

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	60
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.5K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 45x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f66k40-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.5 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the device to continue operating should the external oscillator fail. The FSCM is enabled by setting the FCMEN bit in the Configuration Words. The FSCM is applicable to all external Oscillator modes (LP, XT, HS, ECL/M/H and Secondary Oscillator).

FIGURE 4-9: FSCM BLOCK DIAGRAM

4.5.1 FAIL-SAFE DETECTION

The FSCM module detects a failed oscillator by comparing the external oscillator to the FSCM sample clock. The sample clock is generated by dividing the LFINTOSC by 64. See Figure 4-9. Inside the fail detector block is a latch. The external clock sets the latch on each falling edge of the external clock. The sample clock clears the latch on each rising edge of the sample clock. A failure is detected when an entire half-cycle of the sample clock elapses before the external clock goes low.

4.5.2 FAIL-SAFE OPERATION

When the external clock fails, the FSCM overwrites the COSC bits to select HFINTOSC (3'b110). The frequency of HFINTOSC would be determined by the previous state of the HFFRQ bits and the NDIV/CDIV bits. The bit flag OSCFIF of the PIR1 register is set. Setting this flag will generate an interrupt if the OSCFIE bit of the PIE1 register is also set. The device firmware can then take steps to mitigate the problems that may arise from a failed clock. The system clock will continue to be sourced from the internal clock source until the device firmware successfully restarts the external oscillator and switches back to external operation, by writing to the NOSC and NDIV bits of the OSCCON1 register.

4.5.3 FAIL-SAFE CONDITION CLEARING

The Fail-Safe condition is cleared after a Reset, executing a SLEEP instruction or changing the NOSC and NDIV bits of the OSCCON1 register. When switching to the external oscillator or PLL, the OST is restarted. While the OST is running, the device continues to operate from the INTOSC selected in OSCCON1. When the OST times out, the Fail-Safe condition is cleared after successfully switching to the external clock source. The OSCFIF bit should be cleared prior to switching to the external clock source. If the Fail-Safe condition still exists, the OSCFIF flag will again become set by hardware.

REGISTER 5	-2: CLKR	CLK: CLOCK		CE CLOCK S	ELECTION N	IUX	
U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
	—	—	—	—		CLK<2:0>	
bit 7							bit 0
Logond:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BC	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-3	Unimplemen	ted: Read as '	כי				
bit 2-0	CLK<2:0>: C	LKR Clock Sel	ection bits				
	111 = Unimpl	emented					
	110 = Unimpl	emented					
	101 = Unimpl	emented					
	100 = SOSC						
	011 = MFINT	OSC (500 kHz)				
	010 = LFINT(OSC (31 kHz)					
	001 = HFINT	OSC					
	000 = FOSC						

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK REFERENCE OUTPUT

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CLKRCON	EN	_	_	DC<	:1:0>	DIV<2:0>			54
CLKRCLK	—	—	—	_	_	CLK<2:0>			55
PMD0	SYSCMD	FVRMD	HLVDMD	CRCMD	SCANMD	NVMMD	CLKRMD	IOCMD	66
RxyPPS	_	_		RxyPPS<5:0>					

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the CLKR module.

8.12 Start-up Sequence

Upon the release of a POR or BOR, the following must occur before the device will begin executing:

- 1. Power-up Timer runs to completion (if enabled).
- 2. Oscillator start-up timer runs to completion (if required for selected oscillator source).
- 3. MCLR must be released (if enabled).

The total time out will vary based on oscillator configuration and Power-up Timer configuration. See Section 4.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for more information.

The Power-up Timer and oscillator start-up timer run independently of MCLR Reset. If MCLR is kept low long enough, the Power-up Timer and oscillator Start-up Timer will expire. Upon bringing MCLR high, the device will begin execution after 10 Fosc cycles (see Figure 8-4). This is useful for testing purposes or to synchronize more than one device operating in parallel.

FIGURE 8-4: RESET START-UP SEQUENCE

15.2.5 SLEW RATE CONTROL

The SLRCONx register (Register 15-7) controls the slew rate option for each port pin. Slew rate for each port pin can be controlled independently. When an SLRCONx bit is set, the corresponding port pin drive is slew rate limited. When an SLRCONx bit is cleared, The corresponding port pin drive slews at the maximum rate possible.

15.2.6 INPUT THRESHOLD CONTROL

The INLVLx register (Register 15-8) controls the input voltage threshold for each of the available PORTx input pins. A selection between the Schmitt Trigger CMOS or the TTL compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTx register and also the level at which an interrupt-on-change occurs, if that feature is enabled. See Table 37-8 for more information on threshold levels.

Note:	Changing the input threshold selection
	should be performed while all peripheral
	modules are disabled. Changing the
	threshold level during the time a module is
	active may inadvertently generate a
	transition associated with an input pin,
	regardless of the actual voltage level on
	that pin.

