

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	60
Program Memory Size	32KB (16K × 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 45x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf65k40-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1: 64-PIN ALLOCATION TABLE (PIC18(L)F6XK40) (CONTINUED)

					(••(=)•••••	, (,						
I/O ⁽²⁾	64-Pin TQFP, QFN	AD	DAC	Comparator	Timers	CCP and PWM	CWG	ZCD	SMT	Clock Reference (CLKR)	Interrupt	EUSART	WSQ	dssm	Basic
RH2	57	—	-	—	—	—	_	—	—	—	—	—	_	—	—
RH3	56	_		—	—	_	-	_	—	—	_	_	_	_	_
VDD	10, 38	_	_	_	_	_	_	_	_	_	—	_	_	_	VDD
Vss	9, 41	_	_	_	_	_	_	_	_	_	_	_	_	—	Vss
OUT ⁽²⁾	_	ADGRDA ADGRDB	_	C1OUT C2OUT C3OUT	TMR0	CCP1 CCP2 CCP3 CCP4 CCP5 PWM60UT PWM70UT	CWG1A CWG1B CWG1C CWG1D	_	_	CLKR	_	TX1/CK1 ⁽³⁾ DT1 ⁽³⁾ TX2/CK2 ⁽³⁾ DT2 ⁽³⁾ TX3/CK3 ⁽³⁾ TX4/CK4 ⁽³⁾ DT4 ⁽³⁾ TX5/CK5 ⁽³⁾ DT5 ⁽³⁾	DSM	SD01 SCK1 SD02 SCK2	_

Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 17-1 for details on which PORT pins may be used for this signal.

2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Register 17-2

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins are configured for I²C[™] logic levels; The SCLx/SDAx signals may be assigned to any of these pins. PPS assignments to the other pins (e.g., RB1) will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

4.3.2.1 HFINTOSC

The High-Frequency Internal Oscillator (HFINTOSC) is a precision digitally-controlled internal clock source that produces a stable clock up to 64 MHz. The HFINTOSC can be enabled through one of the following methods:

- Programming the RSTOSC<2:0> bits in Configuration Word 1 to '110' (Fosc = 1 MHz) or '000' (Fosc = 64 MHz) to set the oscillator upon device Power-up or Reset.
- Write to the NOSC<2:0> bits of the OSCCON1 register during run-time. See Section 4.4 "Clock Switching" for more information.

The HFINTOSC frequency can be selected by setting the HFFRQ<3:0> bits of the OSCFRQ register.

The NDIV<3:0> bits of the OSCCON1 register allow for division of the HFINTOSC output from a range between 1:1 and 1:512.

4.3.2.2 MFINTOSC

The module provides two (500 kHz and 31.25 kHz) constant clock outputs. These clocks are digital divisors of the HFINTOSC clock. Dynamic divider logic is used to provide constant MFINTOSC clock rates for all settings of HFINTOSC.

The MFINTOSC cannot be used to drive the system but it is used to clock certain modules such as the Timers and WWDT.

4.3.2.3 Internal Oscillator Frequency Adjustment

The internal oscillator is factory-calibrated. This internal oscillator can be adjusted in software by writing to the OSCTUNE register (Register 4-3).

The default value of the OSCTUNE register is 00h. The value is a 6-bit two's complement number. A value of 1Fh will provide an adjustment to the maximum frequency. A value of 20h will provide an adjustment to the minimum frequency.

When the OSCTUNE register is modified, the oscillator frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred.

OSCTUNE **does not affect** the LFINTOSC frequency. Operation of features that depend on the LFINTOSC clock source frequency, such as the Power-up Timer (PWRT), WWDT, Fail-Safe Clock Monitor (FSCM) and peripherals, are *not* affected by the change in frequency.

4.3.2.4 LFINTOSC

The Low-Frequency Internal Oscillator (LFINTOSC) is a factory-calibrated 31 kHz internal clock source.

The LFINTOSC is the frequency for the Power-up Timer (PWRT), Windowed Watchdog Timer (WWDT) and Fail-Safe Clock Monitor (FSCM).

The LFINTOSC is enabled through one of the following methods:

- Programming the RSTOSC<2:0> bits of Configuration Word 1 to enable LFINTOSC.
- Write to the NOSC<2:0> bits of the OSCCON1 register during run-time. See Section 4.4, Clock Switching for more information.

4.3.2.5 ADCRC

The ADCRC is an oscillator dedicated to the ADC^2 module. The ADCRC oscillator can be manually enabled using the ADOEN bit of the OSCEN register. The ADCRC runs at a fixed frequency of 600 kHz. ADCRC is automatically enabled if it is selected as the clock source for the ADC^2 module.

4.5 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the device to continue operating should the external oscillator fail. The FSCM is enabled by setting the FCMEN bit in the Configuration Words. The FSCM is applicable to all external Oscillator modes (LP, XT, HS, ECL/M/H and Secondary Oscillator).

FIGURE 4-9: FSCM BLOCK DIAGRAM

4.5.1 FAIL-SAFE DETECTION

The FSCM module detects a failed oscillator by comparing the external oscillator to the FSCM sample clock. The sample clock is generated by dividing the LFINTOSC by 64. See Figure 4-9. Inside the fail detector block is a latch. The external clock sets the latch on each falling edge of the external clock. The sample clock clears the latch on each rising edge of the sample clock. A failure is detected when an entire half-cycle of the sample clock elapses before the external clock goes low.

4.5.2 FAIL-SAFE OPERATION

When the external clock fails, the FSCM overwrites the COSC bits to select HFINTOSC (3'b110). The frequency of HFINTOSC would be determined by the previous state of the HFFRQ bits and the NDIV/CDIV bits. The bit flag OSCFIF of the PIR1 register is set. Setting this flag will generate an interrupt if the OSCFIE bit of the PIE1 register is also set. The device firmware can then take steps to mitigate the problems that may arise from a failed clock. The system clock will continue to be sourced from the internal clock source until the device firmware successfully restarts the external oscillator and switches back to external operation, by writing to the NOSC and NDIV bits of the OSCCON1 register.

