

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	60
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 45x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf65k40-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	_	—	—	—	_	INTEDG	173
PIE0	_	—	TMR0IE	IOCIE	INT3IE	INT2IE	INT1IE	INT0IE	185
PIE1	OSCFIE	CSWIE	_	—	—	—	ADTIE	ADIE	186
PIE2	HLVDIE	ZCDIE	-	-	—	-	C2IE	C1IE	187
PIE3	RC2IE	TX2IE	RC1IE	TX1IE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	188
PIE4	—	—	RC5IE	TX5IE	RC4IE	TX4IE	RC3IE	TX3IE	189
PIE5	_	—	_	—	—	TMR3IE	TMR2IE	TMR1IE	190
PIE6	—	—	—	—	TMR7GIE	TMR5GIE	TMR3GIE	TMR1GIE	191
PIE7	-	-	-	CCP5IE	CCP4IE	CCP3IE	CCP2IE	CCP1IE	192
PIE8	SCANIE	CRCIE	NVMIE	-	—	-	-	CWG1IE	193
PIE9	—	—	SMT2PWAIE	SMT2PRAIE	SMT2IE	SMT1PWAIE	SMT1PRAIE	SMT1IE	193
PIR3	RC2IF	TX2IF	RC1IF	TX1IF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	177
STATUS	—	_	_	TO	PD	Z	DC	С	121
VREGCON	—	—	—	—	—	—	VREGPM	Reserved	62
CPUDOZE	IDLEN	DOZEN	ROI	ROI DOE – DOZE<2:0>					63
WDTCON0	—	_			WDTPS<4:0>			SEN	83
WDTCON1	—		WDTPS<2:0>	VDTPS<2:0> — WINDOW<2:0>					84
Note 1: -	Note 1: — = unimplemented location, read as '0'. Shaded cells are not used in Power-Down mode.								

TABLE 6-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

REGISTER 9-3: WDTPSL: WWDT PRESCALE SELECT LOW BYTE REGISTER (READ-ONLY)

R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0
			PSCN	IT<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable bit		U = Unimpler	nented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unknow	'n	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cleared	d				

bit 7-0 **PSCNT<7:0>:** Prescale Select Low Byte bits⁽¹⁾

Note 1: The 18-bit WDT prescale value, PSCNT<17:0> includes the WDTPSL, WDTPSH and the lower bits of the WDTTMR registers. PSCNT<17:0> is intended for debug operations and should be read during normal operation.

REGISTER 9-4: WDTPSH: WWDT PRESCALE SELECT HIGH BYTE REGISTER (READ-ONLY)

R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0
			PSCNT	<15:8>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **PSCNT<15:8>:** Prescale Select High Byte bits⁽¹⁾

Note 1: The 18-bit WDT prescale value, PSCNT<17:0> includes the WDTPSL, WDTPSH and the lower bits of the WDTTMR registers. PSCNT<17:0> is intended for debug operations and should be read during normal operation.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PCON0	STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR	74
STATUS		_	_	TO	PD	Z	DC	С	121
WDTCON0			WDTPS<4:0> SEN				SEN	83	
WDTCON1		V	VDTCS<2:0	>		11VV	NDOW<2:0	>	84
WDTPSL			PSCNT<7:0>						85
WDTPSH		PSCNT<15:8>						85	
WDTTMR		W	DTTMR<4:	0>		STATE	PSCNT	<17:16>	86

TABLE 9-3: SUMMARY OF REGISTERS ASSOCIATED WITH WINDOWED WATCHDOG TIMER

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by Windowed Watchdog Timer.

TABLE 9-4: SUMMARY OF CONFIGURATION WORD WITH WINDOWED WATCHDOG TIMER

Name	Bits Bit -/	7 Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
------	-------------	-----------	----------	----------	----------	----------	---------	---------	---------------------

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Windowed Watchdog Timer.

10.4 Data Memory Organization

Note:	The operation of some aspects of data
	memory are changed when the PIC18
	extended instruction set is enabled. See
	Section 10.7 "Data Memory and the
	Extended Instruction Set" for more
	information.

The data memory in PIC18 devices is implemented as static RAM. Each register in the data memory has a 12-bit address, allowing up to 4096 bytes of data memory. The memory space is divided into as many as 16 banks that contain 256 bytes each. Figure 10-4 shows the data memory organization for the PIC18(L)F6xK40 devices.

The data memory contains Special Function Registers (SFRs) and General Purpose Registers (GPRs). The SFRs are used for control and status of the controller and peripheral functions, while GPRs are used for data storage and scratchpad operations in the user's application. Any read of an unimplemented location will read as '0's.

