E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Deta	il	s

Details	
Product Status	Active
Number of LABs/CLBs	
Number of Logic Elements/Cells	128
Total RAM Bits	-
Number of I/O	41
Number of Gates	3000
Voltage - Supply	2.3V ~ 2.7V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	64-LQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ex64-tqg64i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Temperature Grade Offerings

Device\ Package	TQ64	TQ100
eX64	C, I, A	C, I, A
eX128	C, I, A	C, I, A
eX256	C, I, A	C, I, A

Note: C = Commercial

l = Industrial

A = Automotive

Speed Grade and Temperature Grade Matrix

	-F	Std	-P
С	\checkmark	\checkmark	\checkmark
1		\checkmark	\checkmark
A		\checkmark	

Note: P = Approximately 30% faster than Standard

–F = Approximately 40% slower than Standard

Refer to the eX Automotive Family FPGAs datasheet for details on automotive temperature offerings.

Contact your local Microsemi representative for device availability.

Table of Contents

eX FPGA Architecture and Characteristics

General Description	1-1
eX Family Architecture	1-1
Other Architectural Features	1-5
Design Considerations	1-13
Related Documents	1-15
2.5 V / 3.3 V /5.0 V Operating Conditions	1-16
2.5 V LVCMOS2 Electrical Specifications	1-17
3.3 V LVTTL Electrical Specifications	1-18
5.0 V TTL Electrical Specifications	1-18
Power Dissipation	1-19
Thermal Characteristics	1-21
Package Thermal Characteristics	1-21
eX Timing Model	1-22
Output Buffer Delays	1-23
AC Test Loads	1-23
Input Buffer Delays	1-24
C-Cell Delays	1-24
Cell Timing Characteristics	1-25
Timing Characteristics	1-26
eX Family Timing Characteristics	1-27
Pin Description	1-31
Package Pin Assignments	
TQ64	2-1
TQ100	

Datasheet Information

List of Changes	3-1
Datasheet Categories	3-4
Export Administration Regulations (EAR)	3-4

1 – eX FPGA Architecture and Characteristics

General Description

The eX family of FPGAs is a low-cost solution for low-power, high-performance designs. The inherent low power attributes of the antifuse technology, coupled with an additional low static power mode, make these devices ideal for power-sensitive applications. Fabricated with an advanced 0.22 mm CMOS antifuse technology, these devices achieve high performance with no power penalty.

eX Family Architecture

Microsemi eX family is implemented on a high-voltage twin-well CMOS process using 0.22 μ m design rules. The eX family architecture uses a "sea-of-modules" structure where the entire floor of the device is covered with a grid of logic modules with virtually no chip area lost to interconnect elements or routing. Interconnection among these logic modules is achieved using Microsemi patented metal-to-metal programmable antifuse interconnect elements. The antifuse interconnect is made up of a combination of amorphous silicon and dielectric material with barrier metals and has an "on" state resistance of 25 Ω with a capacitance of 1.0fF for low-signal impedance. The antifuses are normally open circuit and, when programmed, form a permanent low-impedance connection. The eX family provides two types of logic modules, the register cell (R-cell) and the combinatorial cell (C-cell).

The R-cell contains a flip-flop featuring asynchronous clear, asynchronous preset, and clock enable (using the S0 and S1 lines) control signals (Figure 1-1). The R-cell registers feature programmable clock polarity selectable on a register-by-register basis. This provides additional flexibility while allowing mapping of synthesized functions into the eX FPGA. The clock source for the R-cell can be chosen from either the hard-wired clock or the routed clock.

The C-cell implements a range of combinatorial functions up to five inputs (Figure 1-2 on page 1-2). Inclusion of the DB input and its associated inverter function enables the implementation of more than 4,000 combinatorial functions in the eX architecture in a single module.

Two C-cells can be combined together to create a flip-flop to imitate an R-cell via the use of the CC macro. This is particularly useful when implementing non-timing-critical paths and when the design engineer is running out of R-cells. More information about the CC macro can be found in the *Maximizing Logic Utilization in eX, SX and SX-A FPGA Devices Using CC Macros* application note.

