

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	128
Total RAM Bits	-
Number of I/O	41
Number of Gates	3000
Voltage - Supply	2.3V ~ 2.7V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	64-LQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ex64-tqg64

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Temperature Grade Offerings

Device\ Package	TQ64	TQ100
eX64	C, I, A	C, I, A
eX128	C, I, A	C, I, A
eX256	C, I, A	C, I, A

Note: C = Commercial

l = Industrial

A = Automotive

Speed Grade and Temperature Grade Matrix

	-F	Std	–P
С	\checkmark	\checkmark	\checkmark
1		\checkmark	\checkmark
A		\checkmark	

Note: P = Approximately 30% faster than Standard

–F = Approximately 40% slower than Standard

Refer to the eX Automotive Family FPGAs datasheet for details on automotive temperature offerings.

Contact your local Microsemi representative for device availability.

1 – eX FPGA Architecture and Characteristics

General Description

The eX family of FPGAs is a low-cost solution for low-power, high-performance designs. The inherent low power attributes of the antifuse technology, coupled with an additional low static power mode, make these devices ideal for power-sensitive applications. Fabricated with an advanced 0.22 mm CMOS antifuse technology, these devices achieve high performance with no power penalty.

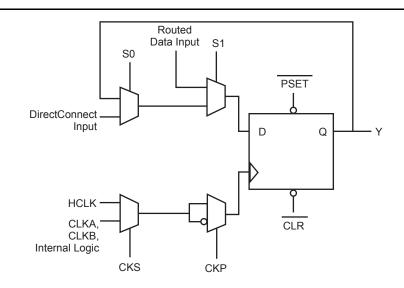
eX Family Architecture

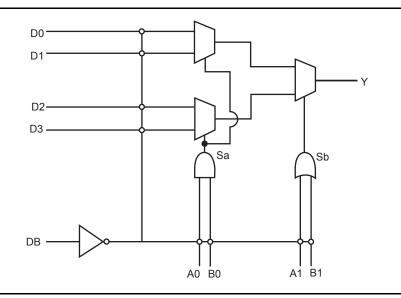
Microsemi eX family is implemented on a high-voltage twin-well CMOS process using 0.22 μ m design rules. The eX family architecture uses a "sea-of-modules" structure where the entire floor of the device is covered with a grid of logic modules with virtually no chip area lost to interconnect elements or routing. Interconnection among these logic modules is achieved using Microsemi patented metal-to-metal programmable antifuse interconnect elements. The antifuse interconnect is made up of a combination of amorphous silicon and dielectric material with barrier metals and has an "on" state resistance of 25 Ω with a capacitance of 1.0fF for low-signal impedance. The antifuses are normally open circuit and, when programmed, form a permanent low-impedance connection. The eX family provides two types of logic modules, the register cell (R-cell) and the combinatorial cell (C-cell).

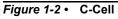
The R-cell contains a flip-flop featuring asynchronous clear, asynchronous preset, and clock enable (using the S0 and S1 lines) control signals (Figure 1-1). The R-cell registers feature programmable clock polarity selectable on a register-by-register basis. This provides additional flexibility while allowing mapping of synthesized functions into the eX FPGA. The clock source for the R-cell can be chosen from either the hard-wired clock or the routed clock.

The C-cell implements a range of combinatorial functions up to five inputs (Figure 1-2 on page 1-2). Inclusion of the DB input and its associated inverter function enables the implementation of more than 4,000 combinatorial functions in the eX architecture in a single module.

Two C-cells can be combined together to create a flip-flop to imitate an R-cell via the use of the CC macro. This is particularly useful when implementing non-timing-critical paths and when the design engineer is running out of R-cells. More information about the CC macro can be found in the *Maximizing Logic Utilization in eX, SX and SX-A FPGA Devices Using CC Macros* application note.




Figure 1-1 • R-Cell



Module Organization

C-cell and R-cell logic modules are arranged into horizontal banks called Clusters, each of which contains two C-cells and one R-cell in a C-R-C configuration.