The instruction set and architecture allow operations across all banks. The entire data memory may be accessed by Direct, Indirect or Indexed Addressing modes. Addressing modes are discussed later in this subsection.

To ensure that commonly used registers (SFRs and select GPRs) can be accessed in a single cycle, PIC18 devices implement an Access Bank. This is a 256-byte memory space that provides fast access to SFRs and the lower portion of GPR Bank 0 without using the Bank Select Register (BSR). **Section 10.4.2 "Access Bank"** provides a detailed description of the Access RAM.

10.4.1 BANK SELECT REGISTER (BSR)

Large areas of data memory require an efficient addressing scheme to make rapid access to any address possible. Ideally, this means that an entire address does not need to be provided for each read or write operation. For PIC18 devices, this is accomplished with a RAM banking scheme. This divides the memory space into 16 contiguous banks of 256 bytes. Depending on the instruction, each location can be addressed directly by its full 12-bit address, or an 8-bit low-order address and a 4-bit Bank Pointer.

Most instructions in the PIC18 instruction set make use of the Bank Pointer, known as the Bank Select Register (BSR). This SFR holds the four Most Significant bits of a location's address; the instruction itself includes the eight Least Significant bits. Only the four lower bits of the BSR are implemented (BSR<3:0>). The upper four bits are unused; they will always read '0' and cannot be written to. The BSR can be loaded directly by using the MOVLB instruction.

The value of the BSR indicates the bank in data memory; the eight bits in the instruction show the location in the bank and can be thought of as an offset from the bank's lower boundary. The relationship between the BSR's value and the bank division in data memory is shown in Figure 10-4.

Since up to 16 registers may share the same low-order address, the user must always be careful to ensure that the proper bank is selected before performing a data read or write. For example, writing what should be program data to an 8-bit address of F9h while the BSR is 0Fh will end up resetting the program counter.

While any bank can be selected, only those banks that are actually implemented can be read or written to. Writes to unimplemented banks are ignored, while reads from unimplemented banks will return '0's. Even so, the STATUS register will still be affected as if the operation was successful. The data memory maps in Figure 10-4 indicate which banks are implemented.

In the core PIC18 instruction set, only the MOVFF instruction fully specifies the 12-bit address of the source and target registers. This instruction ignores the BSR completely when it executes. All other instructions include only the low-order address as an operand and must use either the BSR or the Access Bank to locate their target registers.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
MDCARLPPS	—	_			MDCA	RLPPS<5:0>	`		225
MDCARHPPS	—	_			MDCA	RHPPS<5:0	>		225
MDSRCPPS	_	_			MDSF	CPPS<5:0>			225
ADACTPPS	—	_			ADAC	TPPS<5:0>			225
SSP1CLKPPS	—	—			SSP1C	LKPPS<5:0	>		225
SSP1DATPPS	—	—			SSP1D	ATPPS<5:0	>		225
SSP1SSPPS	—	—			SSP18	SSPPS<5:0>			225
SSP2CLKPPS	_	_			SSP2C	LKPPS<5:0	>		225
SSP2DATPPS	—	—			SSP2D	ATPPS<5:0	>		225
SSP2SSPPS	—	_			SSP2	SSPPS<5:0>			225
RX1PPS	—	—			RX1	PPS<5:0>			225
TX1PPS	—	—			TX1	PPS<5:0>			225
RX2PPS	—	—			RX2	PPS<5:0>			225
TX2PPS	—	—			TX2	PPS<5:0>			225
RX3PPS	—	—			RX3	PPS<5:0>			225
TX3PPS	—	—			TX3	PPS<5:0>			225
RX4PPS	—	—			RX4	PPS<5:0>			225
TX4PPS	—	—		TX4PPS<5:0>				225	
RX5PPS	—	—		RX5PPS<5:0>				225	
TX5PPS	—	—		TX5PPS<5:0>				225	
RxyPPS	—	_			Rxy	PPS<5:0>			225

TABLE 17-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE PPS MODULE (CONTINUED)

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the PPS module.

24.7 Rising Edge and Reverse Dead Band

In Half-Bridge mode, the rising edge dead band delays the turn-on of the CWG1A output after the rising edge of the CWG data input. In Full-Bridge mode, the reverse dead-band delay is only inserted when changing directions from Forward mode to Reverse mode, and only the modulated output CWG1B is affected.

The CWG1DBR register determines the duration of the dead-band interval on the rising edge of the input source signal. This duration is from 0 to 64 periods of the CWG clock.

