
Microchip Technology - PIC18F65K40-E/MR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 64MHz

Connectivity I²C, LINbus, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 60

Program Memory Size 32KB (16K x 16)

Program Memory Type FLASH

EEPROM Size 1K x 8

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 2.3V ~ 5.5V

Data Converters A/D 45x10b; D/A 1x5b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 64-VFQFN Exposed Pad

Supplier Device Package 64-VQFN (9x9)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18f65k40-e-mr

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18f65k40-e-mr-4404342
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18(L)F65/66K40
2.0 GUIDELINES FOR GETTING
STARTED WITH
PIC18(L)F6XK40
MICROCONTROLLERS

2.1 Basic Connection Requirements

Getting started with the PIC18(L)F6xK40 family of 8-bit
microcontrollers requires attention to a minimal set of
device pin connections before proceeding with
development.

The following pins must always be connected:

• All VDD and VSS pins (see Section 2.2 “Power
Supply Pins”)

• MCLR pin (see Section 2.3 “Master Clear (MCLR)
Pin”)

These pins must also be connected if they are being
used in the end application:

• PGC/PGD pins used for In-Circuit Serial
Programming™ (ICSP™) and debugging purposes
(see Section 2.4 “ICSP™ Pins”)

• OSCI and OSCO pins when an external oscillator
source is used (see Section 2.5 “External
Oscillator Pins”)

Additionally, the following pins may be required:

• VREF+/VREF- pins are used when external voltage
reference for analog modules is implemented

The minimum mandatory connections are shown in
Figure 2-1.

FIGURE 2-1: RECOMMENDED
MINIMUM CONNECTIONS

2.2 Power Supply Pins

2.2.1 DECOUPLING CAPACITORS

The use of decoupling capacitors on every pair of
power supply pins (VDD and VSS) is required.

Consider the following criteria when using decoupling
capacitors:

• Value and type of capacitor: A 0.1 F (100 nF),
10-20V capacitor is recommended. The capacitor
should be a low-ESR device, with a resonance
frequency in the range of 200 MHz and higher.
Ceramic capacitors are recommended.

• Placement on the printed circuit board: The
decoupling capacitors should be placed as close
to the pins as possible. It is recommended to
place the capacitors on the same side of the
board as the device. If space is constricted, the
capacitor can be placed on another layer on the
PCB using a via; however, ensure that the trace
length from the pin to the capacitor is no greater
than 0.25 inch (6 mm).

• Handling high-frequency noise: If the board is
experiencing high-frequency noise (upward of
tens of MHz), add a second ceramic type capaci-
tor in parallel to the above described decoupling
capacitor. The value of the second capacitor can
be in the range of 0.01 F to 0.001 F. Place this
second capacitor next to each primary decoupling
capacitor. In high-speed circuit designs, consider
implementing a decade pair of capacitances as
close to the power and ground pins as possible
(e.g., 0.1 F in parallel with 0.001 F).

• Maximizing performance: On the board layout
from the power supply circuit, run the power and
return traces to the decoupling capacitors first,
and then to the device pins. This ensures that the
decoupling capacitors are first in the power chain.
Equally important is to keep the trace length
between the capacitor and the power pins to a
minimum, thereby reducing PCB trace
inductance.

2.2.2 TANK CAPACITORS

On boards with power traces running longer than
six inches in length, it is suggested to use a tank capac-
itor for integrated circuits, including microcontrollers, to
supply a local power source. The value of the tank
capacitor should be determined based on the trace
resistance that connects the power supply source to
the device, and the maximum current drawn by the
device in the application. In other words, select the tank
capacitor so that it meets the acceptable voltage sag at
the device. Typical values range from 4.7 F to 47 F.

C1

R1

Rev. 10-000249A
9/1/2015

VDD

PIC18(L)Fxxxxx

R2
MCLR

C2

V
D

D

Vs
s

Vss

Key (all values are recommendations):
C1 and C2 : 0.1 �F, 20V ceramic
R1: 10 kΩ
R2: 100Ω to 470Ω
 2016-2017 Microchip Technology Inc. Preliminary DS40001842C-page 16

PIC18(L)F65/66K40
8.12 Start-up Sequence

Upon the release of a POR or BOR, the following must
occur before the device will begin executing:

1. Power-up Timer runs to completion (if enabled).

2. Oscillator start-up timer runs to completion (if
required for selected oscillator source).

3. MCLR must be released (if enabled).

The total time out will vary based on oscillator
configuration and Power-up Timer configuration. See
Section 4.0 “Oscillator Module (with Fail-Safe
Clock Monitor)” for more information.

The Power-up Timer and oscillator start-up timer run
independently of MCLR Reset. If MCLR is kept low
long enough, the Power-up Timer and oscillator
Start-up Timer will expire. Upon bringing MCLR high,
the device will begin execution after 10 FOSC cycles
(see Figure 8-4). This is useful for testing purposes or
to synchronize more than one device operating in
parallel.