Clusters are further organized into modules called SuperClusters for improved design efficiency and device performance, as shown in Figure 1-3. Each SuperCluster is a two-wide grouping of Clusters.

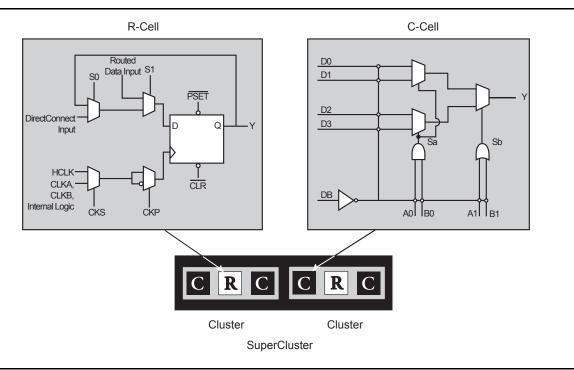
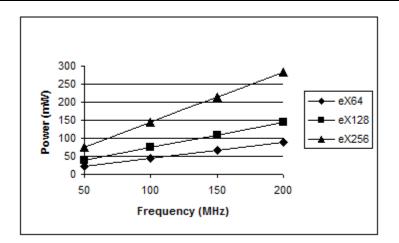


Figure 1-3 • Cluster Organization

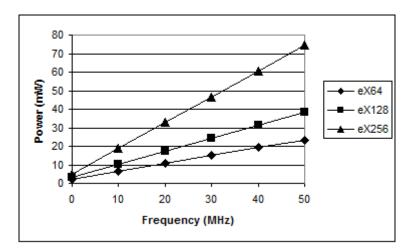
To exit the LP mode, the LP pin must be driven LOW for over 200 μs to allow for the charge pumps to power-up and device initialization can begin.

Table 1-3 illustrates the standby current of eX devices in LP mode.


Table 1-3	 Standby Power of eX Devices in LP Mode Typical Conditions, V_{CCA}, V_{CCI} = 2.5 V,
	$T_{J} = 25^{\circ} C$

Product	Low Power Standby Current	Units
eX64	100	μΑ
eX128	111	μA
eX256	134	μΑ

eX FPGA Architecture and Characteristics


Figure 1-8 to Figure 1-11 on page 1-9 show some sample power characteristics of eX devices.

Notes:

- 1. Device filled with 16-bit counters.
- 2. VCCA, VCCI = 2.7 V, device tested at room temperature.

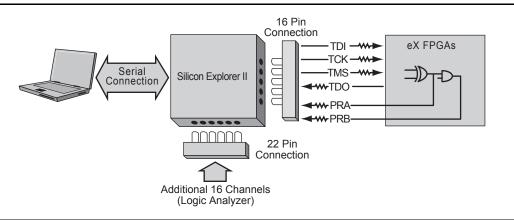
Figure 1-8 • eX Dynamic Power Consumption – High Frequency

Notes:

- 1. Device filled with 16-bit counters.
- 2. VCCA, VCCI = 2.7 V, device tested at room temperature.

Figure 1-9 • eX Dynamic Power Consumption – Low Frequency

Design Considerations


The TDI, TCK, TDO, PRA, and PRB pins should not be used as input or bidirectional ports. Since these pins are active during probing, critical signals input through these pins are not available while probing. In addition, the Security Fuse should not be programmed because doing so disables the probe circuitry. It is recommended to use a series 70Ω termination resistor on every probe connector (TDI, TCK, TMS, TDO, PRA, PRB). The 70Ω series termination is used to prevent data transmission corruption during probing and reading back the checksum.