15.2.7 WEAK PULL-UP CONTROL

The WPUx register (Register 15-5) controls the individual weak pull-ups for each port pin.

15.2.8 EDGE SELECTABLE INTERRUPT-ON-CHANGE

An interrupt can be generated by detecting a signal at the port pin that has either a rising edge or a falling edge. Any individual pin can be configured to generate an interrupt. The interrupt-on-change module is present on all the pins of Ports B, C, E and on pin RG5. For further details about the IOC module refer to **Section 16.0 "Interrupt-on-Change"**.

CLRF	PORTE	; Initialize PORTE by
		; clearing output
		; data latches
CLRF	LATE	; Alternate method
		; to clear output
		; data latches
CLRF	ANSELE	; Configure analog pins
		; for digital only
MOVLW	05h	; Value used to
		; initialize data
		; direction
MOVWF	TRISE	; Set RE<0> as input
		; RE<1> as output
		; RE<2> as input

EXAMPLE 15-2: INITIALIZING PORTE

REGISTER 17-3: PPSLOCK: PPS LOCK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0
—	—	—		—			PPSLOCKED
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 0 PPSLOCKED: PPS Locked bit

1 = PPS is locked. PPS selections can not be changed.

0 = PPS is not locked. PPS selections can be changed.

TABLE 17-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE PPS MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
PPSLOCK	—	_	_	—	—		_	PPSLOCKED	230
INT0PPS	—	_			INTO)PPS<5:0>			225
INT1PPS	—				INT1	PPS<5:0>			225
INT2PPS	-	-			INT2	PPS<5:0>			225
INT3PPS	_				INT3	8PPS<5:0>			225
T0CKIPPS	_				TOCK	(IPPS<5:0>			225
T1CKIPPS	-	-			T1CK	(IPPS<5:0>			225
T1GPPS	—	_			T1G	PPS<5:0>			225
T3CKIPPS	—				T3Ck	(IPPS<5:0>			225
T3GPPS	-	-			T3G	PPS<5:0>			225
T5CKIPPS	_			T5CKIPPS<5:0>					
T5GPPS	—			T5GPPS<4:0>					
T7CKIPPS	-	-		T7CKIPPS<5:0>					
T7GPPS	—	_			T7G	PPS<5:0>			225
T2INPPS	_				T2IN	IPPS<5:0>			225
T4INPPS	-	-			T4IN	IPPS<5:0>			225
T6INPPS	—	_			T6IN	IPPS<5:0>			225
T8INPPS	—	_			T8IN	IPPS<5:0>			225
CCP1PPS	—	_			CCP	1PPS<5:0>			225
CCP2PPS	—	_			CCP	2PPS<5:0>			225
CCP3PPS	—	_			CCP	3PPS<5:0>			225
CCP4PPS	—	_			CCP	4PPS<5:0>			225
CCP5PPS	—	_			CCP	5PPS<5:0>			225
SMT1WINPPS	—	_			SMT1V	VINPPS<5:0	>		225
SMT1SIGPPS	—	_			SMT1S	GPPS<5:0	>		225
SMT2WINPPS	—	_			SMT2V	VINPPS<5:0	>		225
SMT2SIGPPS	—	_			SMT2S	GPPS<5:0	>		225
CWG1PPS	—	_			CWG	1PPS<5:0>			225

© 2016-2017 Microchip Technology Inc.

18.1 Timer0 Operation

Timer0 can operate as either an 8-bit timer/counter or a 16-bit timer/counter. The mode is selected with the T016BIT bit of the T0CON register.

18.1.1 16-BIT MODE

The register pair TMR0H:TMR0L, increments on the rising edge of the clock source. A 15-bit prescaler on the clock input gives several prescale options (see prescaler control bits, T0CKPS<3:0> in the T0CON1 register).

18.1.1.1 Timer0 Reads and Writes in 16-Bit Mode

In 16-bit mode, to avoid rollover between reading high and low registers, the TMR0H register is a buffered copy of the actual high byte of Timer0, which is neither directly readable nor writable (see Figure 18-1). TMR0H is updated with the contents of the high byte of Timer0 during a read of TMR0L. This provides the ability to read all 16 bits of Timer0 without having to verify that the read of the high and low byte was valid, due to a rollover between successive reads of the high and low byte.

Similarly, a write to the high byte of Timer0 must also take place through the TMR0H Buffer register. The high byte is updated with the contents of TMR0H when a write occurs to TMR0L. This allows all 16 bits of Timer0 to be updated at once.

18.1.2 8-BIT MODE

In normal operation, TMR0 increments on the rising edge of the clock source. A 15-bit prescaler on the clock input gives several prescale options (see prescaler control bits, T0CKPS<3:0> in the T0CON1 register).