Figure 1-1 • R-Cell

Module Organization

C-cell and R-cell logic modules are arranged into horizontal banks called Clusters, each of which contains two C-cells and one R-cell in a C-R-C configuration.

Clusters are further organized into modules called SuperClusters for improved design efficiency and device performance, as shown in Figure 1-3. Each SuperCluster is a two-wide grouping of Clusters.

Figure 1-3 • Cluster Organization

Other Architectural Features

Performance

The combination of architectural features described above enables eX devices to operate with internal clock frequencies exceeding 350 MHz for very fast execution of complex logic functions. The eX family is an optimal platform upon which the functionality previously contained in CPLDs can be integrated. eX devices meet the performance goals of gate arrays, and at the same time, present significant improvements in cost and time to market. Using timing-driven place-and-route tools, designers can achieve highly deterministic device performance.

User Security

Microsemi FuseLock advantage provides the highest level of protection in the FPGA industry against unauthorized modifications. In addition to the inherent strengths of the architecture, special security fuses that are intended to prevent internal probing and overwriting are hidden throughout the fabric of the device. They are located such that they cannot be accessed or bypassed without destroying the rest of the device, making Microsemi antifuse FPGAs highly resistant to both invasive and more subtle noninvasive attacks.

Look for this symbol to ensure your valuable IP is secure. The FuseLock Symbol on the FPGA ensures that the device is safeguarded to cryptographic attacks.

Figure 1-7 • Fuselock

For more information, refer to Implementation of Security in Microsemi Antifuse FPGAs application note.

I/O Modules

Each I/O on an eX device can be configured as an input, an output, a tristate output, or a bidirectional pin. Even without the inclusion of dedicated I/O registers, these I/Os, in combination with array registers, can achieve clock-to-out (pad-to-pad) timing as fast as 3.9 ns. I/O cells in eX devices do not contain embedded latches or flip-flops and can be inferred directly from HDL code. The device can easily interface with any other device in the system, which in turn enables parallel design of system components and reduces overall design time.

All unused I/Os are configured as tristate outputs by Microsemi's Designer software, for maximum flexibility when designing new boards or migrating existing designs. Each I/O module has an available pull-up or pull-down resistor of approximately 50 k Ω that can configure the I/O in a known state during power-up. Just shortly before V_{CCA} reaches 2.5 V, the resistors are disabled and the I/Os will be controlled by user logic.

eX FPGA Architecture and Characteristics

Table 1-2 describes the I/O features of eX devices. For more information on I/Os, refer to *Microsemi eX, SX-A, and RT54SX-S I/Os* application note.

Table 1-2 • I/O Features

Function	Description
Input Buffer Threshold	• 5.0V TTL
Selection	• 3.3V LVTTL
	2.5V LVCMOS2
Nominal Output Drive	5.0V TTL/CMOS
	• 3.3V LVTTL
	• 2.5V LVCMOS 2
Output Buffer	"Hot-Swap" Capability
	 I/O on an unpowered device does not sink current
	Can be used for "cold sparing"
	Selectable on an individual I/O basis
	Individually selectable low-slew option
Power-Up	Individually selectable pull ups and pull downs during power-up (default is to power up in tristate)
	Enables deterministic power-up of device
	V_{CCA} and V_{CCI} can be powered in any order

The eX family supports mixed-voltage operation and is designed to tolerate 5.0 V inputs in each case. A detailed description of the I/O pins in eX devices can be found in "Pin Description" on page 1-31.

Hot-Swapping

eX I/Os are configured to be hot-swappable. During power-up/down (or partial up/down), all I/Os are tristated, provided V_{CCA} ramps up within a diode drop of V_{CCI} . V_{CCA} and V_{CCI} do not have to be stable. during power-up/down, and they do not require a specific power-up or power-down sequence in order to avoid damage to the eX devices. In addition, all outputs can be programmed to have a weak resistor pull-up or pull-down for output tristate at power-up. After the eX device is plugged into an electrically active system, the device will not degrade the reliability of or cause damage to the host system. The device's output pins are driven to a high impedance state until normal chip operating conditions are reached. Please see the application note, *Microsemi SX-A and RT54SX-S Devices in Hot-Swap and Cold-Sparing Applications*, which also applies to the eX devices, for more information on hot swapping.