FIGURE 8-4: RESET START-UP SEQUENCE

TOST

TMCLR

TPWRT

VDD

Internal POR

Power-up Timer

MCLR

Internal RESET

Oscillator Modes

Oscillator Start-up Timer

Oscillator

FOSC

Internal Oscillator

Oscillator

FOSC

External Clock (EC)

CLKIN

FOSC

External Crystal
 2016-2017 Microchip Technology Inc. Preliminary DS40001842C-page 78

PIC18(L)F65/66K40
FIGURE 9-1: WINDOWED WATCHDOG TIMER BLOCK DIAGRAM

Rev. 10-000 162A
1/2/201 4

WINDOW

CLRWDT

RESET

WDT Time-out

WDT
Window
Violation

PS

5-bit
WDT Counter

Overflow
Latch

18-bit Prescale
Counter

000

011

010

001

100

101

110

111Reserved

Reserved

Reserved

Reserved

Reserved

MFINTOSC/16

LFINTOSC

R

R

CS

WWDT
Armed

Window
Sizes Comparator

Window Closed

E

WDTE<1:0> = 01

WDTE<1:0> = 11

WDTE<1:0> = 10

SEN

Sleep
 2016-2017 Microchip Technology Inc. Preliminary DS40001842C-page 82

PIC18(L)F65/66K40
10.1.1 PROGRAM COUNTER

The Program Counter (PC) specifies the address of the
instruction to fetch for execution. The PC is 21 bits wide
and is contained in three separate 8-bit registers. The
low byte, known as the PCL register, is both readable
and writable. The high byte, or PCH register, contains
the PC<15:8> bits; it is not directly readable or writable.
Updates to the PCH register are performed through the
PCLATH register. The upper byte is called PCU. This
register contains the PC<20:16> bits; it is also not
directly readable or writable. Updates to the PCU
register are performed through the PCLATU register.

The contents of PCLATH and PCLATU are transferred
to the program counter by any operation that writes
PCL. Similarly, the upper two bytes of the program
counter are transferred to PCLATH and PCLATU by an
operation that reads PCL. This is useful for computed
offsets to the PC (see Section 10.2.3.1 “Computed
GOTO”).

The PC addresses bytes in the program memory. To
prevent the PC from becoming misaligned with word
instructions, the Least Significant bit of PCL is fixed to
a value of ‘0’. The PC increments by two to address
sequential instructions in the program memory.

The CALL, RCALL, GOTO and program branch
instructions write to the program counter directly. For
these instructions, the contents of PCLATH and
PCLATU are not transferred to the program counter.

10.1.2 RETURN ADDRESS STACK

The return address stack allows any combination of up
to 31 program calls and interrupts to occur. The PC is
pushed onto the stack when a CALL or RCALL
instruction is executed or an interrupt is Acknowledged.
The PC value is pulled off the stack on a RETURN,
RETLW or a RETFIE instruction. PCLATU and PCLATH
are not affected by any of the RETURN or CALL
instructions.

The stack operates as a 31-word by 21-bit RAM and a
5-bit Stack Pointer, or as a 35-word by 21-bit RAM with
a 6-bit Stack Pointer in ICD mode. The stack space is
not part of either program or data space. The Stack
Pointer is readable and writable and the address on the
top of the stack is readable and writable through the
Top-of-Stack (TOS) Special File registers. Data can
also be pushed to, or popped from the stack, using
these registers.

A CALL type instruction causes a push onto the stack;
the Stack Pointer is first incremented and the location
pointed to by the Stack Pointer is written with the
contents of the PC (already pointing to the instruction
following the CALL). A RETURN type instruction causes
a pop from the stack; the contents of the location
pointed to by the STKPTR are transferred to the PC
and then the Stack Pointer is decremented.

The Stack Pointer is initialized to ‘00000’ after all
Resets. There is no RAM associated with the location
corresponding to a Stack Pointer value of ‘00000’; this
is only a Reset value. Status bits in the PCON0 register
indicate if the stack is full or has overflowed or has
underflowed.

10.1.2.1 Top-of-Stack Access

Only the top of the return address stack (TOS) is readable
and writable. A set of three registers, TOSU:TOSH:TOSL,
hold the contents of the stack location pointed to by the
STKPTR register (Figure 10-1). This allows users to
implement a software stack if necessary. After a CALL,
RCALL or interrupt, the software can read the pushed
value by reading the TOSU:TOSH:TOSL registers. These
values can be placed on a user defined software stack. At
return time, the software can return these values to
TOSU:TOSH:TOSL and do a return.

The user must disable the Global Interrupt Enable (GIE)
bits while accessing the stack to prevent inadvertent
stack corruption.
 2016-2017 Microchip Technology Inc. Preliminary DS40001842C-page 93

PIC18(L)F65/66K40
FIGURE 11-7: PFM ROW ERASE
FLOWCHART

11.1.6 WRITING TO PROGRAM FLASH
MEMORY

The programming write block size is described in
Table 11-3. Word or byte programming is not supported.
Table writes are used internally to load the holding
registers needed to program the Flash memory. There
are only as many holding registers as there are bytes in
a write block. Refer to Table 11-3 for write latch size.

Since the table latch (TABLAT) is only a single byte, the
TBLWT instruction needs to be executed multiple times
for each programming operation. The write protection
state is ignored for this operation. All of the table write
operations will essentially be short writes because only
the holding registers are written. NVMIF is not affected
while writing to the holding registers.

After all the holding registers have been written, the
programming operation of that block of memory is
started by configuring the NVMCON1 register for a
program memory write and performing the long write
sequence.

If the PFM address in the TBLPTR is write-protected or
if TBLPTR points to an invalid location, the WR bit is
cleared without any effect and the WREER is signaled.

The long write is necessary for programming the
internal Flash. CPU operation is suspended during a
long write cycle and resumes when the operation is
complete. The long write operation completes in one
instruction cycle. When complete, WR is cleared in
hardware and NVMIF is set and an interrupt will occur if
NVMIE is also set. The latched data is reset to all ‘1s’.
WREN is not changed.