Dead band is always initiated on the edge of the input source signal. A count of zero indicates that no dead band is present.

If the input source signal reverses polarity before the dead-band count is completed, then no signal will be seen on the respective output.

The CWG1DBR register value is double-buffered. When EN = 0 (Register 24-1), the buffer is loaded when CWG1DBR is written. If EN = 1, then the buffer will be loaded at the rising edge following the first falling edge of the data input, after the LD bit (Register 24-1) is set. Refer to Figure 24-12 for an example.

24.8 Falling Edge and Forward Dead Band

In Half-Bridge mode, the falling edge dead band delays the turn-on of the CWG1B output at the falling edge of the CWG data input. In Full-Bridge mode, the forward dead-band delay is only inserted when changing directions from Reverse mode to Forward mode, and only the modulated output CWG1D is affected.

The CWG1DBF register determines the duration of the dead-band interval on the falling edge of the input source signal. This duration is from zero to 64 periods of CWG clock.

Dead-band delay is always initiated on the edge of the input source signal. A count of zero indicates that no dead band is present.

If the input source signal reverses polarity before the dead-band count is completed, then no signal will be seen on the respective output.

The CWG1DBF register value is double-buffered. When EN = 0 (Register 24-1), the buffer is loaded when CWG1DBF is written. If EN = 1, then the buffer will be loaded at the rising edge following the first falling edge of the data input after the LD (Register 24-1) is set. Refer to Figure 24-13 for an example.

REGISTER 25-6: SMTxSIG: SMTx SIGNAL INPUT SELECT REGISTER

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—			SSEL<4:0>		
bit 7							bit 0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-5 Unimplemented: Read as '0'

bit 4-0 SSEL<4:0>: SMTx Signal Selection bits

SSEL	SMT1 Signal Source	SMT2 Signal Source			
11111-10111	Reserved	Reserved			
10110	ZCDOUT	ZCDOUT			
10101	C3OUT	C3OUT			
10100	C2OUT	C2OUT			
10011	C1OUT	C1OUT			
10010	PWM7OUT	PWM7OUT			
10001	PWM6OUT	PWM6OUT			
10000	CCP5OUT	CCP5OUT			
01111	CCP4OUT	CCP4OUT			
01110	CCP3OUT	CCP3OUT			
01101	CCP2OUT	CCP2OUT			
01100	CCP1OUT	CCP1OUT			
01011	SMT2 overflow	Reserved			
01010	Reserved	SMT1 overflow			
01001	TMR8_postscaler	TMR8_postscaler			
01000	TMR7_postscaler	TMR7_postscaler			
00111	TMR6_postscaler	TMR6_postscaler			
00110	TMR5_postscaler	TMR5_postscaler			
00101	TMR4_postscaler	TMR4_postscaler			
00100	TMR3_postscaler	TMR3_postscaler			
00011	TMR2_postscaler	TMR2_postscaler			
00010	TMR1_postscaler	TMR1_postscaler			
00001	TMR0_postscaler	TMR0_postscaler			
00000	Pin selected by SMT1SIGPPS	Pin selected by SMT2SIGPPS			

2018-2017 N

U-0	U-0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
	_	CHPOL	CHSYNC		—	CLPOL	CLSYNC
bit 7		·		·			bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
u = Bit is und	changed	x = Bit is unkr	iown	-n/n = Value	at POR and BC	DR/Value at all	other Resets
'1' = Bit is se	et	'0' = Bit is clea	ared				
bit 7-6	Unimpleme	nted: Read as '	0'				
bit 5	CHPOL: Mo	dulator High Ca	rrier Polarity S	elect bit			
	1 = Selecte	d high carrier si	gnal is inverted	I			
	0 = Selecte	d high carrier si	gnal is not inve	erted			
bit 4	CHSYNC: N	lodulator High C	Carrier Synchro	nization Enab	le bit		
	1 = Modulat low tim	tor waits for a fa le carrier	alling edge on	the high time of	carrier signal be	efore allowing	a switch to the
	0 = Modulat	or output is not	synchronized t	to the high time	e carrier signal ⁽	1)	
bit 3-2	Unimpleme	nted: Read as '	0'				
bit 1	CLPOL: Mo	dulator Low Ca	rier Polarity Se	elect bit			
	1 = Selecte	d low carrier sig	nal is inverted				
	0 = Selecte	d low carrier sig	nal is not inver	ted			
bit 0	CLSYNC: M 1 = Modulat time ca	odulator Low C or waits for a fa urrier	arrier Synchroi lling edge on th	nization Enable le low time carr	e bit rier signal befor	e allowing a sw	itch to the high
	0 = Modulat	or output is not	synchronized t	to the low time	carrier signal ⁽¹)	

REGISTER 26-2: MDCON1: MODULATION CONTROL REGISTER 1

Note 1:Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.