In 8-bit mode, the value of TMR0L is compared to that of the Period buffer, a copy of TMR0H, on each clock cycle. When the two values match, the following events happen:

- TMR0_out goes high for one prescaled clock period
- TMR0L is reset
- The contents of TMR0H are copied to the period buffer

In 8-bit mode, the TMR0L and TMR0H registers are both directly readable and writable. The TMR0L register is cleared on any device Reset, while the TMR0H register initializes at FFh. Both the prescaler and postscaler counters are cleared on the following events:

- A write to the TMR0L register
- A write to either the T0CON0 or T0CON1 registers
- Any device Reset Power-on Reset (POR), MCLR Reset, Watchdog Timer Reset (WDTR) or
- Brown-out Reset (BOR)

18.1.3 COUNTER MODE

In Counter mode, the prescaler is normally disabled by setting the T0CKPS bits of the T0CON1 register to '0000'. Each rising edge of the clock input (or the output of the prescaler if the prescaler is used) increments the counter by '1'.

18.1.4 TIMER MODE

In Timer mode, the Timer0 module will increment every instruction cycle as long as there is a valid clock signal and the T0CKPS bits of the T0CON1 register (Register 18-2) are set to '0000'. When a prescaler is added, the timer will increment at the rate based on the prescaler value.

18.1.5 ASYNCHRONOUS MODE

When the T0ASYNC bit of the T0CON1 register is set (T0ASYNC = '1'), the counter increments with each rising edge of the input source (or output of the prescaler, if used). Asynchronous mode allows the counter to continue operation during Sleep mode provided that the clock also continues to operate during Sleep.

18.1.6 SYNCHRONOUS MODE

When the T0ASYNC bit of the T0CON1 register is clear (T0ASYNC = 0), the counter clock is synchronized to the system clock (Fosc/4). When operating in Synchronous mode, the counter clock frequency cannot exceed Fosc/4.

18.2 Clock Source Selection

The T0CS<2:0> bits of the T0CON1 register are used to select the clock source for Timer0. Register 18-2 displays the clock source selections.

18.2.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected, Timer0 operates as a timer and will increment on multiples of the clock source, as determined by the Timer0 prescaler.

18.2.2 EXTERNAL CLOCK SOURCE

When an external clock source is selected, Timer0 can operate as either a timer or a counter. Timer0 will increment on multiples of the rising edge of the external clock source, as determined by the Timer0 prescaler.

Mode	Mode MODE<4:0>		Output	Operation					
Mode	<4:3>	<2:0>	Operation	Operation	Start	Reset	Stop		
		000		Software gate (Figure 20-4)	ON = 1		ON = 0		
F	001	Period Pulse	Hardware gate, active-high (Figure 20-5)	ON = 1 and TMRx_ers = 1	_	ON = 0 or TMRx_ers = 0			
	010		Hardware gate, active-low	ON = 1 and TMRx_ers = 0	—	ON = 0 or TMRx_ers = 1			
Free	Free Running 00	011		Rising or falling edge Reset		TMRx_ers			
Running 00 Period	100	Period	Rising edge Reset (Figure 20-6)		TMRx_ers ↑	ON = 0			
		101	Pulse	Falling edge Reset		TMRx_ers ↓			
		110	with Hardware	Low level Reset	ON = 1	TMRx_ers = 0	ON = 0 or TMRx_ers = 0		
		111	Reset	High level Reset (Figure 20-7)		TMRx_ers = 1	ON = 0 or TMRx_ers = 1		
		000	One-shot	Software start (Figure 20-8)	ON = 1	_			
	001	001	Edge	Rising edge start (Figure 20-9)	ON = 1 and TMRx_ers ↑	_			
One-shot 01		010	triggered start (Note 1)	Falling edge start	ON = 1 and TMRx_ers ↓	_			
		011		Any edge start	ON = 1 and TMRx_ers	_	ON = 0 or		
	01	100	Edge	Rising edge start and Rising edge Reset (Figure 20-10)	ON = 1 and TMRx_ers ↑	TMRx_ers ↑	after TMRx = PRx		
		101	triggered start and hardware Reset (Note 1)	Falling edge start and Falling edge Reset	ON = 1 and TMRx_ers ↓ TMI		(Note 2)		
		110		Rising edge start and Low level Reset (Figure 20-11)	ON = 1 and TMRx_ers ↑	TMRx_ers = 0			
		111		Falling edge start and High level Reset	ON = 1 and TMRx_ers ↓	TMRx_ers = 1			
		000		Rese	rved				
		001	Edge	Rising edge start (Figure 20-12)	ON = 1 and TMRx_ers ↑	—	ON = 0 or		
Mono-stable		010	triggered start	Falling edge start	ON = 1 and TMRx_ers ↓	—	Next clock after		
		011	(Note 1)	Any edge start	ON = 1 and TMRx_ers	_	TMRx = PRx (Note 3)		
Reserved	10	100		Rese	rved				
Reserved		101		Rese	rved				
		110	Level triggered	High level start and Low level Reset (Figure 20-13)	ON = 1 and TMRx_ers = 1	TMRx_ers = 0	ON = 0 or		
One-shot		111	start and hardware Reset	Low level start & High level Reset	ON = 1 and TMRx_ers = 0	TMRx_ers = 1	Held in Reset (Note 2)		
Reserved	11	xxx	Reserved						

TABLE 20-1: TIMER2 OPERATING MODES

Note 1: If ON = 0 then an edge is required to restart the timer after ON = 1.