Power Requirements

Power consumption is extremely low for the eX family due to the low capacitance of the antifuse interconnects. The antifuse architecture does not require active circuitry to hold a charge (as do SRAM or EPROM), making it the lowest-power FPGA architecture available today.

Low Power Mode

The eX family has been designed with a Low Power Mode. This feature, activated with setting the special LP pin to HIGH for a period longer than 800 ns, is particularly useful for battery-operated systems where battery life is a primary concern. In this mode, the core of the device is turned off and the device consumes minimal power with low standby current. In addition, all input buffers are turned off, and all outputs and bidirectional buffers are tristated when the device enters this mode. Since the core of the device is turned off, the states of the registers are lost. The device must be re-initialized when returning to normal operating mode. I/Os can be driven during LP mode. For details, refer to the *Design for Low Power in Microsemi Antifuse FPGAs* application note under the section Using the LP Mode Pin on eX Devices. Clock pins should be driven either HIGH or LOW and should not float; otherwise, they will draw current and burn power. The device must be re-initialized when exiting LP mode.

Boundary Scan Testing (BST)

All eX devices are IEEE 1149.1 compliant. eX devices offer superior diagnostic and testing capabilities by providing Boundary Scan Testing (BST) and probing capabilities. These functions are controlled through the special test pins (TMS, TDI, TCK, TDO and TRST). The functionality of each pin is defined by two available modes: Dedicated and Flexible, and is described in Table 1-4. In the dedicated test mode, TCK, TDI, and TDO are dedicated pins and cannot be used as regular I/Os. In flexible mode (default mode), TMS should be set HIGH through a pull-up resistor of 10 k Ω . TMS can be pulled LOW to initiate the test sequence.

Table 1-4 •	Boundary	y Scan Pin	Functionality
-------------	----------	------------	---------------

Dedicated Test Mode	Flexible Mode	
TCK, TDI, TDO are dedicated BST pins	TCK, TDI, TDO are flexible and may be used as I/Os	
No need for pull-up resistor for TMS and TDI	Use a pull-up resistor of 10 k Ω on TMS	

Dedicated Test Mode

In Dedicated mode, all JTAG pins are reserved for BST; designers cannot use them as regular I/Os. An internal pull-up resistor is automatically enabled on both TMS and TDI pins, and the TMS pin will function as defined in the IEEE 1149.1 (JTAG) specification.

To select Dedicated mode, users need to reserve the JTAG pins in Microsemi's Designer software by checking the **Reserve JTAG** box in the Device Selection Wizard (Figure 1-12). JTAG pins comply with LVTTL/TTL I/O specification regardless of whether they are used as a user I/O or a JTAG I/O. Refer to the "3.3 V LVTTL Electrical Specifications" section and "5.0 V TTL Electrical Specifications" section on page 1-18 for detailed specifications.

Dev	vice Selection Wizard - Variations
	Reserve Pins
	🔽 Reserve JTAG
	Reserve JTAG Test Reset
	Reserve Probe

Figure 1-12 • Device Selection Wizard

Flexible Mode

In Flexible Mode, TDI, TCK and TDO may be used as either user I/Os or as JTAG input pins. The internal resistors on the TMS and TDI pins are disabled in flexible JTAG mode, and an external 10 k Ω pull-resistor to V_{CCI} is required on the TMS pin.

To select the Flexible mode, users need to clear the check box for **Reserve JTAG** in the Device Selection Wizard in Microsemi's Designer software. The functionality of TDI, TCK, and TDO pins is controlled by the BST TAP controller. The TAP controller receives two control inputs, TMS and TCK. Upon power-up, the TAP controller enters the Test-Logic-Reset state. In this state, TDI, TCK, and TDO function as user I/Os. The TDI, TCK, and TDO pins are transformed from user I/Os into BST pins when the TMS pin is LOW at the first rising edge of TCK. The TDI, TCK, and TDO pins return to user I/Os when TMS is held HIGH for at least five TCK cycles.