The transition of a data bit is always performed while the SCL line is held low. Transitions that occur while the SCL line is held high are used to indicate Start and Stop bits.

If the master intends to write to the slave, then it repeatedly sends out a byte of data, with the slave responding after each byte with an \overline{ACK} bit. In this example, the master device is in Master Transmit mode and the slave is in Slave Receive mode.

If the master intends to read from the slave, then it repeatedly receives a byte of data from the slave, and responds after each byte with an \overrightarrow{ACK} bit. In this example, the master device is in Master Receive mode and the slave is Slave Transmit mode.

On the last byte of data communicated, the master device may end the transmission by sending a Stop bit. If the master device is in Receive mode, it sends the Stop bit in place of the last ACK bit. A Stop bit is indicated by a low-to-high transition of the SDA line while the SCL line is held high.

In some cases, the master may want to maintain control of the bus and re-initiate another transmission. If so, the master device may send another Start bit in place of the Stop bit or last ACK bit when it is in receive mode.

The I²C bus specifies three message protocols;

- Single message where a master writes data to a slave.
- Single message where a master reads data from a slave.
- Combined message where a master initiates a minimum of two writes, or two reads, or a combination of writes and reads, to one or more slaves.

When one device is transmitting a logical one, or letting the line float, and a second device is transmitting a logical zero, or holding the line low, the first device can detect that the line is not a logical one. This detection, when used on the SCL line, is called clock stretching. Clock stretching gives slave devices a mechanism to control the flow of data. When this detection is used on the SDA line, it is called arbitration. Arbitration ensures that there is only one master device communicating at any single time.

27.6.1 CLOCK STRETCHING

When a slave device has not completed processing data, it can delay the transfer of more data through the process of clock stretching. An addressed slave device may hold the SCL clock line low after receiving or sending a bit, indicating that it is not yet ready to continue. The master that is communicating with the slave will attempt to raise the SCL line in order to transfer the next bit, but will detect that the clock line has not yet been released. Because the SCL connection is open-drain, the slave has the ability to hold that line low until it is ready to continue communicating.

Clock stretching allows receivers that cannot keep up with a transmitter to control the flow of incoming data.

REGISTER 33-4: CMxPCH: COMPARATOR x NON-INVERTING CHANNEL SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
—	_	_	-	—		PCH<2:0>	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-3 Unimplemented: Read as '0'

bit 2-0 PCH<2:0>: Comparator Non-Inverting Input Channel Select bits

РСН	C1 Selection	C2 Selection	C3 Selection
111	AVss	AVss	AVss
110	FVR2	FVR2	FVR2
101	DAC1	DAC1	DAC1
100	N/C	N/C	N/C
011	N/C	N/C	N/C
010	N/C	N/C	N/C
001	C1IN1+	C2IN1+	C3IN1+
000	C1IN0+	C2IN0+	C3IN0+

REGISTER 33-5: CMOUT: COMPARATOR OUTPUT REGISTER

U-0	U-0	U-0	U-0	U-0	R-0/0	R-0/0	R-0/0
—	—	—	—	—	MC3OUT	MC2OUT	MC10UT
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 2 MC3OUT: Mirror copy of C3OUT bit

bit 1 MC2OUT: Mirror copy of C2OUT bit

bit 0 MC10UT: Mirror copy of C10UT bit

33.4 Comparator Hysteresis

A selectable amount of separation voltage can be added to the input pins of each comparator to provide a hysteresis function to the overall operation. Hysteresis is enabled by setting the CxHYS bit of the CMxCON0 register.

See Comparator Specifications in Table 37-15 for more information.

33.5 Timer1/3/5/7 Gate Operation

The output resulting from a comparator operation can be used as a source for gate control of Timer1/3/5/7. See **Section 19.8 "Timer1/3/5/7 Gate"** for more information. This feature is useful for timing the duration or interval of an analog event.

It is recommended that the comparator output be synchronized to Timer1. This ensures that Timer1 does not increment while a change in the comparator is occurring.

33.5.1 COMPARATOR OUTPUT SYNCHRONIZATION

The output from a comparator can be synchronized with Timer1 by setting the SYNC bit of the CMxCON0 register.