JTAG Mode	TRST ¹	Security Fuse Programmed	PRA, PRB ²	TDI, TCK, TDO ²
Dedicated	LOW	No	User I/O ³	Probing Unavailable
Flexible	LOW	No	User I/O ³	User I/O ³
Dedicated	HIGH	No	Probe Circuit Outputs	Probe Circuit Inputs
Flexible	HIGH	No	Probe Circuit Outputs	Probe Circuit Inputs
-	_	Yes	Probe Circuit Secured	Probe Circuit Secured

Notes:

1. If TRST pin is not reserved, the device behaves according to TRST = HIGH in the table.

- 2. Avoid using the TDI, TCK, TDO, PRA, and PRB pins as input or bidirectional ports. Since these pins are active during probing, input signals will not pass through these pins and may cause contention.
- 3. If no user signal is assigned to these pins, they will behave as unused I/Os in this mode. Unused pins are automatically tristated by Microsemi Designer software.

Development Tool Support

The eX family of FPGAs is fully supported by both Libero® Integrated Design Environment and Designer FPGA Development software. Libero IDE is a design management environment that streamlines the design flow. Libero IDE provides an integrated design manager that seamlessly integrates design tools while guiding the user through the design flow, managing all design and log files, and passing necessary design data among tools. Additionally, Libero IDE allows users to integrate both schematic and HDL synthesis into a single flow and verify the entire design in a single environment. Libero IDE includes Synplify[®] for Microsemi from Synplicity[®], ViewDraw for Microsemi from Mentor Graphics, ModelSim[®] HDL Simulator from Mentor Graphics[®], WaveFormer Lite[™] from SynaptiCAD[™], and Designer software from Microsemi. Refer to the *Libero IDE flow* (located on Microsemi SoC Product Group's website) diagram for more information.

eX FPGA Architecture and Characteristics

Designer software is a place-and-route tool and provides a comprehensive suite of backend support tools for FPGA development. The Designer software includes timing-driven place-and-route, and a world-class integrated static timing analyzer and constraints editor. With the Designer software, a user can lock his/her design pins before layout while minimally impacting the results of place-and-route. Additionally, the back-annotation flow is compatible with all the major simulators and the simulation results can be cross-probed with Silicon Explorer II, Microsemi integrated verification and logic analysis tool. Another tool included in the Designer software is the SmartGen core generator, which easily creates popular and commonly used logic functions for implementation into your schematic or HDL design. Microsemi's Designer software is compatible with the most popular FPGA design entry and verification tools from companies such as Mentor Graphics, Synplicity, Synopsys, and Cadence Design Systems. The Designer software is available for both the Windows and UNIX operating systems.

Related Documents

Datasheet

eX Automotive Family FPGAs www.microsemi.com/soc/documents/eX_Auto_DS.pdf

Application Notes

Maximizing Logic Utilization in eX, SX and SX-A FPGA Devices Using CC Macros www.microsemi.com/soc/documents/CC_Macro_AN.pdf Implementation of Security in Microsemi Antifuse FPGAs www.microsemi.com/soc/documents/Antifuse_Security_AN.pdf Microsemi eX, SX-A, and RT54SX-S I/Os www.microsemi.com/soc/documents/antifuseIO_AN.pdf Microsemi SX-A and RT54SX-S Devices in Hot-Swap and Cold-Sparing Applications www.microsemi.com/soc/documents/HotSwapColdSparing_AN.pdf Design For Low Power in Microsemi Antifuse FPGAs www.microsemi.com/soc/documents/Low_Power_AN.pdf Programming Antifuse Devices www.microsemi.com/soc/documents/AntifuseProgram_AN.pdf

User Guides

Silicon Sculptor II User's Guide www.microsemi.com/soc/documents/SiliSculptII_Sculpt3_ug.pdf

Miscellaneous

Libero IDE flow www.microsemi.com/soc/products/tools/libero/flow.html

🌜 Microsemi.

eX FPGA Architecture and Characteristics

2.5 V / 3.3 V /5.0 V Operating Conditions

Symbol	Parameter	Limits	Units	
VCCI	DC Supply Voltage for I/Os	-0.3 to +6.0	V	
VCCA	DC Supply Voltage for Array	-0.3 to +3.0	V	
VI	Input Voltage	-0.5 to +5.75	V	
VO Output Voltage		–0.5 to +V _{CCI}	V	
T _{STG}	Storage Temperature	-65 to +150	°C	

Table 1-9 • Absolute Maximum Ratings*

Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the Recommended Operating Conditions.