Table 1-5 describes the different configuration requirements of BST pins and their functionality in different modes.

Mode	Designer "Reserve JTAG" Selection	TAP Controller State
Dedicated (JTAG)	Checked	Any
Flexible (User I/O)	Unchecked	Test-Logic-Reset
Flexible (JTAG)	Unchecked	Any EXCEPT Test-Logic-Reset

Table 1-5 • Boundary-Scan Pin Configurations and Functions

TRST Pin

The TRST pin functions as a dedicated Boundary-Scan Reset pin when the **Reserve JTAG Test Reset** option is selected, as shown in Figure 1-12. An internal pull-up resistor is permanently enabled on the TRST pin in this mode. It is recommended to connect this pin to GND in normal operation to keep the JTAG state controller in the Test-Logic-Reset state. When JTAG is being used, it can be left floating or be driven HIGH.

When the **Reserve JTAG Test Reset** option is not selected, this pin will function as a regular I/O. If unused as an I/O in the design, it will be configured as a tristated output.

JTAG Instructions

Table 1-6 lists the supported instructions with the corresponding IR codes for eX devices.

Table 1	-6 •	JTAG	Instruction	Code
	-	• • • • •		

Instructions (IR4: IR0)	Binary Code
EXTEST	00000
SAMPLE / PRELOAD	00001
INTEST	00010
USERCODE	00011
IDCODE	00100
HIGHZ	01110
CLAMP	01111
Diagnostic	10000
BYPASS	11111
Reserved	All others

Table 1-7 lists the codes returned after executing the IDCODE instruction for eX devices. Note that bit 0 is always "1." Bits 11-1 are always "02F", which is Microsemi SoC Products Group's manufacturer code.

Device	Revision	Bits 31-28	Bits 27-12
eX64	0	8	40B2, 42B2
eX128	0	9	40B0, 42B0
eX256	0	9	40B5, 42B5
eX64	1	А	40B2, 42B2
eX128	1	В	40B0, 42B0
eX256	1	В	40B5, 42B5

Table 1-7 • IDCODE for eX Devices

eX FPGA Architecture and Characteristics

2.5 V / 3.3 V /5.0 V Operating Conditions

Symbol	Parameter	Limits	Units
VCCI	DC Supply Voltage for I/Os	-0.3 to +6.0	V
VCCA	DC Supply Voltage for Array	-0.3 to +3.0	V
VI	Input Voltage	-0.5 to +5.75	V
VO	Output Voltage	–0.5 to +V _{CCI}	V
T _{STG}	Storage Temperature	-65 to +150	°C

Table 1-9 • Absolute Maximum Ratings*

Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the Recommended Operating Conditions.

Table 1-10 • Recommended Operating Conditions

Parameter	Commercial	Industrial	Units
Temperature Range*	0 to +70	–40 to +85	°C
2.5V Power Supply Range (VCCA, VCCI)	2.3 to 2.7	2.3 to 2.7	V
3.3V Power Supply Range (VCCI)	3.0 to 3.6	3.0 to 3.6	V
5.0V Power Supply Range (VCCI)	4.75 to 5.25	4.75 to 5.25	V

Note: **Ambient temperature* (T_A) *.*

Table 1-11 • Typical eX Standby Current at 25°C

Product	VCCA= 2.5 V VCCI = 2.5 V	VCCA = 2.5 V VCCI = 3.3 V	VCCA = 2.5 V VCCI = 5.0 V
eX64	397 µA	497 µA	700 µA
eX128	696 µA	795 µA	1,000 µA
eX256	698 µA	796 µA	2,000 µA

eX FPGA Architecture and Characteristics

The estimation of the dynamic power dissipation is a piece-wise linear summation of the power dissipation of each component.