The internal programming timer controls the write time.
The write/erase voltages are generated by an on-chip
charge pump, rated to operate over the voltage range of
the device.

Unlock Sequence

(Figure 11-6)

End Erase Operation

Select Memory:

PFM (NVMREGS<1:0> = 10)

Disable Write/Erase Operation

(WREN = 0)

Load Table Pointer register with
address of the block being erased

Start Erase Operation

CPU stalls while Erase operation
completes (2 ms typical)

Select Erase Operation

(FREE = 1)

Disable Interrupts

(GIE = 0)

Enable Interrupts

(GIE = 1)

Enable Write/Erase Operation

(WREN = 1)

Note: The default value of the holding registers on
device Resets and after write operations is
FFh. A write of FFh to a holding register
does not modify that byte. This means that
individual bytes of program memory may
be modified, provided that the change does
not attempt to change any bit from a ‘0’ to a
‘1’. When modifying individual bytes, it is
not necessary to load all holding registers
before executing a long write operation.
 2016-2017 Microchip Technology Inc. Preliminary DS40001842C-page 137

PIC18(L)F65/66K40

REGISTER 14-10: PIR8: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 8

R/W-0/0 R/W-0/0 R/W-0/0 U-0 U-0 U-0 U-0 R/W-0/0

SCANIF CRCIF NVMIF — — — — CWG1IF

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 SCANIF: Memory Scanner Interrupt Flag bit

1 = Interrupt has occurred (must be cleared by software)
0 = Interrupt event has not occurred

bit 6 CRCIF: CRC Interrupt Flag bit

1 = Interrupt has occurred (must be cleared by software)
0 = Interrupt event has not occurred

bit 5 NVMIF: NVM Interrupt Flag bit

1 = Interrupt has occurred (must be cleared by software)
0 = Interrupt event has not occurred

bit 4-1 Unimplemented: Read as ‘0’

bit 0 CWG1IF: CWG1 Interrupt Flag bit

1 = Interrupt has occurred (must be cleared by software)
0 = Interrupt event has not occurred
 2016-2017 Microchip Technology Inc. Preliminary DS40001842C-page 183

PIC18(L)F65/66K40
REGISTER 14-29: IPR7: PERIPHERAL INTERRUPT PRIORITY REGISTER 7

U-0 U-0 U-0 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1

— — — CCP5IP CCP4IP CCP3IP CCP2IP CCP1IP

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-5 Unimplemented: Read as ‘0’

bit 4 CCP5IP: ECCP5 Interrupt Priority bit
1 = High priority
0 = Low priority

bit 3 CCP4IP: ECCP4 Interrupt Priority bit
1 = High priority
0 = Low priority

bit 2 CCP3IP: ECCP3 Interrupt Priority bit
1 = High priority
0 = Low priority

bit 1 CCP2IP: ECCP2 Interrupt Priority bit
1 = High priority
0 = Low priority

bit 0 CCP1IP: ECCP1 Interrupt Priority bit
1 = High priority
0 = Low priority
 2016-2017 Microchip Technology Inc. Preliminary DS40001842C-page 202


 -2

0
1

7
 M

icro
ch

ip
 T

e
ch

n
o

lo
g

y In
c.

P
relim

in
ary

D
S

4
0

0
0

1
8

4
2

C
-p

a
g

e
 2

6
6

P
IC

18(L
)F

65/66K
40

FIG DIAGRAM (MODE = 01110)
Rev. 10-000202B

4/7/2016

4 05

to
URE 20-11: LOW LEVEL RESET, EDGE-TRIGGERED HARDWARE LIMIT ONE-SHOT MODE TIMING

TMRx_clk

ON

PRx

TMRx

BSF BSF

5

0 1 2 3 4 5 0 01

MODE 0b01110

TMRx_postscaled

TMRx_ers

1 2 3

PWM Duty
Cycle 3

PWM Output

Instruction(1)

Note 1: BSF and BCF represent Bit-Set File and Bit-Clear File instructions executed by the CPU
set or clear the ON bit of TxCON. CPU execution is asynchronous to the timer clock input.

PIC18(L)F65/66K40
REGISTER 22-2: CCPTMRS1: CCP TIMERS CONTROL REGISTER 1

U-0 U-0 R/W-0/0 R/W-1/1 R/W-0/0 R/W-1/1 R/W-0/0 R/W-1/1

— — P7TSEL<1:0> P6TSEL<1:0> C5TSEL<1:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-6 Unimplemented: Read as ‘0’

bit 5-4 P7TSEL<1:0>: PWM7 Timer Selection bits
11 = PWM7 based on TMR8
10 = PWM7 based on TMR6
01 = PWM7 based on TMR4
00 = PWM7 based on TMR2

bit 3-2 P6TSEL<1:0>: PWM6 Timer Selection bits
11 = PWM6 based on TMR8
10 = PWM6 based on TMR6
01 = PWM6 based on TMR4
00 = PWM6 based on TMR2

bit 1-0 C5TSEL<1:0>: CCP5 Timer Selection bits
11 = CCP5 is based off Timer7 in Capture/Compare mode and Timer8 in PWM mode
10 = CCP5 is based off Timer5 in Capture/Compare mode and Timer6 in PWM mode
01 = CCP5 is based off Timer3 in Capture/Compare mode and Timer4 in PWM mode
00 = CCP5 is based off Timer1 in Capture/Compare mode and Timer2 in PWM mode
 2016-2017 Microchip Technology Inc. Preliminary DS40001842C-page 298