Table 1-10 • Recommended Operating Conditions

Parameter	Commercial	Industrial	Units
Temperature Range*	0 to +70	-40 to +85	°C
2.5V Power Supply Range (VCCA, VCCI)	2.3 to 2.7	2.3 to 2.7	V
3.3V Power Supply Range (VCCI)	3.0 to 3.6	3.0 to 3.6	V
5.0V Power Supply Range (VCCI)	4.75 to 5.25	4.75 to 5.25	V

Note: **Ambient temperature* (T_A) *.*

Table 1-11 • Typical eX Standby Current at 25°C

Product	VCCA= 2.5 V VCCI = 2.5 V	VCCA = 2.5 V VCCI = 3.3 V	VCCA = 2.5 V VCCI = 5.0 V
eX64	397 µA	497 µA	700 µA
eX128	696 µA	795 µA	1,000 µA
eX256	698 µA	796 µA	2,000 µA

3.3 V LVTTL Electrical Specifications

	Parameter		Commercial		Industrial		
Symbol			Min.	Max.	Min.	Max.	Units
VOH	VCCI = MIN, VI = VIH or VIL	(IOH =8 mA)	2.4		2.4	•	V
VOL	VCCI = MIN, VI = VIH or VIL	(IOL = 12 mA)		0.4		0.4	V
VIL	Input Low Voltage			0.8		0.8	V
VIH	Input High Voltage		2.0	VCCI +0.5	2.0	VCCI +0.5	V
IIL/ IIH	Input Leakage Current, VIN = VCCI or GND		-10	10	-10	10	μA
IOZ	3-State Output Leakage Current, VOUT = VCCI or GND		-10	10	–10	10	μA
t _R , t _{F1,2}	Input Transition Time			10		10	ns
C _{IO}	I/O Capacitance			10		10	pF
ICC ^{3,4}	Standby Current			1.5		10	mA
IV Curve	Can be derived from the IBIS model at www.microsemi.com/soc/custsup/models/ibis.html.						

Notes:

1. t_R is the transition time from 0.8 V to 2.0 V.

2. t_F is the transition time from 2.0 V to 0.8 V.

3. ICC max Commercial -F = 5.0 mA

4. ICC = *ICCI* + *ICCA*

5. JTAG pins comply with LVTTL/TTL I/O specification regardless of whether they are used as a user I/O or a JTAG I/O.

5.0 V TTL Electrical Specifications

	DI Parameter		Commercial		Industrial		
Symbol			Min.	Max.	Min.	Max.	Units
VOH	VCCI = MIN, VI = VIH or VIL	(IOH = -8 mA)	2.4	•	2.4	•	V
VOL	VCCI = MIN, VI = VIH or VIL	(IOL= 12 mA)		0.4		0.4	V
VIL	Input Low Voltage			0.8		0.8	V
VIH	Input High Voltage		2.0	VCCI +0.5	2.0	VCCI +0.5	V
IIL/ IIH	Input Leakage Current, VIN = VCCI or GND		-10	10	-10	10	μA
IOZ	3-State Output Leakage Current, VOUT = VCCI or GND		-10	10	-10	10	μA
t _R , t _{F1,2}	Input Transition Time			10		10	ns
C _{IO}	I/O Capacitance			10		10	pF
ICC ^{3,4}	Standby Current			15		20	mA
IV Curve	Can be derived from the IBIS model at www.microsemi.com/soc/custsup/models/ibis.html.						
Noto:	•						

Note:

1. t_R is the transition time from 0.8 V to 2.0 V.

2. t_F is the transition time from 2.0 V to 0.8 V.

3. ICC max Commercial -F=20mA

4. ICC = *ICCI* + *ICCA*

5. JTAG pins comply with LVTTL/TTL I/O specification regardless of whether they are used as a user I/O or a JTAG I/O.

Power Dissipation

Power consumption for eX devices can be divided into two components: static and dynamic.