Dynamic power dissipation = VCCA² * [(m_c * C_{eqcm} * fm_C)_{Comb Modules} + (m_s * C_{eqsm} * fm_S)_{Seq Modules}

- + (n * C_{eqi} * fn)_{Input Buffers} + (0.5 * (q1 * C_{eacr} * fq1) + (r1 * fq1))_{RCLKA} + (0.5 * (q2 * C_{eacr} * fq2)
- + $(r2 * fq2))_{RCLKB}$ + $(0.5 * (s1 * C_{eqhv} * fs1)+(C_{eqhf} * fs1))_{HCLK}]$ + $V_{CCl}^2 * [(p * (C_{eqo} + C_L))_{HCLK}]$

* fp)_{Output Buffers}]

where:

m	=	Number	٥f	combinatorial	cells	switching	at free	nuencv	fm	typically	120%	of	C-cells
III _C	-	NULLING	UI.	combinatonai	CEIIS	Switching	atilet	Juency	шп,	typically	20/0	01	C-CEII3

- m_s = Number of sequential cells switching at frequency fm, typically 20% of R-cells
- n = Number of input buffers switching at frequency fn, typically number of inputs / 4
- p = Number of output buffers switching at frequency fp, typically number of outputs / 4
- q1 = Number of R-cells driven by routed array clock A
- q2 = Number of R-cells driven by routed array clock B
- r1 = Fixed capacitance due to routed array clock A
- r2 = Fixed capacitance due to routed array clock B
- s1 = Number of R-cells driven by dedicated array clock
- C_{eacm} = Equivalent capacitance of combinatorial modules
- C_{eqsm} = Equivalent capacitance of sequential modules
- C_{eqi} = Equivalent capacitance of input buffers
- C_{egcr} = Equivalent capacitance of routed array clocks
- C_{eghv} = Variable capacitance of dedicated array clock
- C_{eghf} = Fixed capacitance of dedicated array clock
- C_{eqo} = Equivalent capacitance of output buffers
- C_L = Average output loading capacitance, typically 10 pF
- fm_c = Average C-cell switching frequency, typically F/10
- fm_s = Average R-cell switching frequency, typically F/10
- fn = Average input buffer switching frequency, typically F/5
- fp = Average output buffer switching frequency, typically F/5
- fq1 = Frequency of routed clock A
- fq2 = Frequency of routed clock B
- fs1 = Frequency of dedicated array clock

The eX, SX-A and RTSX-S Power Calculator can be used to estimate the total power dissipation (static and dynamic) of eX devices: www.microsemi.com/soc/techdocs/calculators.aspx.

eX FPGA Architecture and Characteristics

eX Timing Model

Note: Values shown for eX128–P, worst-case commercial conditions (5.0 V, 35 pF Pad Load). Figure 1-14 • eX Timing Model

Hardwired Clock

External Setup = $t_{INYH} + t_{IRD1} + t_{SUD} - t_{HCKH}$ = 0.7 + 0.3 + 0.5 - 1.1 = 0.4 ns Clock-to-Out (Pad-to-Pad), typical = $t_{HCKH} + t_{RCO} + t_{RD1} + t_{DHL}$

= 1.1 + 0.6 + 0.3 + 2.6 = 4.6 ns

Routed Clock

External Setup = $t_{INYH} + t_{IRD2} + t_{SUD} - t_{RCKH}$ = 0.7 + 0.4 + 0.5 - 1.3= 0.3 ns

Clock-to-Out (Pad-to-Pad), typical

 $= t_{RCKH} + t_{RCO} + t_{RD1} + t_{DHL}$

= 1.3+ 0.6 + 0.3 + 2.6 = 4.8 ns

eX Family Timing Characteristics

Table 1-17 • eX Family Timing Characteristics

(Worst-Case Commercial Conditions, VCCA = 2.3 V, T_J = 70°C)