Once enabled, the comparator output is latched on the falling edge of the Timer1 source clock. If a prescaler is used with Timer1, the comparator output is latched after the prescaling function. To prevent a race condition, the comparator output is latched on the falling edge of the Timer1 clock source and Timer1 increments on the rising edge of its clock source. See the Comparator Block Diagram (Figure 33-2) and the Timer1 Block Diagram (Figure 19-1) for more information.

33.6 Comparator Interrupt

An interrupt can be generated upon a change in the output value of the comparator for each comparator, a rising edge detector and a falling edge detector are present.

When either edge detector is triggered and its associated enable bit is set (CxINTP and/or CxINTN bits of the CMxCON1 register), the Corresponding Interrupt Flag bit (CxIF bit of the PIR2 register) will be set.

To enable the interrupt, you must set the following bits:

- EN and POL bits of the CMxCON0 register
- CxIE bit of the PIE2 register
- INTP bit of the CMxCON1 register (for a rising edge detection)
- INTN bit of the CMxCON1 register (for a falling edge detection)
- PEIE and GIE bits of the INTCON register

The associated interrupt flag bit, CxIF bit of the PIR2 register, must be cleared in software. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

Note: Although a comparator is disabled, an interrupt can be generated by changing the output polarity with the CxPOL bit of the CMxCON0 register, or by switching the comparator on or off with the CxEN bit of the CMxCON0 register.

33.7 Comparator Positive Input Selection

Configuring the PCH<2:0> bits of the CMxPCH register directs an internal voltage reference or an analog pin to the non-inverting input of the comparator:

- CxIN0+, CxIN1+ analog pin
- DAC output
- FVR (Fixed Voltage Reference)
- AVss (Ground)

See Section 29.0 "Fixed Voltage Reference (FVR)" for more information on the Fixed Voltage Reference module.

See Section 31.0 "5-Bit Digital-to-Analog Converter (DAC) Module" for more information on the DAC input signal.

Any time the comparator is disabled (CxEN = 0), all comparator inputs are disabled.

33.8 Comparator Negative Input Selection

The NCH<2:0> bits of the CMxNCH register direct an analog input pin and internal reference voltage or analog ground to the inverting input of the comparator:

- CxIN0-, CxIN1-, CxIN2-, CxIN3-, CxIN4- analog pin
- FVR (Fixed Voltage Reference)
- Analog Ground

Note: To use CxINy+ and CxINy- pins as analog input, the appropriate bits must be set in the ANSEL register and the corresponding TRIS bits must also be set to disable the output drivers.

34.5 Applications

In many applications, it is desirable to detect a drop below, or rise above, a particular voltage threshold. For example, the HLVD module could be periodically enabled to detect Universal Serial Bus (USB) attach or detach. This assumes the device is powered by a lower voltage source than the USB when detached. An attach would indicate a High-Voltage Detect from, for example, 3.3V to 5V (the voltage on USB) and vice versa for a detach. This feature could save a design a few extra components and an attach signal (input pin).

For general battery applications, Figure 34-4 shows a possible voltage curve. Over time, the device voltage decreases. When the device voltage reaches voltage, VA, the HLVD logic generates an interrupt at time, TA. The interrupt could cause the execution of an Interrupt Service Routine (ISR), which would allow the application to perform "housekeeping tasks" and a controlled shutdown before the device voltage exits the valid operating range at TB. This would give the application a time window, represented by the difference between TA and TB, to safely exit.

© 2016-2017 Microchip Technology Inc.