PIC18(L)F65/66K40
FIGURE 24-6: SIMPLIFIED CWG BLOCK DIAGRAM (FORWARD AND REVERSE FULL-BRIDGE
MODES)

Rev. 10-000212D
2/2/2016

1

0

1

0

1

0

1

0

00

11

10

01

00

11

10

01

00

11

10

01

00

11

10

01

LSAC<1:0>

LSBD<1:0>

LSAC<1:0>

LSBD<1:0>

CWG Clock clock

signal in
signal out

clock

signal in
signal out

CWG Data Input

E

D Q

POLA

POLB

POLC

POLD

CWG Data

FREEZE
D Q

CWG Data

CWG1D

CWG1C

CWG1B

CWG1A

‘1’

‘1’

‘0’

‘1’

‘1’

‘0’

‘0’

‘0’

High-Z

High-Z

High-Z

High-Z

Rising Dead-Band Block

Falling Dead-Band Block

CWG Data A

CWG Data B

EN

SHUTDOWN

MODE<2:0> = 010: Forward
MODE<2:0> = 011: Reverse

CWG Clock

MODE<2:0>

CWG
Data

cwg data

CWG Data C

CWG Data D

D Q

QCWG
Data

REN
SHUTDOWN = 0

S

R

QAuto-shutdown source
(CWGxAS1 register)
 2016-2017 Microchip Technology Inc. Preliminary DS40001842C-page 313

PIC18(L)F65/66K40

REGISTER 25-5: SMTxWIN: SMTx WINDOW INPUT SELECT REGISTER

U-0 U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

— — — WSEL<4:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition

bit 7-5 Unimplemented: Read as ‘0’

bit 4-0 WSEL<4:0>: SMTx Window Selection bits

WSEL SMT1 Window Source SMT2 Window Source

11111-10110 Reserved Reserved

10101 ZCDOUT ZCDOUT

10100 C3OUT C3OUT

10011 C2OUT C2OUT

10010 C1OUT C1OUT

10001 PWM7OUT PWM7OUT

10000 PWM6OUT PWM6OUT

01111 CCP5OUT CCP5OUT

01110 CCP4OUT CCP4OUT

01101 CCP3OUT CCP3OUT

01100 CCP2OUT CCP2OUT

01011 CCP1OUT CCP1OUT

01010 SMT2 overflow Reserved

01001 Reserved SMT1 overflow

01000 TMR8_postscaler TMR8_postscaler

00111 TMR6_postscaler TMR6_postscaler

00110 TMR4_postscaler TMR4_postscaler

00101 TMR2_postscaler TMR2_postscaler

00100 TMR0_overflow TMR0_overflow

00011 SOSC SOSC

00010 MFINTOSC (31 kHz) MFINTOSC (31 kHz)

00001 LFINTOSC (31 kHz) LFINTOSC (31 kHz)

00000 Pin selected by SMT1WINPPS Pin selected by SMT2WINPPS
 2016-2017 Microchip Technology Inc. Preliminary DS40001842C-page 341

PIC18(L)F65/66K40
25.7.8 CAPTURE MODE

This mode captures the Timer value based on a rising
or falling edge on the SMTWINx input and triggers an
interrupt. This mimics the capture feature of a CCP
module. The timer begins incrementing upon the
SMTxGO bit being set, and updates the value of the
SMTxCPR register on each rising edge of SMTWINx,
and updates the value of the CPW register on each
falling edge of the SMTWINx. The timer is not reset by
any hardware conditions in this mode and must be
reset by software, if desired. See Figure 25-16 and
Figure 25-17.
 2016-2017 Microchip Technology Inc. Preliminary DS40001842C-page 369

PIC18(L)F65/66K40
28.5.2.3 EUSART Synchronous Slave
Reception

The operation of the Synchronous Master and Slave
modes is identical (Section 28.5.1.5 “Synchronous
Master Reception”), with the following exceptions:

• Sleep

• CREN bit is always set, therefore the receiver is
never idle

• SREN bit, which is a “don’t care” in Slave mode

A character may be received while in Sleep mode by
setting the CREN bit prior to entering Sleep. Once the
word is received, the RSR register will transfer the data
to the RCxREG register. If the RCxIE enable bit is set,
the interrupt generated will wake the device from Sleep
and execute the next instruction. If the GIE bit is also
set, the program will branch to the interrupt vector.

28.5.2.4 Synchronous Slave Reception
Setup:

1. Set the SYNC and SPEN bits and clear the
CSRC bit.

2. Clear the ANSEL bit for both the CKx and DTx
pins (if applicable).

3. If interrupts are desired, set the RCxIE bit of the
PIE3/4 registers and the GIE and PEIE bits of
the INTCON register.

4. If 9-bit reception is desired, set the RX9 bit.

5. Set the CREN bit to enable reception.

6. The RCxIF bit will be set when reception is
complete. An interrupt will be generated if the
RCxIE bit was set.

7. If 9-bit mode is enabled, retrieve the Most
Significant bit from the RX9D bit of the RCxSTA
register.

8. Retrieve the eight Least Significant bits from the
receive FIFO by reading the RCxREG register.

9. If an overrun error occurs, clear the error by
either clearing the CREN bit of the RCxSTA
register or by clearing the SPEN bit which resets
the EUSART.