Static Power Component

The power due to standby current is typically a small component of the overall power. Typical standby current for eX devices is listed in the Table 1-11 on page 1-16. For example, the typical static power for eX128 at 3.3 V V_{CCI} is:

ICC * VCCA = 795 µA x 2.5 V = 1.99 mW

Dynamic Power Component

Power dissipation in CMOS devices is usually dominated by the dynamic power dissipation. This component is frequency-dependent and a function of the logic and the external I/O. Dynamic power dissipation results from charging internal chip capacitance due to PC board traces and load device inputs. An additional component of the dynamic power dissipation is the totem pole current in the CMOS transistor pairs. The net effect can be associated with an equivalent capacitance that can be combined with frequency and voltage to represent dynamic power dissipation.

Dynamic power dissipation = CEQ * VCCA² x F

where:

CEQ = Equivalent capacitance

F = switching frequency

Equivalent capacitance is calculated by measuring ICCA at a specified frequency and voltage for each circuit component of interest. Measurements have been made over a range of frequencies at a fixed value of VCC. Equivalent capacitance is frequency-independent, so the results can be used over a wide range of operating conditions. Equivalent capacitance values are shown below.

CEQ Values for eX Devices

) pF
) pF
) pF
) pF
БF

The variable and fixed capacitance of other device components must also be taken into account when estimating the dynamic power dissipation.

Table 1-12 shows the capacitance of the clock components of eX devices.

Table 1-12 • Capacitance of Clock Components of eX Devices

	eX64	eX128	eX256
Dedicated array clock – variable (Ceqhv)	0.85 pF	0.85 pF	0.85 pF
Dedicated array clock – fixed (Ceqhf)	18.00 pF	20.00 pF	25.00 pF
Routed array clock A (r1)	23.00 pF	28.00 pF	35.00 pF
Routed array clock B (r2)	23.00 pF	28.00 pF	35.00 pF

Thermal Characteristics

The temperature variable in the Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because the heat generated from dynamic power consumption is usually hotter than the ambient temperature. EQ 1, shown below, can be used to calculate junction temperature.

Junction Temperature = $\Delta T + T_a(1)$

Where:

 T_a = Ambient Temperature

 ΔT = Temperature gradient between junction (silicon) and ambient = θ_{ja} * P

P = Power

 θ_{ja} = Junction to ambient of package. θ_{ja} numbers are located in the "Package Thermal Characteristics" section below.

Package Thermal Characteristics

The device junction-to-case thermal characteristic is θ_{jc} , and the junction-to-ambient air characteristic is θ_{ja} . The thermal characteristics for θ_{ja} are shown with two different air flow rates. $\theta_{jc \ is \ provided \ for \ reference}$. The maximum junction temperature is 150°C.

The maximum power dissipation allowed for eX devices is a function of θ_{ja} . A sample calculation of the absolute maximum power dissipation allowed for a TQFP 100-pin package at commercial temperature and still air is as follows:

Maximum Power Allowed = $\frac{\text{Max. junction temp. } (^{\circ}\text{C}) - \text{Max. ambient temp. } (^{\circ}\text{C})}{\theta_{ja}(^{\circ}\text{C/W})} = \frac{150^{\circ}\text{C} - 70^{\circ}\text{C}}{33.5^{\circ}\text{C/W}} = 2.39\text{W}$

			θ_{ja}			
Package Type	Pin Count	θ _{jc}	Still Air	1.0 m/s 200 ft/min	2.5 m/s 500 ft/min	Units
Thin Quad Flat Pack (TQFP)	64	12.0	42.4	36.3	34.0	°C/W
Thin Quad Flat Pack (TQFP)	100	14.0	33.5	27.4	25.0	°C/W

EQ 1

eX FPGA Architecture and Characteristics

Timing Characteristics

Timing characteristics for eX devices fall into three categories: family-dependent, device-dependent, and design-dependent. The input and output buffer characteristics are common to all eX family members. Internal routing delays are device-dependent. Design dependency means actual delays are not determined until after placement and routing of the user's design are complete. Delay values may then be determined by using the Timer utility or performing simulation with post-layout delays.