2: When TMRx = PRx then the next clock clears ON and stops TMRx at 00h.

3: When TMRx = PRx then the next clock stops TMRx at 00h but does not clear ON.

21.3 Capture Mode

Capture mode makes use of the 16-bit Timer1 resource. When an event occurs on the capture source, the 16-bit CCPRxH:CCPRxL register pair captures and stores the 16-bit value of the TMRxH:TMRxL register pair, respectively. An event is defined as one of the following and is configured by the MODE<3:0> bits of the CCPxCON register:

- · Every falling edge of CCPx input
- Every rising edge of CCPx input
- Every 4th rising edge of CCPx input
- · Every 16th rising edge of CCPx input
- Every edge of CCPx input (rising or falling)

When a capture is made, the Interrupt Request Flag bit CCPxIF of the PIR7 register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPRxH:CCPRxL register pair is read, the old captured value is overwritten by the new captured value.

Note: If an event occurs during a 2-byte read, the high and low-byte data will be from different events. It is recommended while reading the CCPRxH:CCPRxL register pair to either disable the module or read the register pair twice for data integrity.

Figure 21-1 shows a simplified diagram of the capture operation.

21.3.1 CAPTURE SOURCES

In Capture mode, the CCPx pin should be configured as an input by setting the associated TRIS control bit.

Note: If the CCPx pin is configured as an output, a write to the port can cause a capture condition.

The capture source is selected by configuring the CTS<2:0> bits of the CCPxCAP register. The following sources can be selected:

- · Pin selected by CCPxPPS
- C1_output
- C2 output
- C3 output
- IOC_interrupt

21.3.2 TIMER1 MODE RESOURCE

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

• See Section 19.0 "Timer1/3/5/7 Module with Gate Control" for more information on configuring Timer1.

FIGURE 21-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
			DCH	<7:0>				
bit 7							bit 0	
Legend:								
R = Readable	R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
u = Bit is unch	nanged	x = Bit is unkn	own	wn -n/n = Value at POR and BOR/Value at all other R				
'1' = Bit is set		'0' = Bit is clea	ared					

REGISTER 22-3: PWMxDCH: PWM DUTY CYCLE HIGH BITS

bit 7-0 **DCh<7:0>:** PWM Duty Cycle Most Significant bits These bits are the MSbs of the PWM duty cycle. The two LSbs are found in PWMxDCL Register.

REGISTER 22-4: PWMxDCL: PWM DUTY CYCLE LOW BITS

R/W-x/u	R/W-x/u	U-0	U-0	U-0	U-0	U-0	U-0
DCL<7:6>		—	—	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 DC<8:9>: PWM Duty Cycle Least Significant bits These bits are the LSbs of the PWM duty cycle. The MSbs are found in PWMxDCH Register.

bit 5-0 Unimplemented: Read as '0'

23.6 Handling VPEAK Variations

If the peak amplitude of the external voltage is expected to vary, the series resistor must be selected to keep the ZCD current source and sink below the design maximum range of $\pm 600 \ \mu$ A and above a reasonable minimum range. A general rule of thumb is that the maximum peak voltage can be no more than six times the minimum peak voltage. To ensure that the maximum current does not exceed $\pm 600 \ \mu$ A and the minimum is at least $\pm 100 \ \mu$ A, compute the series resistance as shown in Equation 23-5. The compensating pull-up for this series resistance can be determined with Equation 23-4 because the pull-up value is independent from the peak voltage.

EQUATION 23-5: SERIES R FOR V RANGE

$$R_{SERIES} = \frac{V_{MAXPEAK} + V_{MINPEAK}}{7 \times 10^{-4}}$$

23.7 Operation During Sleep

The ZCD current sources and interrupts are unaffected by Sleep.

23.8 Effects of a Reset

The ZCD circuit can be configured to default to the active or inactive state on Power-on-Reset (POR). When the \overline{ZCD} Configuration bit is cleared, the ZCD circuit will be active at POR. When the \overline{ZCD} Configuration bit is set, the ZCDSEN bit of the ZCDCON register must be set to enable the ZCD module.

23.9 Disabling the ZCD Module

The ZCD module can be disabled in two ways:

- Configuration Word 2H has the ZCD bit which disables the ZCD module when set, but it can be enabled using the ZCDSEN bit of the ZCDCON register (Register 23-1). If the ZCD bit is clear, the ZCD is always enabled.
- 2. The ZCD can also be disabled using the ZCDMD bit of the PMD3 register (Register 7-4). This is subject to the status of the ZCD bit.