TABLE 28-10: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE
RECEPTION

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Register
on Page

BAUDxCON ABDOVF RCIDL — SCKP BRG16 — WUE ABDEN 451

INTCON GIE/GIEH PEIE/GIEL IPEN — INT3EDG INT2EDG INT1EDG INT0EDG 173

PIE3 RC2IE TX2IE RC1IE TX1IE BCL2IE SSP2IE BCL1IE SSP1IE 188

PIR3 RC2IF TX2IF RC1IF TX1IF BCL2IF SSP2IF BCL1IF SSP1IF 177

IPR3 RC2IP TX2IP RC1IP TX1IP BCL2IP SSP2IP BCL1IP SSP1IP 198

PIE4 — — RC5IE TX5IE RC4IE TX4IE RC3IE TX3IE 189

PIR4 — — RC5IF TX5IF RC4IF TX4IF RC3IF TX3IF 177

IPR4 — — RC5IP TX5IP RC4IP TX4IP RC3IP TX3IP 199

RCxREG EUSART Receive Data Register 455*

RCxSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 450

RxyPPS — — RxyPPS<5:0> 228

RXxPPS — — RXPPS<5:0> 225

TXxSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 449

Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used for synchronous slave reception.
* Page provides register information.
 2016-2017 Microchip Technology Inc. Preliminary DS40001842C-page 476

PIC18(L)F65/66K40
28.6 EUSART Operation During Sleep

The EUSART will remain active during Sleep only in the
Synchronous Slave mode. All other modes require the
system clock and therefore cannot generate the neces-
sary signals to run the Transmit or Receive Shift
registers during Sleep.

Synchronous Slave mode uses an externally generated
clock to run the Transmit and Receive Shift registers.

28.6.1 SYNCHRONOUS RECEIVE DURING
SLEEP

To receive during Sleep, all the following conditions
must be met before entering Sleep mode:

• RCxSTA and TXxSTA Control registers must be
configured for Synchronous Slave Reception (see
Section 28.5.2.4 “Synchronous Slave
Reception Setup:”).

• If interrupts are desired, set the RCxIE bit of the
PIE3/4 registers and the GIE and PEIE bits of the
INTCON register.

• The RCxIF interrupt flag must be cleared by read-
ing RCxREG to unload any pending characters in
the receive buffer.

Upon entering Sleep mode, the device will be ready to
accept data and clocks on the RXx/DTx and TXx/CKx
pins, respectively. When the data word has been com-
pletely clocked in by the external device, the RCxIF
interrupt flag bit of the PIR3/4 registers will be set.
Thereby, waking the processor from Sleep.

Upon waking from Sleep, the instruction following the
SLEEP instruction will be executed. If the Global
Interrupt Enable (GIE) bit of the INTCON register is
also set, then the Interrupt Service Routine at address
004h will be called.

28.6.2 SYNCHRONOUS TRANSMIT
DURING SLEEP

To transmit during Sleep, all the following conditions
must be met before entering Sleep mode:

• The RCxSTA and TXxSTA Control registers must
be configured for synchronous slave transmission
(see Section 28.5.2.2 “Synchronous Slave
Transmission Setup”).

• The TXxIF interrupt flag must be cleared by writ-
ing the output data to the TXxREG, thereby filling
the TSR and transmit buffer.

• If interrupts are desired, set the TXxIE bit of the
PIE3/4 registers and the PEIE bit of the INTCON
register.

• Interrupt enable bits TXxIE of the PIE3 register
and PEIE of the INTCON register must set.

Upon entering Sleep mode, the device will be ready to
accept clocks on TXx/CKx pin and transmit data on the
RXx/DTx pin. When the data word in the TSR has been
completely clocked out by the external device, the
pending byte in the TXxREG will transfer to the TSR
and the TXxIF flag will be set. Thereby, waking the pro-
cessor from Sleep. At this point, the TXxREG is avail-
able to accept another character for transmission,
which will clear the TXxIF flag.

Upon waking from Sleep, the instruction following the
SLEEP instruction will be executed. If the Global
Interrupt Enable (GIE) bit is also set then the Interrupt
Service Routine at address 0004h will be called.
 2016-2017 Microchip Technology Inc. Preliminary DS40001842C-page 477

PIC18(L)F65/66K40
32.2.6 ADC CONVERSION PROCEDURE
(BASIC MODE)

This is an example procedure for using the ADC to
perform an Analog-to-Digital conversion:

1. Configure Port:

• Disable pin output driver (Refer to the TRISx
register)

• Configure pin as analog (Refer to the
ANSELx register)

2. Configure the ADC module:

• Select ADC conversion clock

• Configure voltage reference

• Select ADC input channel
(precharge+acquisition)

• Turn on ADC module

3. Configure ADC interrupt (optional):

• Clear ADC interrupt flag

• Enable ADC interrupt

• Enable peripheral interrupt (PEIE bit)

• Enable global interrupt (GIE bit)(1)

4. If ADACQ = 0, software must wait the required
acquisition time(2).

5. Start conversion by setting the ADGO bit.

6. Wait for ADC conversion to complete by one of
the following:

• Polling the ADGO bit

• Waiting for the ADC interrupt (interrupts
enabled)

7. Read ADC Result.

8. Clear the ADC interrupt flag (required if interrupt
is enabled).

EXAMPLE 32-1: ADC CONVERSION

Note 1: The global interrupt can be disabled if the
user is attempting to wake-up from Sleep
and resume in-line code execution.

2: Refer to Section 32.3 “ADC Acquisi-
tion Requirements”.