Critical Nets and Typical Nets

Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most timing critical paths. Critical nets are determined by net property assignment prior to placement and routing. Up to six percent of the nets in a design may be designated as critical.

Long Tracks

Some nets in the design use long tracks. Long tracks are special routing resources that span multiple rows, columns, or modules. Long tracks employ three to five antifuse connections. This increases capacitance and resistance, resulting in longer net delays for macros connected to long tracks. Typically, no more than six percent of nets in a fully utilized device require long tracks. Long tracks contribute approximately 4 ns to 8.4 ns delay. This additional delay is represented statistically in higher fanout routing delays.

Timing Derating

eX devices are manufactured with a CMOS process. Therefore, device performance varies according to temperature, voltage, and process changes. Minimum timing parameters reflect maximum operating voltage, minimum operating temperature, and best-case processing. Maximum timing parameters reflect minimum operating voltage, maximum operating temperature, and worst-case processing.

Temperature and Voltage Derating Factors

Table 1-16 • Temperature and Voltage Derating Factors

(Normalized to Worst-Case Commercial, T_J = 70°C, VCCA = 2.3V)

	Junction Temperature (T _J)							
VCCA	-55	-40	0	25	70	85	125	
2.3	0.79	0.80	0.87	0.88	1.00	1.04	1.13	
2.5	0.74	0.74	0.81	0.83	0.93	0.97	1.06	
2.7	0.69	0.70	0.76	0.78	0.88	0.91	1.00	

Microsemi.

eX FPGA Architecture and Characteristics

Table 1-20 • eX Family Timing Characteristics (Worst-Case Commercial Conditions VCCA = 2.3 V, T_J = 70°C)

		–P Speed		Std Speed		–F Speed		
Parameter	Parameter Description		Max.	Min.	Max.	Min.	Max.	Units
2.5 V LVCMOS Output Module Timing ¹ (VCCI = 2.3 V)								
t _{DLH} Data-to-Pad LOW to HIGH			3.3		4.7		6.6	ns
t _{DHL}	Data-to-Pad HIGH to LOW		3.5		5.0		7.0	ns
t _{DHLS}	Data-to-Pad HIGH to LOW—Low Slew		11.6		16.6		23.2	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.5		3.6		5.1	ns
t _{ENZLS}	Enable-to-Pad Z to L—Low Slew		11.8		16.9		23.7	ns
t _{ENZH}	Enable-to-Pad, Z to H		3.4		4.9		6.9	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.1		3.0		4.2	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.4		5.67		7.94	ns
d _{TLH}	Delta Delay vs. Load LOW to HIGH		0.034		0.046		0.066	ns/pF
d _{THL}	Delta Delay vs. Load HIGH to LOW		0.016		0.022		0.05	ns/pF
d _{THLS}	Delta Delay vs. Load HIGH to LOW— Low Slew		0.05		0.072		0.1	ns/pF
3.3 V LVTTL Output Module Timing ¹ (VCCI = 3.0 V)								
t _{DLH}	Data-to-Pad LOW to HIGH		2.8		4.0		5.6	ns
t _{DHL}	Data-to-Pad HIGH to LOW		2.7		3.9		5.4	ns
t _{DHLS}	Data-to-Pad HIGH to LOW—Low Slew		9.7		13.9		19.5	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.2		3.2		4.4	ns
t _{ENZLS}	Enable-to-Pad Z to L—Low Slew		9.7		13.9		19.6	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.8		4.0		5.6	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.8		4.0		5.6	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.6		3.8		5.3	ns
d _{TLH}	Delta Delay vs. Load LOW to HIGH		0.02		0.03		0.046	ns/pF
d _{THL}	Delta Delay vs. Load HIGH to LOW		0.016		0.022		0.05	ns/pF
d _{THLS}	Delta Delay vs. Load HIGH to LOW— Low Slew		0.05		0.072		0.1	ns/pF
5.0 V TTL Ou	tput Module Timing* (VCCI = 4.75 V)							
t _{DLH}	Data-to-Pad LOW to HIGH		2.0		2.9		4.0	ns
t _{DHL}	Data-to-Pad HIGH to LOW		2.6		3.7		5.2	ns
t _{DHLS}	Data-to-Pad HIGH to LOW—Low Slew		6.8		9.7		13.6	ns
t _{ENZL}	Enable-to-Pad, Z to L		1.9		2.7		3.8	ns
t _{ENZLS}	Enable-to-Pad Z to L—Low Slew		6.8		9.8		13.7	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.1		3.0		4.1	ns
t _{ENLZ}	Enable-to-Pad, L to Z		3.3		4.8		6.6	ns