U-0	R-x	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	IN	—	POLD	POLC	POLB	POLA
						bit 0
	W = Writable	bit	U = Unimplei	mented bit, reac	l as '0'	
d	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all o	other Resets
	'0' = Bit is clea	ared	q = Value de	pends on condit	ion	
mplemen	ted: Read as '	כ'				
CWG Inpu	it Value bit (rea	id-only)				
mplemen	ted: Read as '	כ'				
D: CWG	1D Output Pola	rity bit				
Signal out	tput is inverted	polarity				
Signal out	tput is normal p	olarity				
.C : CWG ²	1C Output Pola	rity bit				
Signal out	tput is inverted polarity					
Signal out	tput is normal p	olarity				
B: CWG	1B Output Pola	rity bit				
Signal out	tput is inverted	polarity				
		rity hit				
_A: UVG' Signal out	tout is inverted	nity Dit polarity				
Signal out	tout is normal r	polarity				
	U-0 	U-0 R-x IN W = Writable W = Writable X = Bit is unkr '0' = Bit is clea mplemented: Read as '0 CWG Input Value bit (rea mplemented: Read as '0 .D: CWG1D Output Pola Signal output is inverted Signal ou	U-0 R-x U-0 M = IN — W = Writable bit M = Writable bit M = Bit is unknown '0' = Bit is cleared mplemented: Read as '0' CWG Input Value bit (read-only) mplemented: Read as '0' .D: CWG1D Output Polarity bit Signal output is inverted polarity Signal output is normal polarity .C: CWG1C Output Polarity bit Signal output is inverted polarity Signal output is inverted polarity .B: CWG1B Output Polarity bit Signal output is normal polarity .B: CWG1B Output Polarity bit Signal output is normal polarity .A: CWG1A Output Polarity bit Signal output is inverted polarity Signal output is normal polarity .A: CWG1A Output Polarity bit Signal output is normal polarity Signal output is normal polarity	U-0 R-x U-0 R/W-0/0 - IN - POLD W = Writable bit U = Unimplet d x = Bit is unknown -n/n = Value '0' = Bit is cleared q = Value de mplemented: Read as '0' CWG Input Value bit (read-only) mplemented: Read as '0' .D: CWG1D Output Polarity bit Signal output is inverted polarity Signal output is normal polarity .C: CWG1C Output Polarity bit Signal output is inverted polarity Signal output is inverted polarity .B: CWG1B Output Polarity bit Signal output is inverted polarity .B: CWG1B Output Polarity bit Signal output is inverted polarity .G: CWG1A Output Polarity bit Signal output is inverted polarity .A: CWG1A Output Polarity bit Signal output is inverted polarity Signal output is inverted polarity Signal output is normal polarity .A: CWG1A Output Polarity bit Signal output is inverted polarity Signal output is normal polarity Signal output is inverted polarity Signal output is normal polarity Signal output is normal polarity	U-0 R-x U-0 R/W-0/0 R/W-0/0 - IN - POLD POLC W = Writable bit U = Unimplemented bit, read a x = Bit is unknown -n/n = Value at POR and BO '0' = Bit is cleared q = Value depends on condit mplemented: Read as '0' CWG Input Value bit (read-only) mplemented: Read as '0' D: CWG1D Output Polarity bit Signal output is inverted polarity Signal output is inverted polarity Signal output is inverted polarity Signal output is inverted polarity B: CWG1B Output Polarity bit Signal output is inverted polarity JB: CWG1B Output Polarity bit Signal output is inverted polarity Signal output is inverted polarity A: CWG1A Output Polarity bit Signal output is inverted polarity Signal output is inverted polarity	U-0 R-x U-0 R/W-0/0 R/W-0/0 R/W-0/0 - IN - POLD POLC POLB W = Writable bit U = Unimplemented bit, read as '0' -n/n = Value at POR and BOR/Value at all or '0' = Bit is cleared -n/n = Value depends on condition mplemented: Read as '0' - - - CWG Input Value bit (read-only) mplemented: Read as '0' - - .D: CWG1D Output Polarity bit Signal output is inverted polarity - Signal output is inverted polarity - - - .E: CWG1D Output Polarity bit - - Signal output is inverted polarity - - - .B: CWG1B Output Polarity bit - - Signal output is inverted polarity - - - .B: CWG1B Output Polarity bit - - - .B: CWG1A Output Polarity bit - - - .B: CWG1A Output Polarity bit - - - .G: CWG1A Output Polarity bit - - -