;This code block configures the ADC
;for polling, VDD and VSS references, FRC
;oscillator and AN0 input.
;
;Conversion start & polling for completion
;are included.
;
BANKSEL ADCON1 ;
MOVLW B’11110000’ ;Right justify,

;FRC oscillator
MOVWF ADCON1 ;Vdd and Vss Vref
BANKSEL TRISA ;
BSF TRISA,0 ;Set RA0 to input
BANKSEL ANSEL ;
BSF ANSEL,0 ;Set RA0 to analog
BANKSEL ADCON0 ;
MOVLW B’00000001’ ;Select channel AN0
MOVWF ADCON0 ;Turn ADC On
CALL SampleTime ;Acquisiton delay
BSF ADCON0,ADGO ;Start conversion
BTFSC ADCON0,ADGO ;Is conversion done?
GOTO $-1 ;No, test again
BANKSEL ADRESH ;
MOVF ADRESH,W ;Read upper 2 bits
MOVWF RESULTHI ;store in GPR space
BANKSEL ADRESL ;
MOVF ADRESL,W ;Read lower 8 bits
MOVWF RESULTLO ;Store in GPR space
 2016-2017 Microchip Technology Inc. Preliminary DS40001842C-page 493

PIC18(L)F65/66K40

TABLE 36-2: INSTRUCTION SET

Mnemonic,
Operands

Description Cycles
16-Bit Instruction Word Status

Affected
Notes

MSb LSb

BYTE-ORIENTED OPERATIONS

ADDWF
ADDWFC
ANDWF
CLRF
COMF
CPFSEQ
CPFSGT
CPFSLT
DECF
DECFSZ
DCFSNZ
INCF
INCFSZ
INFSNZ
IORWF
MOVF
MOVFF

MOVWF
MULWF
NEGF
RLCF
RLNCF
RRCF
RRNCF
SETF
SUBFWB

SUBWF
SUBWFB

SWAPF
TSTFSZ
XORWF

f, d, a
f, d, a
f, d, a
f, a
f, d, a
f, a
f, a
f, a
f, d, a
f, d, a
f, d, a
f, d, a
f, d, a
f, d, a
f, d, a
f, d, a
fs, fd

f, a
f, a
f, a
f, d, a
f, d, a
f, d, a
f, d, a
f, a
f, d, a

f, d, a
f, d, a

f, d, a
f, a
f, d, a

Add WREG and f
Add WREG and CARRY bit to f
AND WREG with f
Clear f
Complement f
Compare f with WREG, skip =
Compare f with WREG, skip >
Compare f with WREG, skip <
Decrement f
Decrement f, Skip if 0
Decrement f, Skip if Not 0
Increment f
Increment f, Skip if 0
Increment f, Skip if Not 0
Inclusive OR WREG with f
Move f
Move fs (source) to 1st word

fd (destination) 2nd word
Move WREG to f
Multiply WREG with f
Negate f
Rotate Left f through Carry
Rotate Left f (No Carry)
Rotate Right f through Carry
Rotate Right f (No Carry)
Set f
Subtract f from WREG with
 borrow
Subtract WREG from f
Subtract WREG from f with
 borrow
Swap nibbles in f
Test f, skip if 0
Exclusive OR WREG with f

1
1
1
1
1
1 (2 or 3)
1 (2 or 3)
1 (2 or 3)
1
1 (2 or 3)
1 (2 or 3)
1
1 (2 or 3)
1 (2 or 3)
1
1
2

1
1
1
1
1
1
1
1
1

1
1

1
1 (2 or 3)
1

0010
0010
0001
0110
0001
0110
0110
0110
0000
0010
0100
0010
0011
0100
0001
0101
1100
1111
0110
0000
0110
0011
0100
0011
0100
0110
0101

0101
0101

0011
0110
0001

01da
00da
01da
101a
11da
001a
010a
000a
01da
11da
11da
10da
11da
10da
00da
00da
ffff
ffff
111a
001a
110a
01da
01da
00da
00da
100a
01da

11da
10da

10da
011a
10da

ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff

ffff
ffff

ffff
ffff
ffff

ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff

ffff
ffff

ffff
ffff
ffff

C, DC, Z, OV, N
C, DC, Z, OV, N
Z, N
Z
Z, N
None
None
None
C, DC, Z, OV, N
None
None
C, DC, Z, OV, N
None
None
Z, N
Z, N
None

None
None
C, DC, Z, OV, N
C, Z, N
Z, N
C, Z, N
Z, N
None
C, DC, Z, OV, N

C, DC, Z, OV, N
C, DC, Z, OV, N

None
None
Z, N

1, 2
1, 2
1,2
2
1, 2
4
4
1, 2
1, 2, 3, 4
1, 2, 3, 4
1, 2
1, 2, 3, 4
4
1, 2
1, 2
1

1, 2

1, 2

1, 2

1, 2

4
1, 2

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value
present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is driven low by an
external device, the data will be written back with a ‘0’.

2: If this instruction is executed on the TMR0 register (and where applicable, ‘d’ = 1), the prescaler will be cleared if
assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is
executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless
the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program mem-
ory locations have a valid instruction.
 2016-2017 Microchip Technology Inc. Preliminary DS40001842C-page 544

PIC18(L)F65/66K40

BNOV Branch if Not Overflow

Syntax: BNOV n

Operands: -128  n  127

Operation: if OVERFLOW bit is ‘0’
(PC) + 2 + 2n  PC

Status Affected: None

Encoding: 1110 0101 nnnn nnnn

Description: If the OVERFLOW bit is ‘0’, then the
program will branch.
The 2’s complement number ‘2n’ is
added to the PC. Since the PC will have
incremented to fetch the next
instruction, the new address will be
PC + 2 + 2n. This instruction is then a
2-cycle instruction.