Note: *Delays based on 35 pF loading.

Pin Description

CLKA/B Routed Clock A and B

These pins are clock inputs for clock distribution networks. Input levels are compatible with standard TTL or LVTTL specifications. The clock input is buffered prior to clocking the R-cells. If not used, this pin must be set LOW or HIGH on the board. It must not be left floating.

GND Ground

LOW supply voltage.

HCLK Dedicated (Hardwired) Array Clock

This pin is the clock input for sequential modules. Input levels are compatible with standard TTL or LVTTL specifications. This input is directly wired to each R-cell and offers clock speeds independent of the number of R-cells being driven. If not used, this pin must be set LOW or HIGH on the board. It must not be left floating.

I/O Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Based on certain configurations, input and output levels are compatible with standard TTL or LVTTL specifications. Unused I/O pins are automatically tristated by the Designer software.

LP Low Power Pin

Controls the low power mode of the eX devices. The device is placed in the low power mode by connecting the LP pin to logic HIGH. In low power mode, all I/Os are tristated, all input buffers are turned OFF, and the core of the device is turned OFF. To exit the low power mode, the LP pin must be set LOW. The device enters the low power mode 800 ns after the LP pin is driven to a logic HIGH. It will resume normal operation 200 μ s after the LP pin is driven to a logic LOW. LP pin should not be left floating. Under normal operating condition it should be tied to GND via 10 k Ω resistor.

NC No Connection

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.

PRA/PRB, I/O Probe A/B

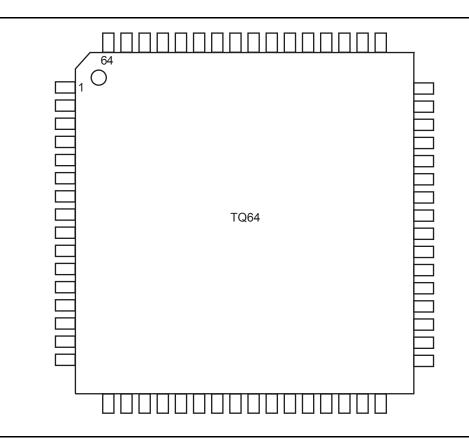
The Probe pin is used to output data from any user-defined design node within the device. This diagnostic pin can be used independently or in conjunction with the other probe pin to allow real-time diagnostic output of any signal path within the device. The Probe pin can be used as a user-defined I/O when verification has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality.

TCK, I/O Test Clock

Test clock input for diagnostic probe and device programming. In flexible mode, TCK becomes active when the TMS pin is set LOW (refer to Table 1-4 on page 1-10). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state.

TDI, I/O Test Data Input

Serial input for boundary scan testing and diagnostic probe. In flexible mode, TDI is active when the TMS pin is set LOW (refer to Table 1-4 on page 1-10). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state.


TDO, I/O Test Data Output

Serial output for boundary scan testing. In flexible mode, TDO is active when the TMS pin is set LOW (refer to Table 1-4 on page 1-10). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state. When Silicon Explorer is being used, TDO will act as an output when the "checksum" command is run. It will return to user I/O when "checksum" is complete.

2 – Package Pin Assignments

TQ64

Note: For Package Manufacturing and Environmental information, visit Resource center at www.microsemi.com/soc/products/rescenter/package/index.html.