REGISTER 24-2: CWG1CON1: CWG CONTROL REGISTER 1

U-0	U-0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
—	—	CHPOL	CHSYNC	—	—	CLPOL	CLSYNC
bit 7						·	bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
u = Bit is und	hanged	x = Bit is unkr	iown	-n/n = Value	at POR and BC	R/Value at all	other Resets
'1' = Bit is se	t	'0' = Bit is clea	ared				
bit 7-6	Unimpleme	nted: Read as '	0'				
bit 5	CHPOL: Mo	dulator High Ca	rrier Polarity S	elect bit			
	1 = Selected	d high carrier si	gnal is inverted				
	0 = Selected	d high carrier si	gnal is not inve	rted			
bit 4	CHSYNC: M	lodulator High C	Carrier Synchro	nization Enab	le bit		
	1 = Modulat	or waits for a fa	alling edge on t	the high time of	carrier signal be	efore allowing a	a switch to the
	0 = Modulat	or output is not	synchronized t	o the high time	e carrier signal ⁽	1)	
bit 3-2	Unimpleme	nted: Read as '	0'				
bit 1	CLPOL: Mod	dulator Low Ca	rier Polaritv Se	elect bit			
	1 = Selected	d low carrier sig	nal is inverted				
	0 = Selected	d low carrier sig	nal is not inver	ted			
bit 0	CLSYNC: M	odulator Low C	arrier Synchror	nization Enable	e bit		
	1 = Modulat	or waits for a fal	ling edge on th	e low time carr	rier signal before	e allowing a sw	itch to the high
	time ca 0 = Modulat	mer or output is not	synchronized t	o the low time	carrier signal(1)	
			oynomized (ourrier orginal		

REGISTER 26-2: MDCON1: MODULATION CONTROL REGISTER 1

Note 1:Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.

31.0 5-BIT DIGITAL-TO-ANALOG CONVERTER (DAC) MODULE

The Digital-to-Analog Converter supplies a variable voltage reference, ratiometric with the input source, with 32 selectable output levels.

The positive input source (VSOURCE+) of the DAC can be connected to:

- FVR Buffer
- External VREF+ pin
- VDD supply voltage

The negative input source (VSOURCE-) of the DAC can be connected to:

- External VREF- pin
- Vss

The output of the DAC (DACx_output) can be selected as a reference voltage to the following:

- · Comparator positive input
- ADC input channel
- DACxOUT1 pin
- DACxOUT2 pin

The Digital-to-Analog Converter (DAC) can be enabled by setting the DACEN bit of the DAC1CON0 register.

-000026F 8/7/2015 Reserved 11 VSOURCE+ DACR<4:0> FVR Buffer 10 5 R VREF+ 01 AVdd 00 R DACPSS R R 32-to-1 MUX DACx_output 32 To Peripherals Steps . . DACEN R DACxOUT1⁽¹⁾ R DACOE1 R DACxOUT2⁽¹⁾ **VREF-**1 VSOURCE-DACOE2 0 AVss DACNSS Note 1: The unbuffered DACx output is provided on the DACxOUT pin(s).

FIGURE 31-1: DIGITAL-TO-ANALOG CONVERTER BLOCK DIAGRAM

PIC18(L)F65/66K40

32.5.1 DIGITAL FILTER/AVERAGE

The digital filter/average module consists of an accumulator with data feedback options, and control logic to determine when threshold tests need to be applied. The accumulator is a 16-bit wide register which can be accessed through the ADACCH:ADACCL register pair.

Upon each trigger event (the ADGO bit set or external event trigger), the ADC conversion result is added to the accumulator. If the accumulated value exceeds $2^{(accumulator_width)} = 2^{16} = 65535$, the overflow bit ADAOV in the ADSTAT register is set.

The number of samples to be accumulated is determined by the ADRPT (A/D Repeat Setting) register. Each time a sample is added to the accumulator, the ADCNT register is incremented. Once ADRPT samples are accumulated (ADCNT = ADRPT), an accumulator clear command can be issued by the software by setting the ADACLR bit in the ADCON2 register. Setting the ADACLR bit will also clear the ADAOV (Accumulator overflow) bit in the ADSTAT register, as well as the ADCNT register. The ADACLR bit is cleared by the hardware when accumulator clearing action is complete.

Note: When ADC is operating from FRC, five FRC clock cycles are required to execute the ADACC clearing operation.

The ADCRS <2:0> bits in the ADCON2 register control the data shift on the accumulator result, which effectively divides the value in accumulator (ADACCH:ADACCL) register pair. For the Accumulate mode of the digital filter, the shift provides a simple scaling operation. For the Average/Burst Average mode, the shift bits are used to determine number of samples for averaging. For the Low-pass Filter mode, the shift is an integral part of the filter, and determines the cut-off frequency of the filter. Table 32-4 shows the -3 dB cut-off frequency in ω T (radians) and the highest signal attenuation obtained by this filter at nyquist frequency (ω T = π).