		–P S	peed	Std Speed		F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
C-Cell Propa	agation Delays ¹							
t _{PD}	Internal Array Module		0.7		1.0		1.4	ns
Predicted R	outing Delays ²							
t _{DC}	FO=1 Routing Delay, DirectConnect		0.1		0.1		0.2	ns
t _{FC}	FO=1 Routing Delay, FastConnect		0.3		0.5		0.7	ns
t _{RD1}	FO=1 Routing Delay		0.3		0.5		0.7	ns
t _{RD2}	FO=2 Routing Delay		0.4		0.6		0.8	ns
t _{RD3}	FO=3 Routing Delay		0.5		0.8		1.1	ns
t _{RD4}	FO=4 Routing Delay		0.7		1.0		1.3	ns
t _{RD8}	FO=8 Routing Delay		1.2		1.7		2.4	ns
t _{RD12}	FO=12 Routing Delay		1.7		2.5		3.5	ns
R-Cell Timin	g							
t _{RCO}	Sequential Clock-to-Q		0.6		0.9		1.3	ns
t _{CLR}	Asynchronous Clear-to-Q		0.6		0.8		1.2	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.7		0.9		1.3	ns
t _{SUD}	Flip-Flop Data Input Set-Up	0.5		0.7		1.0		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.3		1.9		2.6		ns
t _{RECASYN}	Asynchronous Recovery Time	0.3		0.5		0.7		ns
t _{HASYN}	Asynchronous Hold Time	0.3		0.5		0.7		ns
2.5 V Input M	Nodule Propagation Delays							
t _{INYH}	Input Data Pad-to-Y HIGH		0.6		0.9		1.3	ns
t _{INYL}	Input Data Pad-to-Y LOW		0.8		1.1		1.5	ns
3.3 V Input M	Nodule Propagation Delays							
t _{INYH}	Input Data Pad-to-Y HIGH		0.7		1.0		1.4	ns
t _{INYL}	Input Data Pad-to-Y LOW		0.9		1.3		1.8	ns
5.0 V Input M	Nodule Propagation Delays							
t _{INYH}	Input Data Pad-to-Y HIGH		0.7		1.0		1.4	ns
t _{INYL}	Input Data Pad-to-Y LOW		0.9		1.3		1.8	ns
Input Modul	e Predicted Routing Delays ²							
t _{IRD1}	FO=1 Routing Delay		0.3		0.4		0.5	ns
t _{IRD2}	FO=2 Routing Delay		0.4		0.6		0.8	ns
t _{IRD3}	FO=3 Routing Delay		0.5		0.8		1.1	ns
t _{IRD4}	FO=4 Routing Delay		0.7		1.0		1.3	ns
t _{IRD8}	FO=8 Routing Delay		1.2		1.7		2.4	ns
t _{IRD12}	FO=12 Routing Delay		1.7		2.5		3.5	ns

Notes:

1. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$ or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for

 Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance.

		'–P' \$	Speed	'Std' Speed		'–F' \$	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated (Ha								
^t нскн	Input LOW to HIGH (Pad to R-Cell Input)		1.1		1.6		2.3	ns
t _{HCKL}	Input HIGH to LOW (Pad to R-Cell Input)		1.1		1.6		2.3	ns
t _{HPWH}	Minimum Pulse Width HIGH	1.4		2.0		2.8		ns
t _{HPWL}	Minimum Pulse Width LOW	1.4		2.0		2.8		ns
t _{HCKSW}	Maximum Skew		<0.1		<0.1		<0.1	ns
t _{HP}	Minimum Period	2.8		4.0		5.6		ns
f _{HMAX}	Maximum Frequency		357		250		178	MHz
Routed Array	Clock Networks							
t _{RCKH}	Input LOW to HIGH (Light Load) (Pad to R-Cell Input) MAX.		1.0		1.4		2.0	ns
t _{RCKL}	Input HIGH to LOW (Light Load) (Pad to R-Cell Input) MAX.		1.0		1.4		2.0	ns
t _{RCKH}	Input LOW to HIGH (50% Load) (Pad to R-Cell Input) MAX.		1.2		1.7		2.4	ns
t _{RCKL}	Input HIGH to LOW (50% Load) (Pad to R-Cell Input) MAX.		1.2		1.7		2.4	ns
t _{RCKH}	Input LOW to HIGH (100% Load) (Pad to R-Cell Input) MAX.		1.4		2.0		2.8	ns
t _{RCKL}	Input HIGH to LOW (100% Load) (Pad to R-Cell Input) MAX.		1.4		2.0		2.8	ns
t _{RPWH}	Min. Pulse Width HIGH	1.4		2.0		2.8		ns
t _{RPWL}	Min. Pulse Width LOW	1.4		2.0		2.8		ns
t _{RCKSW} *	Maximum Skew (Light Load)		0.2		0.3		0.4	ns
t _{RCKSW} *	Maximum Skew (50% Load)		0.2		0.2		0.3	ns
t _{RCKSW} *	Maximum Skew (100% Load)		0.1		0.1		0.2	ns