Syntax: Operands:	ANDWF f {,d {,a}}							
Operands:		ANDWF f {,d {,a}}		IX:	BC n			
	$0 \leq f \leq 255$		Opera	ands:	-128 ≤ n ≤ 1	127		
	d ∈ [0,1] a ∈ [0,1]		Opera	ation:	if CARRY b (PC) + 2 + 2	it is '1' 2n → PC		
Operation:	(W) .AND. (f) \rightarrow dest		Statu	s Affected:	None			
Status Affected:	N, Z		Enco	dina:	1110	0010 nni	nn nnnn	
Encoding:	0001 01da ff:	ff ffff	Desc	rintion:	If the CARE	Y hit is '1' the	n the program	
Description:	The contents of W are AN register 'f'. If 'd' is '0', the r in W. If 'd' is '1', the result in register 'f' (default). If 'a' is '0', the Access Bai If 'a' is '1', the BSR is use GPR bank. If 'a' is '0' and the extend set is enabled, this instru- in Indexed Literal Offset A mode whenever $f \le 95$ (5) tion 36.2.3 "Byte-Orient Oriented Instructions in eral Offset Mode" for de	ntents of W are AND'ed with r 'f'. If 'd' is '0', the result is stored 'd' is '1', the result is stored back ter 'f' (default). '0', the Access Bank is selected. '1', the BSR is used to select the ank. '0' and the extended instruction mabled, this instruction operates xed Literal Offset Addressing whenever f \leq 95 (5Fh). See Sec- 5.2.3 "Byte-Oriented and Bit- ed Instructions in Indexed Lit- Fact Mode" for dotails		s: s: ycle Activity: mp: Q1	 will branch. The 2's complement number '2n' is added to the PC. Since the PC will hav incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a 2-cycle instruction. 1 1(2) Q2 Q3 Q4 			
Words:	1			Decode	Read literal	Process	Write to PC	
Cycles:	1			No	No	No	No	
Q Cycle Activity				operation	operation	operation	operation	
Q1	02 03	Q4	lf No	Jump:				
Decode	Read Process	Write to	г	Q1	Q2	Q3	Q4	
	register 'f' Data	destination		Decode	Read literal 'n'	Process Data	No operation	
Example:	ANDWF REG, 0, 0						operation	
Before Instru	iction		Exam	ipie:	HERE	BC 5		
W REG After Instruc W REG	= 17h = C2h ion = 02h = C2h			PC PC After Instruction If CARR PC If CARR	cuon = adi on Y = 1; Y = adi Y = 0;	dress (HERE) + 12)	

MOVLW		Move lite	eral to W	1				
Synta	ax:	MOVLW	k					
Oper	ands:	$0 \le k \le 25$	5					
Oper	ation:	$k\toW$						
Statu	is Affected:	None						
Enco	oding:	0000	1110	kkk	k	kkkk		
Desc	ription:	The 8-bit li	The 8-bit literal 'k' is loaded into W.					
Word	ls:	1						
Cycle	es:	1	1					
QC	ycle Activity:							
	Q1	Q2	Q3	Q3		Q4		
	Decode	Read literal 'k'	Proce Dat	ess a	W	rite to W		
Example:		MOVLW	5Ah					
	After Instruction	on						
	W	= 5Ah						

MOVWF	Move W	to f			
Syntax:	MOVWF	f {,a}			
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]				
Operation:	$(W) \to f$				
Status Affected:	None				
Encoding:	0110	111a	ffff	ffff	
Description.	Move data from W to register 'f'. Location 'f' can be anywhere in the 256-byte bank. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 36.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Literal				
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3		Q4	
Decode	Read register 'f'	Proces Data	ss re	Write gister 'f'	
Example: Before Instruc	MOVWF	REG, O			
W REG After Instructio	= 4Fh = FFh on				
W REG	= 4Fh = 4Fh				

RCALL Relative Call								
Synta	ax:	RCALL n	RCALL n					
Oper	ands:	-1024 ≤ n ≤	1023					
Oper	ation:	$(PC) + 2 \rightarrow (PC) + 2 + 2$	TOS, 2n \rightarrow PC	:				
Statu	is Affected:	None						
Enco	oding:	1101	1nnn	nnnn	nnnn			
Desc Word	rription: Is: es:	Subroutine from the cu address (Pd stack. Then number '2n have incren instruction, PC + 2 + 2r 2-cycle inst 1	Subroutine call with a jump up to 1K from the current location. First, return address (PC + 2) is pushed onto the stack. Then, add the 2's complement number '2n' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is a 2-cycle instruction. 1					
QC	ycle Activity:	-						
	Q1	Q2	Q3	1	Q4			
	Decode	Read literal 'n' PUSH PC to stack	Proce Dat	ess V a	Write to PC			
	No operation	No operation	No opera	tion	No operation			

Example: HERE RCALL Jump

Before Instruction

PC = Address (HERE)

After Instruction

PC = Address (Jump) TOS = Address (HERE + 2)

RES	ET	Reset	Reset				
Synta	ax:	RESET					
Oper	ands:	None					
Oper	ation:	Reset all re affected by	Reset all registers and flags that are affected by a MCLR Reset.				
Statu	s Affected:	All	All				
Enco	ding:	0000	0000	1111 111		1111	
Desc	ription:	This instru execute a	This instruction provides a way to execute a MCLR Reset by software.				
Word	ls:	1	1				
Cycle	es:	1	1				
QC	ycle Activity:						
	Q1	Q2	Q3	3		Q4	
	Decode	Start Reset	No opera) tion	op	No peration	

Example:

After Instruction

Registers =	Reset Value
Flags* =	Reset Value

RESET

© 2016-2017 Microchip Technology Inc.