TABLE 32-4:	LOW-PASS FILTER -3 dB CUT-OFF FREQUENCY

ADCRS	ωT (radians) @ -3 dB Frequency	dB @ F _{nyquist} =1/(2T)
1	0.72	-9.5
2	0.284	-16.9
3	0.134	-23.5
4	0.065	-29.8
5	0.032	-36.0
6	0.016	-42.0
7	0.0078	-48.1

32.5.2 BASIC MODE

Basic mode (ADMD = 000) disables all additional computation features. In this mode, no accumulation occurs but threshold error comparison is performed. Double sampling, Continuous mode, and all CVD features are still available, but no features involving the digital filter/average features are used.

32.5.3 ACCUMULATE MODE

In Accumulate mode (ADMD = 001), after every conversion, the ADC result is added to the ADACC register. The ADACC register is right-shifted by the value of the ADCRS bits in the ADCON2 register. This right-shifted value is copied in to the ADFLT register. The Formatting mode does not affect the right-justification of the ADACC value. Upon each sample, ADCNT is also incremented, incrementing the number of samples accumulated. After each sample and accumulation, the ADACC value has a threshold comparison performed on it (see Section 32.5.7 "Threshold Comparison") and the ADTIF interrupt may trigger.

32.5.4 AVERAGE MODE

In Average Mode (ADMD = 010), the ADACC registers accumulate with each ADC sample, much as in Accumulate mode, and the ADCNT register increments with each sample. The ADFLT register is also updated with the right-shifted value of the ADACC register. The value of the ADCRS bits governs the number of right shifts. However, in Average mode, the threshold comparison is performed upon ADCNT being greater than or equal to a user-defined ADRPT value. In this mode when ADRPT = 2^ADCNT, then the final accumulated value will be divided by number of samples, allowing for a threshold comparison operation on the average of all gathered samples.

TABLE 36-2: INSTRUCTION SET

Mnemonic,		Deperimtion	Qualas	16-	Bit Instr	uction W	/ord	Status	Natas
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
BYTE-ORI	ENTED (OPERATIONS							
ADDWF	f, d, a	Add WREG and f	1	0010	01da	ffff	ffff	C, DC, Z, OV, N	1, 2
ADDWFC	f, d, a	Add WREG and CARRY bit to f	1	0010	00da	ffff	ffff	C, DC, Z, OV, N	1, 2
ANDWF	f, d, a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	1,2
CLRF	f, a	Clear f	1	0110	101a	ffff	ffff	Z	2
COMF	f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	1, 2
CPFSEQ	f, a	Compare f with WREG, skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	4
CPFSGT	f, a	Compare f with WREG, skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	4
CPFSLT	f, a	Compare f with WREG, skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1, 2
DECF	f, d, a	Decrement f	1	0000	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
DECFSZ	f, d, a	Decrement f, Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1, 2, 3, 4
DCFSNZ	f, d, a	Decrement f, Skip if Not 0	1 (2 or 3)	0100	11da	ffff	ffff	None	1, 2
INCF	f, d, a	Increment f	1	0010	10da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
INCFSZ	f, d, a	Increment f, Skip if 0	1 (2 or 3)	0011	11da	ffff	ffff	None	4
INFSNZ	f, d, a	Increment f, Skip if Not 0	1 (2 or 3)	0100	10da	ffff	ffff	None	1, 2
IORWF	f, d, a	Inclusive OR WREG with f	1	0001	00da	ffff	ffff	Z, N	1, 2
MOVF	f, d, a	Move f	1	0101	00da	ffff	ffff	Z, N	1
MOVFF	f _s , f _d	Move f _s (source) to 1st word	2	1100	ffff	ffff	ffff	None	
	0 u	f _d (destination) 2nd word		1111	ffff	ffff	ffff		
MOVWF	f, a	Move WREG to f	1	0110	111a	ffff	ffff	None	
MULWF	f, a	Multiply WREG with f	1	0000	001a	ffff	ffff	None	1, 2
NEGF	f, a	Negate f	1	0110	110a	ffff	ffff	C, DC, Z, OV, N	
RLCF	f, d, a	Rotate Left f through Carry	1	0011	01da	ffff	ffff	C, Z, N	1, 2
RLNCF	f, d, a	Rotate Left f (No Carry)	1	0100	01da	ffff	ffff	Z, N	
RRCF	f, d, a	Rotate Right f through Carry	1	0011	00da	ffff	ffff	C, Z, N	
RRNCF	f, d, a	Rotate Right f (No Carry)	1	0100	00da	ffff	ffff	Z, N	
SETF	f, a	Set f	1	0110	100a	ffff	ffff	None	1, 2
SUBFWB	f, d, a	Subtract f from WREG with	1	0101	01da	ffff	ffff	C, DC, Z, OV, N	
		borrow							
SUBWF	f, d, a	Subtract WREG from f	1	0101	11da	ffff	ffff	C, DC, Z, OV, N	1, 2
SUBWFB	f, d, a	Subtract WREG from f with	1	0101	10da	ffff	ffff	C, DC, Z, OV, N	
		borrow						,	
SWAPF	f, d, a	Swap nibbles in f	1	0011	10da	ffff	ffff	None	4
TSTFSZ	f, a	Test f, skip if 0	1 (2 or 3)	0110	011a	ffff	ffff	None	1, 2
XORWF	f, d, a	Exclusive OR WREG with f	1	0001	10da	ffff	ffff	Z, N	