Table 1-19 • eX Family Timing Characteristics (Worst-Case Commercial Conditions VCCA = 2.3V, VCCI = 2.3 V or 3.0V, T_J = 70°C)

Note: *Clock skew improves as the clock network becomes more heavily loaded.

TMS Test Mode Select

The TMS pin controls the use of the IEEE 1149.1 Boundary scan pins (TCK, TDI, TDO, TRST). In flexible mode when the TMS pin is set LOW, the TCK, TDI, and TDO pins are boundary scan pins (refer to Table 1-4 on page 1-10). Once the boundary scan pins are in test mode, they will remain in that mode until the internal boundary scan state machine reaches the "logic reset" state. At this point, the boundary scan pins will be released and will function as regular I/O pins. The "logic reset" state is reached five TCK cycles after the TMS pin is set HIGH. In dedicated test mode, TMS functions as specified in the IEEE 1149.1 specifications.

TRST, I/O Boundary Scan Reset Pin

Once it is configured as the JTAG Reset pin, the TRST pin functions as an active-low input to asynchronously initialize or reset the boundary scan circuit. The TRST pin is equipped with an internal pull-up resistor. This pin functions as an I/O when the **Reserve JTAG Reset** Pin is not selected in the Designer software.

VCCI Supply Voltage

Supply voltage for I/Os.

VCCA Supply Voltage

Supply voltage for Array.

2 – Package Pin Assignments

TQ64

Note: For Package Manufacturing and Environmental information, visit Resource center at www.microsemi.com/soc/products/rescenter/package/index.html.

Package Pin Assignments

	TQ64		TQ64			
Pin Number	eX64 Function	eX128 Function	Pin Number	eX64 Function	eX128 Function	
1	GND	GND	33	GND	GND	
2	TDI, I/O	TDI, I/O	34	I/O	I/O	
3	I/O	I/O	35	I/O	I/O	
4	TMS	TMS	36	VCCA	VCCA	
5	GND	GND	37	VCCI	VCCI	
6	VCCI	VCCI	38	I/O	I/O	
7	I/O	I/O	39	I/O	I/O	
8	I/O	I/O	40	NC	I/O	
9	NC	I/O	41	NC	I/O	
10	NC	I/O	42	I/O	I/O	
11	TRST, I/O	TRST, I/O	43	I/O	I/O	
12	I/O	I/O	44	VCCA	VCCA	
13	NC	I/O	45*	GND/LP	GND/ LP	
14	GND	GND	46	GND	GND	
15	I/O	I/O	47	I/O	I/O	
16	I/O	I/O	48	I/O	I/O	
17	I/O	I/O	49	I/O	I/O	
18	I/O	I/O	50	I/O	I/O	
19	VCCI	VCCI	51	I/O	I/O	
20	I/O	I/O	52	VCCI	VCCI	
21	PRB, I/O	PRB, I/O	53	I/O	I/O	
22	VCCA	VCCA	54	I/O	I/O	
23	GND	GND	55	CLKA	CLKA	
24	I/O	I/O	56	CLKB	CLKB	
25	HCLK	HCLK	57	VCCA	VCCA	
26	I/O	I/O	58	GND	GND	
27	I/O	I/O	59	PRA, I/O	PRA, I/O	
28	I/O	I/O	60	I/O	I/O	
29	I/O	I/O	61	VCCI	VCCI	
30	I/O	I/O	62	I/O	I/O	
31	I/O	I/O	63	I/O	I/O	
32	TDO, I/O	TDO, I/O	64	TCK, I/O	TCK, I/O	

Note: *Please read the LP pin descriptions for restrictions on their use.