SUBWFB	Sı	ubtract	W from	f with	Borrow	
Syntax:	Sl	JBWFB	f {,d {,a	a}}		
Operands:	0 ± d • a •	≤ f ≤ 255 ∈ [0,1] ∈ [0,1]				
Operation:	(f)	– (W) –	$(\overline{C}) \rightarrow de$	st		
Status Affected:	N,	OV, C, [DC, Z			
Encoding:	Γ	0101	10da	fff	f ffff	
Description:	Subtract W and the CARRY flag (borrow) from register 'f' (2's comple- ment method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 36.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit-					
Words	er:	al Offset	t Mode" t	or deta	ails.	
Cycles:	1					
O Cycles.	I					
		Ω^{2}	03	2	04	
Decode		Read	Proc	ess	Write to	
	re	gister 'f'	Dat	ta	destination	
Example 1:	S	SUBWFB	REG, 1	L, O		
Before Instruct	tion	105	(1 1 0 0		
	= = =	0Dh 1	(000	0 110	1)	
After Instructio REG W C Z	n = = =	0Ch 0Dh 1 0	(000 (000	0 110 0 110	0) 1)	
N Example 2:	=	0	; resu	it is po	sitive	
Example 2. Before Instruct	tion 2	OBMLR	REG, U	, 0		
REG W C	= = =	1Bh 1Ah 0	(000 (000	1 101 1 101	1) 0)	
After Instructio REG W C	n = = =	1Bh 00h 1	(000	(0001 1011)		
Z = 1 ; result N = 0					ro	
Example 3:	S	SUBWFB	REG, 1	L, 0		
Before Instruct REG W C	tion = = =	03h 0Eh 1	(000 (000	0 001 0 111	1) 0)	
Atter Instructio REG	n =	F5h	(111	1 010	1)	
WC	=	0Eh 0	; [2's (000	comp] 0 111	0)	
Z N	=	1	; resu	lt is ne	gative	

SWAPF	Swap f									
Syntax:	SWAPF 1	f {,d {,a}}								
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$								
Operation:	(f<3:0>) → (f<7:4>) →	→ dest<7:4 → dest<3:0	↓>,)>							
Status Affected:	None									
Encoding:	0011	10da	ffff	ffff						
	f' are excl is placed in r lf 'a' is '0', If 'a' is '1', GPR bank If 'a' is '0', set is enat in Indexed mode whe tion 36.2.3 Oriented I eral Offse	hanged. If n W. If 'd' register 'f' the Access the BSR is and the est bled, this is Literal O never $f \le$ 3 "Byte-C Instruction t Mode"	(default). ss Bank is ss Bank is sused to strended in instruction ffset Addre 95 (5Fh). Spriented a pons in Ind e for details.	he result result is selected. select the struction operates essing See Sec- nd Bit- exed Lit-						
Words:	1									
Cycles:	1									
Q Cycle Activity:										
Q1	Q2	Q3	3	Q2 Q3 Q4						

S. I	Q.1	QU	S. I
Decode	Read	Process	Write to
	register 'f'	Data	destination
	-		

Example:

SWAPF REG, 1, 0

Before Instru	ction	
REG	=	53h
After Instructi	ion	
REG	=	35h

 $\ensuremath{\textcircled{}^{\odot}}$ 2016-2017 Microchip Technology Inc.

MO\	/SS	Move Ind	Move Indexed to Indexed					
Synta	ax:	MOVSS [7	z _s], [z _d]					
Oper	ands:	$0 \le z_s \le 12^{\circ}$ $0 \le z_d \le 12^{\circ}$	7 7					
Oper	ation:	((FSR2) + 2	$((FSR2) + z_s) \rightarrow ((FSR2) + z_d)$					
Statu	is Affected:	None						
Enco	oding:							
1st w	ord (source)	1110	1011	1zzz	z zzzz _s			
2nd v	word (dest.)	1111	xxxx	XZZZ	z zzz _d			
Worc	moved to the destination register. The addresses of the source and destinati registers are determined by adding th 7-bit literal offsets 'z _s ' or 'z _d ', respectively, to the value of FSR2. Bo registers can be located anywhere in the 4096-byte data memory space (000h to FFFh). The MOVSS instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register. If the resultant source address points an indirect addressing register, the value returned will be 00h. If the resultant destination address points to an indirect addressing register, the instruction will execute as a NOP.							
Cycle	10. 00'	2 2						
QC	ycle Activity:	۷						
	Q1	Q2	Q3		Q4			
]	Decode	Determine	Detern	nine	Read			
l		source addr	source	addr	source reg			
	Decode	Determine dest addr	Detern dest a	nine Iddr	Write to dest reg			