TQ100								
eX64eX128eX256Pin NumberFunctionFunction								
71	I/O	I/O	I/O					
72	NC	I/O	I/O					
73	NC	NC	I/O					
74	NC	NC	I/O					
75	NC	NC	I/O					
76	NC	I/O	I/O					
77	I/O	I/O	I/O					
78	I/O	I/O	I/O					
79	I/O	I/O	I/O					
80	I/O	I/O	I/O					
81	I/O	I/O	I/O					
82	VCCI	VCCI	VCCI					
83	I/O	I/O	I/O					
84	I/O	I/O	I/O					
85	I/O	I/O	I/O					
86	I/O	I/O	I/O					
87	CLKA	CLKA	CLKA					
88	CLKB	CLKB	CLKB					
89	NC	NC	NC					
90	VCCA	VCCA	VCCA					
91	GND	GND	GND					
92	PRA, I/O	PRA, I/O	PRA, I/O					
93	I/O	I/O	I/O					
94	I/O	I/O	I/O					
95	I/O	I/O	I/O					
96	I/O	I/O	I/O					
97	I/O	I/O	I/O					
98	I/O	I/O	I/O					
99	I/O	I/O	I/O					
100	TCK, I/O	TCK, I/O	TCK, I/O					

Note: *Please read the LP pin descriptions for restrictions on their use.

Datasheet Information

Revision	Changes	Page
v4.0 (continued)	The "Flexible Mode" section was updated.	1-10
	Table 1-5 •Boundary-Scan Pin Configurations and Functions is new.	1-11
	The "TRST Pin" section was updated.	1-11
	The "Probing Capabilities" section is new.	1-12
	The "Programming" section was updated.	1-12
	The "Probing Capabilities" section was updated.	1-12
	The "Silicon Explorer II Probe" section was updated.	1-12
	The "Design Considerations" section was updated.	1-13
	The "Development Tool Support" section was updated.	1-13
	The "Absolute Maximum Ratings*" section was updated.	1-16
	The "Temperature and Voltage Derating Factors" section was updated.	1-26
	The "TDI, I/O Test Data Input" section was updated.	1-31
	The "TDO, I/O Test Data Output" section was updated.	1-31
	The "TMS Test Mode Select" section was updated.	1-32
	The "TRST, I/O Boundary Scan Reset Pin" section was updated.	1-32
	All VSV pins were changed to VCCA. The change affected the following pins:	
	64-Pin TQFP – Pin 36	
	100-Pin TQFP – Pin 57	
	49-Pin CSP – Pin D5	
	128-Pin CSP-Pin H11 and Pin J1 for eX256	
	180-Pin CSP – Pins J12 and K2	
v3.0	The "Recommended Operating Conditions" section has been changed.	1-16
	The "3.3 V LVTTL Electrical Specifications" section has been updated.	1-18
	The "5.0 V TTL Electrical Specifications" section has been updated.	1-18
	The "Total Dynamic Power (mW)" section is new.	1-9
	The "System Power at 5%, 10%, and 15% Duty Cycle" section is new.	1-9
	The "eX Timing Model" section has been updated.	1-22
v2.0.1	The I/O Features table, Table 1-2 on page 1-6, was updated.	1-6
	The table, "Standby Power of eX Devices in LP Mode Typical Conditions, VCCA, VCCI = 2.5 V , TJ = 25° C " section, was updated.	1-7
	"Typical eX Standby Current at 25°C" section is a new table.	1-16
	The table in the section, "Package Thermal Characteristics" section has been updated for the 49-Pin CSP.	1-21
	The "eX Timing Model" section has been updated.	1-22
	The timing numbers found in, "eX Family Timing Characteristics" section have been updated.	1-27
	The V _{SV} pin has been added to the "Pin Description" section.	1-31
	Please see the following pin tables for the V _{SV} pin and an important footnote including the pin: "TQ64", "TQ100", "128-Pin CSP", and "180-Pin CSP".	2-1, 2-3, 2-6, 2-11
	The figure, "TQ64" section has been updated.	2-1

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at **www.microsemi.com**.

© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.