Pad, Z to H	2.8	4.0	5.6	ns
t _{ENLZ}	Enable-to-Pad, L to Z	2.8	4.0	5.6	ns
t _{ENHZ}	Enable-to-Pad, H to Z	2.6	3.8	5.3	ns
d_{TLH}	Delta Delay vs. Load LOW to HIGH	0.02	0.03	0.046	ns/pF
d_THL	Delta Delay vs. Load HIGH to LOW	0.016	0.022	0.05	ns/pF
d _{THLS}	Delta Delay vs. Load HIGH to LOW—Low Slew	0.05	0.072	0.1	ns/pF
5.0 V TTL Ou	tput Module Timing* (VCCI = 4.75 V)				
t _{DLH}	Data-to-Pad LOW to HIGH	2.0	2.9	4.0	ns
t _{DHL}	Data-to-Pad HIGH to LOW	2.6	3.7	5.2	ns
t _{DHLS}	Data-to-Pad HIGH to LOW—Low Slew	6.8	9.7	13.6	ns
t _{ENZL}	Enable-to-Pad, Z to L	1.9	2.7	3.8	ns
t _{ENZLS}	Enable-to-Pad Z to L—Low Slew	6.8	9.8	13.7	ns
t _{ENZH}	Enable-to-Pad, Z to H	2.1	3.0	4.1	ns
t _{ENLZ}	Enable-to-Pad, L to Z	3.3	4.8	6.6	ns


Note: *Delays based on 35 pF loading.

1-30 Revision 10

2 – Package Pin Assignments

TQ64

Note: For Package Manufacturing and Environmental information, visit Resource center at www.microsemi.com/soc/products/rescenter/package/index.html.

	TQ64	
Pin Number	eX64 Function	eX128 Function
1	GND	GND
2	TDI, I/O	TDI, I/O
3	I/O	I/O
4	TMS	TMS
5	GND	GND
6	VCCI	VCCI
7	I/O	I/O
8	I/O	I/O
9	NC	I/O
10	NC	I/O
11	TRST, I/O	TRST, I/O
12	I/O	I/O
13	NC	I/O
14	GND	GND
15	I/O	I/O
16	I/O	I/O
17	I/O	I/O
18	I/O	I/O
19	VCCI	VCCI
20	I/O	I/O
21	PRB, I/O	PRB, I/O
22	VCCA	VCCA
23	GND	GND
24	I/O	I/O
25	HCLK	HCLK
26	I/O	I/O
27	I/O	I/O
28	I/O	I/O
29	I/O	I/O
30	I/O	I/O
31	I/O	I/O
32	TDO, I/O	TDO, I/O

	TQ64	
Pin Number	eX64 Function	eX128 Function
33	GND	GND
34	I/O	I/O
35	I/O	I/O
36	VCCA	VCCA
37	VCCI	VCCI
38	I/O	I/O
39	I/O	I/O
40	NC	I/O
41	NC	I/O
42	I/O	I/O
43	I/O	I/O
44	VCCA	VCCA
45*	GND/LP	GND/ LP
46	GND	GND
47	I/O	I/O
48	I/O	I/O
49	I/O	I/O
50	I/O	I/O
51	I/O	I/O
52	VCCI	VCCI
53	I/O	I/O
54	I/O	I/O
55	CLKA	CLKA
56	CLKB	CLKB
57	VCCA	VCCA
58	GND	GND
59	PRA, I/O	PRA, I/O
60	I/O	I/O
61	VCCI	VCCI
62	I/O	I/O
63	I/O	I/O
64	TCK, I/O	TCK, I/O

Note: *Please read the LP pin descriptions for restrictions on their use.

2-2 Revision 10

TQ100							
Pin Number	eX64 Function	eX128 Function	eX256 Function				
71	I/O	I/O	I/O				
72	NC	I/O	I/O				
73	NC	NC	I/O				
74	NC	NC	I/O				
75	NC	NC	I/O				
76	NC	I/O	I/O				
77	I/O	I/O	I/O				
78	I/O	I/O	I/O				
79	I/O	I/O	I/O				
80	I/O	I/O	I/O				
81	I/O	I/O	I/O				
82	VCCI	VCCI	VCCI				
83	I/O	I/O	I/O				
84	I/O	I/O	I/O				
85	I/O	I/O	I/O				
86	I/O	I/O	I/O				
87	CLKA	CLKA	CLKA				
88	CLKB	CLKB	CLKB				
89	NC	NC	NC				
90	VCCA	VCCA	VCCA				
91	GND	GND	GND				
92	PRA, I/O	PRA, I/O	PRA, I/O				
93	I/O	I/O	I/O				
94	I/O	I/O	I/O				
95	I/O	I/O	I/O				
96	I/O	I/O	I/O				
97	I/O	I/O	I/O				
98	I/O	I/O	I/O				
99	I/O	I/O	I/O				
100	TCK, I/O	TCK, I/O	TCK, I/O				

Note: *Please read the LP pin descriptions for restrictions on their use.

3 – Datasheet Information

List of Changes

The following table lists critical changes that were made in the current version of the document.

Revision	Changes	Page
Revision 10 (October 2012)	The "User Security" section was revised to clarify that although no existing security measures can give an absolute guarantee, Microsemi FPGAs implement industry standard security (SAR 34677).	1-5
	Package names used in the "Product Profile" section and "Package Pin Assignments" section were revised to match standards given in <i>Package Mechanical Drawings</i> (SAR 34779).	l 2-1
Revision 9 (June 2011)	The versioning system for datasheets has been changed. Datasheets are assigned a revision number that increments each time the datasheet is revised. The "eX Device Status" table indicates the status for each device in the device family.	II
	The Chip Scale packages (CS49, CS128, CS181) are no longer offered for eX devices. They have been removed from the product family information. Pin tables for CSP packages have been removed from the datasheet (SAR 32002).	N/A
Revision 8 (v4.3, June 2006)	The "Ordering Information" was updated with RoHS information. The TQFP measurement was also updated.	
	The "Dedicated Test Mode" was updated.	1-10
	Note 5 was added to the "3.3 V LVTTL Electrical Specifications" and "5.0 V TTL Electrical Specifications" tables	1-18
	The "LP Low Power Pin" description was updated.	1-31
Revision 7 (v4.2, June 2004)	The "eX Timing Model" was updated.	1-22
v4.1	The "Development Tool Support" section was updated.	1-13
	The "Package Thermal Characteristics" section was updated.	1-21
v4.0	The "Product Profile" section was updated.	1-I
	The "Ordering Information" section was updated.	1-11
	The "Temperature Grade Offerings" section is new.	1-III
	The "Speed Grade and Temperature Grade Matrix" section is new.	1-III
	The "eX FPGA Architecture and Characteristics" section was updated.	1-1
	The "Clock Resources" section was updated.	1-3
	Table 1-1 •Connections of Routed Clock Networks, CLKA and CLKB is new.	1-4
	The "User Security" section was updated.	1-5
	The "I/O Modules" section was updated.	1-5
	The "Hot-Swapping" section was updated.	1-6
	The "Power Requirements" section was updated.	1-6
	The "Low Power Mode" section was updated.	1-6
	The "Boundary Scan Testing (BST)" section was updated.	1-10
	The "Dedicated Test Mode" section was updated.	1-10