Words: 1

Cycles: 1(2)

Q Cycle Activity:
If Jump:

Q1 Q2 Q3 Q4

Decode Read literal
‘n’

Process
Data

Write to PC

No
operation

No
operation

No
operation

No
operation

If No Jump:

Q1 Q2 Q3 Q4

Decode Read literal
‘n’

Process
Data

No
operation

Example: HERE BNOV Jump

Before Instruction
PC = address (HERE)

After Instruction
If OVERFLOW = 0;

PC = address (Jump)
If OVERFLOW = 1;

PC = address (HERE + 2)

BNZ Branch if Not Zero

Syntax: BNZ n

Operands: -128  n  127

Operation: if ZERO bit is ‘0’
(PC) + 2 + 2n  PC

Status Affected: None

Encoding: 1110 0001 nnnn nnnn

Description: If the ZERO bit is ‘0’, then the program
will branch.
The 2’s complement number ‘2n’ is
added to the PC. Since the PC will have
incremented to fetch the next
instruction, the new address will be
PC + 2 + 2n. This instruction is then a
2-cycle instruction.

Words: 1

Cycles: 1(2)

Q Cycle Activity:
If Jump:

Q1 Q2 Q3 Q4

Decode Read literal
‘n’

Process
Data

Write to PC

No
operation

No
operation

No
operation

No
operation

If No Jump:

Q1 Q2 Q3 Q4

Decode Read literal
‘n’

Process
Data

No
operation

Example: HERE BNZ Jump

Before Instruction
PC = address (HERE)

After Instruction
If ZERO = 0;

PC = address (Jump)
If ZERO = 1;

PC = address (HERE + 2)
 2016-2017 Microchip Technology Inc. Preliminary DS40001842C-page 552

PIC18(L)F65/66K40
36.2 Extended Instruction Set

In addition to the standard 75 instructions of the PIC18
instruction set, PIC18(L)F6xK40 devices also provide
an optional extension to the core CPU functionality.
The added features include eight additional
instructions that augment indirect and indexed
addressing operations and the implementation of
Indexed Literal Offset Addressing mode for many of the
standard PIC18 instructions.

The additional features of the extended instruction set
are disabled by default. To enable them, users must set
the XINST Configuration bit.

The instructions in the extended set can all be
classified as literal operations, which either manipulate
the File Select Registers, or use them for indexed
addressing. Two of the instructions, ADDFSR and
SUBFSR, each have an additional special instantiation
for using FSR2. These versions (ADDULNK and
SUBULNK) allow for automatic return after execution.

The extended instructions are specifically implemented
to optimize re-entrant program code (that is, code that
is recursive or that uses a software stack) written in
high-level languages, particularly C. Among other
things, they allow users working in high-level
languages to perform certain operations on data
structures more efficiently. These include:

• dynamic allocation and deallocation of software
stack space when entering and leaving
subroutines

• function pointer invocation

• software Stack Pointer manipulation

• manipulation of variables located in a software
stack

A summary of the instructions in the extended instruc-
tion set is provided in Table 36-3. Detailed descriptions
are provided in Section 36.2.2 “Extended Instruction
Set”. The opcode field descriptions in Table 36-1 apply
to both the standard and extended PIC18 instruction
sets.

36.2.1 EXTENDED INSTRUCTION SYNTAX

Most of the extended instructions use indexed
arguments, using one of the File Select Registers and
some offset to specify a source or destination register.
When an argument for an instruction serves as part of
indexed addressing, it is enclosed in square brackets
(“[]”). This is done to indicate that the argument is used
as an index or offset. MPASM™ Assembler will flag an
error if it determines that an index or offset value is not
bracketed.

When the extended instruction set is enabled, brackets
are also used to indicate index arguments in byte-
oriented and bit-oriented instructions. This is in addition
to other changes in their syntax. For more details, see
Section 36.2.3.1 “Extended Instruction Syntax with
Standard PIC18 Commands”.

TABLE 36-3: EXTENSIONS TO THE PIC18 INSTRUCTION SET

Note: The instruction set extension and the
Indexed Literal Offset Addressing mode
were designed for optimizing applications
written in C; the user may likely never use
these instructions directly in assembler.
The syntax for these commands is pro-
vided as a reference for users who may be
reviewing code that has been generated
by a compiler.

Note: In the past, square brackets have been
used to denote optional arguments in the
PIC18 and earlier instruction sets. In this
text and going forward, optional
arguments are denoted by braces (“{ }”).

Mnemonic,
Operands

Description Cycles
16-Bit Instruction Word Status

AffectedMSb LSb

ADDFSR
ADDULNK
CALLW
MOVSF

MOVSS

PUSHL

SUBFSR
SUBULNK

f, k
k

zs, fd

zs, zd

k

f, k
k

Add literal to FSR
Add literal to FSR2 and return
Call subroutine using WREG
Move zs (source) to 1st word
 fd (destination) 2nd word
Move zs (source) to 1st word
 zd (destination) 2nd word
Store literal at FSR2,
 decrement FSR2
Subtract literal from FSR
Subtract literal from FSR2 and
 return