	тс	2100	
Pin Number	eX64 Function	eX128 Function	eX256 Function
71	I/O	I/O	I/O
72	NC	I/O	I/O
73	NC	NC	I/O
74	NC	NC	I/O
75	NC	NC	I/O
76	NC	I/O	I/O
77	I/O	I/O	I/O
78	I/O	I/O	I/O
79	I/O	I/O	I/O
80	I/O	I/O	I/O
81	I/O	I/O	I/O
82	VCCI	VCCI	VCCI
83	I/O	I/O	I/O
84	I/O	I/O	I/O
85	I/O	I/O	I/O
86	I/O	I/O	I/O
87	CLKA	CLKA	CLKA
88	CLKB	CLKB	CLKB
89	NC	NC	NC
90	VCCA	VCCA	VCCA
91	GND	GND	GND
92	PRA, I/O	PRA, I/O	PRA, I/O
93	I/O	I/O	I/O
94	I/O	I/O	I/O
95	I/O	I/O	I/O
96	I/O	I/O	I/O
97	I/O	I/O	I/O
98	I/O	I/O	I/O
99	I/O	I/O	I/O
100	TCK, I/O	TCK, I/O	TCK, I/O

Note: *Please read the LP pin descriptions for restrictions on their use.

Datasheet Information

Revision	Changes	Page
v4.0 (continued)	The "Flexible Mode" section was updated.	1-10
	Table 1-5 •Boundary-Scan Pin Configurations and Functions is new.	1-11
	The "TRST Pin" section was updated.	1-11
	The "Probing Capabilities" section is new.	1-12
	The "Programming" section was updated.	1-12
	The "Probing Capabilities" section was updated.	1-12
	The "Silicon Explorer II Probe" section was updated.	1-12
	The "Design Considerations" section was updated.	1-13
	The "Development Tool Support" section was updated.	1-13
	The "Absolute Maximum Ratings*" section was updated.	1-16
	The "Temperature and Voltage Derating Factors" section was updated.	1-26
	The "TDI, I/O Test Data Input" section was updated.	1-31
	The "TDO, I/O Test Data Output" section was updated.	1-31
	The "TMS Test Mode Select" section was updated.	1-32
	The "TRST, I/O Boundary Scan Reset Pin" section was updated.	1-32
	All VSV pins were changed to VCCA. The change affected the following pins:	
	64-Pin TQFP – Pin 36	
	100-Pin TQFP – Pin 57	
	49-Pin CSP – Pin D5	
	128-Pin CSP- Pin H11 and Pin J1 for eX256	
	180-Pin CSP – Pins J12 and K2	
v3.0	The "Recommended Operating Conditions" section has been changed.	1-16
	The "3.3 V LVTTL Electrical Specifications" section has been updated.	1-18
	The "5.0 V TTL Electrical Specifications" section has been updated.	1-18
	The "Total Dynamic Power (mW)" section is new.	1-9
	The "System Power at 5%, 10%, and 15% Duty Cycle" section is new.	1-9
	The "eX Timing Model" section has been updated.	1-22
v2.0.1	The I/O Features table, Table 1-2 on page 1-6, was updated.	1-6
	The table, "Standby Power of eX Devices in LP Mode Typical Conditions, VCCA, VCCI = 2.5 V , TJ = 25° C " section, was updated.	1-7
	"Typical eX Standby Current at 25°C" section is a new table.	1-16
	The table in the section, "Package Thermal Characteristics" section has been updated for the 49-Pin CSP.	1-21
	The "eX Timing Model" section has been updated.	1-22
	The timing numbers found in, "eX Family Timing Characteristics" section have been updated.	1-27
	The V _{SV} pin has been added to the "Pin Description" section.	1-31
	Please see the following pin tables for the V_{SV} pin and an important footnote including the pin: "TQ64", "TQ100", "128-Pin CSP", and "180-Pin CSP".	2-1, 2-3, 2-6, 2-11
	The figure, "TQ64" section has been updated.	2-1

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at **www.microsemi.com**.

© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.