Example:	MOVSS	[05h],	[06h]
Before Instruction	on		
FSR2	=	80h	
of 85h Contents	=	33h	
of 86h	=	11h	
After Instruction			
FSR2	=	80h	
of 85h Contents	=	33h	
of 86h	=	33h	

PUSHL	Store Literal at FSR2, Decrement FSR2					
Syntax:	PUSHL k	PUSHL k				
Operands:	$0 \le k \le 255$					
Operation:	$k \rightarrow (FSR2),$ FSR2 – 1 \rightarrow FSR2					
Status Affected:	None					
Encoding:	1111	1010	k	kkk	kkkk	
Description:	is decreme This instruction	dress sp nted by ction allo ware sta	oecifieo 1 after ws use ck.	the op ers to p	e data SR2. FSR2 eration. ush values	
Words:	1					
Cycles:	1					
Q Cycle Activity	/:					
Q1	Q2		Q3		Q4	
Decode	Read	k'	Proces data	s c	Write to lestination	
Example:	PUSHL	08h				
Before Inst FSR2 Memc	ruction H:FSR2L ory (01ECh)	=	= 01 = 00	ECh h		
After Instru FSR2 Memo	ction H:FSR2L ory (01ECh)	=	= 01 = 08	EBh h		

TABLE 38-19: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Standard Operating Conditions (unless otherwise stated) Operating Temperature $-40^{\circ}C \le T_A \le +125^{\circ}C$									
Param No.	Sym.		Characteristi	c	Min.	Тур†	Max.	Units	Conditions
40*	T⊤0H	T0CKI High F	Pulse Width	No Prescaler	0.5 Tcy + 20	—	—	ns	
				With Prescaler	10	_	—	ns	
41*	T⊤0L	T0CKI Low F	ulse Width	No Prescaler	0.5 Tcy + 20	_	—	ns	
				With Prescaler	10	_	—	ns	
42*	T⊤0P	T0CKI Period	Ł		Greater of:	_	_	ns	N = prescale value
					20 or <u>Tcy + 40</u> N				
45*	T⊤1H	T1CKI High	Synchronous, N	No Prescaler	0.5 Tcy + 20	—	—	ns	
		Time	Synchronous, v	vith Prescaler	15			ns	
			Asynchronous		30	—	—	ns	
46*	T⊤1L	T1CKI Low	Synchronous, N	No Prescaler	0.5 Tcy + 20	—	—	ns	
		Time	Synchronous, w	vith Prescaler	15	—	—	ns	
			Asynchronous		30	_	_	ns	
47*	T⊤1P	T1CKI Input	Synchronous	Synchronous		_	—	ns	N = prescale value
		Period			30 or <u>Tcy + 40</u> N				
			Asynchronous	_	60	—		ns	
49*	TCKEZTMR1	Delay from E Increment	xternal Clock Ec	2 Tosc	—	7 Tosc	—	Timers in Sync mode	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Standard Operating Conditions (unless otherwise stated)								
Param. No.	Symbol	Characteristic		Min.	Max.	Units	Conditions	
SP100*	Тнідн	Clock high time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6	—	μS	Device must operate at a minimum of 10 MHz	
			SSP module	1.5Tcy	_			
SP101*	TLOW	Clock low time	100 kHz mode	4.7	—	μs	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	1.3	—	μS	Device must operate at a minimum of 10 MHz	
		SSP module	1.5Tcy	_				
SP102* TR	TR	SDA and SCL rise time	100 kHz mode	—	1000	ns		
			400 kHz mode	20 + 0.1CB	300	ns	CB is specified to be from 10-400 pF	
SP103*	TF	SDA and SCL fall time	100 kHz mode	—	250	ns		
			400 kHz mode	20 + 0.1CB	250	ns	CB is specified to be from 10-400 pF	
SP106*	THD:DAT	Data input hold time	100 kHz mode	0	—	ns		
			400 kHz mode	0	0.9	μs		
SP107*	TSU:DAT	Data input setup time	100 kHz mode	250	_	ns	(Note 2)	
			400 kHz mode	100	_	ns		
SP109*	ΤΑΑ	Output valid from	100 kHz mode	—	3500	ns	(Note 1)	
		clock	400 kHz mode	—		ns		
SP110*	TBUF	Bus free time	100 kHz mode	4.7		μS	Time the bus must be free	
			400 kHz mode	1.3	_	μS	before a new transmission can start	
SP111	Св	Bus capacitive loading		—	400	pF		

TABLE 38-25: I²C BUS DATA REQUIREMENTS

* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement Tsu:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + Tsu:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.