1
2
2
2

2

1

1
2

1110
1110
0000
1110
1111
1110
1111
1110

1110
1110

1000
1000
0000
1011
ffff
1011
xxxx
1010

1001
1001

 ffkk
 11kk
 0001
0zzz
ffff
1zzz
xzzz
kkkk

ffkk
11kk

kkkk
kkkk
0100
zzzz
ffff
zzzz
zzzz
kkkk

kkkk
kkkk

None
None
None
None

None

None

None
None
 2016-2017 Microchip Technology Inc. Preliminary DS40001842C-page 583

PIC18(L)F65/66K40

CALLW Subroutine Call Using WREG

Syntax: CALLW

Operands: None

Operation: (PC + 2)  TOS,
(W)  PCL,
(PCLATH)  PCH,
(PCLATU)  PCU

Status Affected: None

Encoding: 0000 0000 0001 0100

Description First, the return address (PC + 2) is
pushed onto the return stack. Next, the
contents of W are written to PCL; the
existing value is discarded. Then, the
contents of PCLATH and PCLATU are
latched into PCH and PCU,
respectively. The second cycle is
executed as a NOP instruction while the
new next instruction is fetched.
Unlike CALL, there is no option to
update W, Status or BSR.

Words: 1

Cycles: 2

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
WREG

PUSH PC to
stack

No
operation

No
operation

No
operation

No
operation

No
operation

Example: HERE CALLW

Before Instruction
PC = address (HERE)
PCLATH = 10h
PCLATU = 00h
W = 06h

After Instruction
PC = 001006h
TOS = address (HERE + 2)
PCLATH = 10h
PCLATU = 00h
W = 06h

MOVSF Move Indexed to f

Syntax: MOVSF [zs], fd

Operands: 0  zs  127
0  fd  4095

Operation: ((FSR2) + zs)  fd

Status Affected: None

Encoding:
1st word (source)
2nd word (destin.)

1110
1111

1011
ffff

0zzz
ffff

zzzzs
ffffd

Description: The contents of the source register are
moved to destination register ‘fd’. The
actual address of the source register is
determined by adding the 7-bit literal
offset ‘zs’ in the first word to the value of
FSR2. The address of the destination
register is specified by the 12-bit literal
‘fd’ in the second word. Both addresses
can be anywhere in the 4096-byte data
space (000h to FFFh).
The MOVSF instruction cannot use the
PCL, TOSU, TOSH or TOSL as the
destination register.
If the resultant source address points to
an indirect addressing register, the
value returned will be 00h.

Words: 2

Cycles: 2

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Determine
source addr

Determine
source addr

Read
source reg

Decode No
operation

No dummy
read

No
operation

Write
register ‘f’

(dest)

Example: MOVSF [05h], REG2

Before Instruction
FSR2 = 80h
Contents
of 85h = 33h
REG2 = 11h

After Instruction
FSR2 = 80h
Contents
of 85h = 33h
REG2 = 33h
 2016-2017 Microchip Technology Inc. Preliminary DS40001842C-page 585

PIC18(L)F65/66K40
37.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C
compilers for all of Microchip’s 8, 16, and 32-bit MCU
and DSC devices. These compilers provide powerful
integration capabilities, superior code optimization and
ease of use. MPLAB XC Compilers run on Windows,
Linux or MAC OS X.

For easy source level debugging, the compilers provide
debug information that is optimized to the MPLAB X
IDE.

The free MPLAB XC Compiler editions support all
devices and commands, with no time or memory
restrictions, and offer sufficient code optimization for
most applications.

MPLAB XC Compilers include an assembler, linker and
utilities. The assembler generates relocatable object
files that can then be archived or linked with other relo-
catable object files and archives to create an execut-
able file. MPLAB XC Compiler uses the assembler to
produce its object file. Notable features of the assem-
bler include:

• Support for the entire device instruction set

• Support for fixed-point and floating-point data

• Command-line interface

• Rich directive set

• Flexible macro language

• MPLAB X IDE compatibility

37.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal
macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object
files for the MPLINK Object Linker, Intel® standard HEX
files, MAP files to detail memory usage and symbol
reference, absolute LST files that contain source lines
and generated machine code, and COFF files for
debugging.

The MPASM Assembler features include:

• Integration into MPLAB X IDE projects

• User-defined macros to streamline
assembly code

• Conditional assembly for multipurpose
source files

• Directives that allow complete control over the
assembly process

37.4 MPLINK Object Linker/
MPLIB Object Librarian

The MPLINK Object Linker combines relocatable
objects created by the MPASM Assembler. It can link
relocatable objects from precompiled libraries, using
directives from a linker script.

The MPLIB Object Librarian manages the creation and
modification of library files of precompiled code. When
a routine from a library is called from a source file, only
the modules that contain that routine will be linked in
with the application. This allows large libraries to be
used efficiently in many different applications.

The object linker/library features include:

• Efficient linking of single libraries instead of many
smaller files

• Enhanced code maintainability by grouping
related modules together

• Flexible creation of libraries with easy module
listing, replacement, deletion and extraction

37.5 MPLAB Assembler, Linker and
Librarian for Various Device
Families

MPLAB Assembler produces relocatable machine
code from symbolic assembly language for PIC24,
PIC32 and dsPIC DSC devices. MPLAB XC Compiler
uses the assembler to produce its object file. The
assembler generates relocatable object files that can
then be archived or linked with other relocatable object
files and archives to create an executable file. Notable
features of the assembler include:

• Support for the entire device instruction set

• Support for fixed-point and floating-point data

• Command-line interface

• Rich directive set

• Flexible macro language

• MPLAB X IDE compatibility
 2016-2017 Microchip Technology Inc. Preliminary DS40001842C-page 592