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, 'd' = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

PIC18(L)F65/66K40

Syntax: Operands:	ANDWF f {,d {,a}}						
Operands:		DWF f {,d {,a}}		IX:	BC n		
	$0 \leq f \leq 255$		Opera	ands:	-128 ≤ n ≤ 1	127	
	d ∈ [0,1] a ∈ [0,1]		Opera	ation:	if CARRY b (PC) + 2 + 2	it is '1' 2n → PC	
Operation:	(W) .AND. (f) \rightarrow dest		Statu	s Affected:	None		
Status Affected:	N, Z		Enco	dina:	1110	0010 nni	nn nnnn
Encoding:	0001 01da ff:	ff ffff	Desc	rintion:	If the CARE	Y hit is '1' the	n the program
Description:	The contents of W are AN register 'f'. If 'd' is '0', the r in W. If 'd' is '1', the result in register 'f' (default). If 'a' is '0', the Access Bai If 'a' is '1', the BSR is use GPR bank. If 'a' is '0' and the extend set is enabled, this instru- in Indexed Literal Offset A mode whenever $f \le 95$ (5) tion 36.2.3 "Byte-Orient Oriented Instructions in eral Offset Mode" for de	ND'ed with result is stored is stored back is stored back ink is selected. ind to select the ed instruction ction operates Addressing Fh). See Sec- ed and Bit- in Indexed Lit- tails	Word Cycle Q Cy If Ju	s: s: ycle Activity: mp: Q1	will branch. The 2's con added to the incremente instruction, PC + 2 + 2r 2-cycle inst 1 1(2) Q2	nplement num e PC. Since th d to fetch the r the new addre n. This instruct ruction.	ber '2n' is e PC will have next ess will be ion is then a Q4
Words:	1			Decode	Read literal	Process	Write to PC
Cycles:	1			No	No	No	No
Q Cycle Activity				operation	operation	operation	operation
Q1	02 03	Q4	lf No	Jump:			
Decode	Read Process	Write to	г	Q1	Q2	Q3	Q4
	register 'f' Data	destination		Decode	Read literal 'n'	Process Data	No operation
Example:	ANDWF REG, 0, 0						operation
Before Instru	iction		Exam	ipie:	HERE	BC 5	
W REG After Instruc W REG	= 17h = C2h ion = 02h = C2h			PC PC After Instruction If CARR PC If CARR	cuon = adi on Y = 1; Y = adi Y = 0;	dress (HERE) + 12)

SUE	BFSR	Subtrac	Subtract Literal from FSR					
Synt	ax:	SUBFSR	f, k					
Oper	ands:	$0 \le k \le 63$	$0 \le k \le 63$					
		$f \in [\ 0, \ 1,$	2]					
Oper	ation:	FSR(f) –	$k \rightarrow FSRf$					
Statu	is Affected:	None						
Enco	oding:	1110	1001	ffkk	kkkk			
Desc	cription:	The 6-bit	The 6-bit literal 'k' is subtracted from					
		the conte	the contents of the FSR specified by					
		ʻf'.						
Word	ds:	1	1					
Cycle	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read	Proce	ess	Write to			
		register 'f'	Data	a d	estination			
Evar	nnlo	CUDECD	0 00h					

Example: SUBFSR 2, 23h

Before Instru	iction	
FSR2	=	03FFh

After Instruct	ion	
FSR2	=	03DCh

Suntax	CI		L.			
Syntax:	SU	JBULINK	к			
Operands:	0 ≤	≤ k ≤ 63				
Operation:	FS	$R2 - k \rightarrow$	FSF	R2		
	(T($(TOS) \rightarrow PC$				
Status Affected:	Nc	one				
Encoding:	-	1110	100)1	11kk	kkkk
	The 6-bit literal 'K is subtracted from the contents of the FSR2. A RETURN is then executed by loading the PC with the TOS. The instruction takes two cycles to execute; a NOP is performed during the second cycle. This may be thought of as a special case of the SUBFSR instruction, where f = 3 (binary '11'): it operates only on FSR2.					
Words:	1					
Cycles:	2					
Q Cycle Activit	y:					
Q1		Q2			Q3	Q4
Decode	è	Read		Pro	ocess	Write to
		register	'f'	D	Data	destination
No		No			No	No
Operatio	n	Operatio	on	Ope	eration	Operation

Example: SUBULNK 23h

Before Instruction						
FSR2	=	03FFh				
PC	=	0100h				
After Instruction						
FSR2	=	03DCh				
PC	=	(TOS)				