4.5.3 FAIL-SAFE CONDITION CLEARING

The Fail-Safe condition is cleared after a Reset, executing a SLEEP instruction or changing the NOSC and NDIV bits of the OSCCON1 register. When switching to the external oscillator or PLL, the OST is restarted. While the OST is running, the device continues to operate from the INTOSC selected in OSCCON1. When the OST times out, the Fail-Safe condition is cleared after successfully switching to the external clock source. The OSCFIF bit should be cleared prior to switching to the external clock source. If the Fail-Safe condition still exists, the OSCFIF flag will again become set by hardware.

9.0 WINDOWED WATCHDOG TIMER (WWDT)

The Watchdog Timer (WDT) is a system timer that generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The Watchdog Timer is typically used to recover the system from unexpected events. The Windowed Watchdog Timer (WWDT) differs in that CLRWDT instructions are only accepted when they are performed within a specific window during the time-out period.

The WWDT has the following features:

- Selectable clock source
- Multiple operating modes
 - WWDT is always on
 - WWDT is off when in Sleep
 - WWDT is controlled by software
 - WWDT is always off
- Configurable time-out period is from 1 ms to 256s (nominal)
- Configurable window size from 12.5% to 100% of the time-out period
- Multiple Reset conditions

11.1.5 ERASING PROGRAM FLASH MEMORY

The minimum erase block is 32 or 64 words (refer to Table 11-3). Only through the use of an external programmer, or through ICSP[™] control, can larger blocks of program memory be bulk erased. Word erase in the Flash array is not supported.

For example, when initiating an erase sequence from a microcontroller with erase row size of 32 words, a block of 32 words (64 bytes) of program memory is erased. The Most Significant 16 bits of the TBLPTR<21:6> point to the block being erased. The TBLPTR<5:0> bits are ignored.

The NVMCON1 register commands the erase operation. The NVMREG<1:0> bits must be set to point to the Program Flash Memory. The WREN bit must be set to enable write operations. The FREE bit is set to select an erase operation.

The NVM unlock sequence described in **Section 11.1.4 "NVM Unlock Sequence**" should be used to guard against accidental writes. This is sometimes referred to as a long write.

A long write is necessary for erasing the internal Flash. Instruction execution is halted during the long write cycle. The long write is terminated by the internal programming timer.

11.1.5.1 Program Flash Memory Erase Sequence

The sequence of events for erasing a block of internal program memory is:

- 1. NVMREG bits of the NVMCON1 register point to PFM
- 2. Set the FREE and WREN bits of the NVMCON1 register
- 3. Perform the unlock sequence as described in Section 11.1.4 "NVM Unlock Sequence"

If the PFM address is write-protected, the WR bit will be cleared and the erase operation will not take place, WRERR is signaled in this scenario.

The operation erases the memory row indicated by masking the LSBs of the current TBLPTR.

While erasing PFM, CPU operation is suspended and it resumes when the operation is complete. Upon completion the WR bit is cleared in hardware, the NVMIF is set and an interrupt will occur if the NVMIE bit is also set.

Write latch data is not affected by erase operations and WREN will remain unchanged.

Note 1: If a write or erase operation is terminated by an unexpected event, WRERR bit will be set which the user can check to decide whether a rewrite of the location(s) is needed.

- 2: WRERR is set if WR is written to '1' while TBLPTR points to a write-protected address.
- **3:** WRERR is set if WR is written to '1' while TBLPTR points to an invalid address location (Table 10-2 and Table 11-1).

13.0 CYCLIC REDUNDANCY CHECK (CRC) MODULE WITH MEMORY SCANNER

The Cyclic Redundancy Check (CRC) module provides a software-configurable hardware-implemented CRC checksum generator. This module includes the following features:

- Any standard CRC up to 16 bits can be used
- Configurable Polynomial
- · Any seed value up to 16 bits can be used
- · Standard and reversed bit order available
- Augmented zeros can be added automatically or by the user
- Memory scanner for fast CRC calculations on program memory user data
- Software loadable data registers for communication CRC's

13.1 CRC Module Overview

The CRC module provides a means for calculating a check value of program memory. The CRC module is coupled with a memory scanner for faster CRC calculations. The memory scanner can automatically provide data to the CRC module. The CRC module can also be operated by directly writing data to SFRs, without using a scanner.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
HADR<15:8> ^(1, 2)										
bit 7							bit 0			
Legend:										
R = Readable b	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'				
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other R			other Resets			
'1' = Bit is set		'0' = Bit is clea	ared							

REGISTER 13-16: SCANHADRH: SCAN HIGH ADDRESS HIGH BYTE REGISTER

bit 7-0 HADR<15:8>: Scan End Address bits^(1, 2)

Most Significant bits of the address at the end of the designated scan

- **Note 1:** Registers SCANHADRU/H/L form a 22-bit value, but are not guarded for atomic or asynchronous access; registers should only be read or written while SCANGO = 0 (SCANCON0 register).
 - 2: While SCANGO = 1 (SCANCON0 register), writing to this register is ignored.

REGISTER 13-17: SCANHADRL: SCAN HIGH ADDRESS LOW BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
			HADR<	:7:0> ^(1, 2)					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'					
u = Bit is uncha	is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all oth				other Resets				
'1' = Bit is set		'0' = Bit is clea	ared						

bit 7-0 HADR<7:0>: Scan End Address bits^(1, 2)

Least Significant bits of the address at the end of the designated scan

- **Note 1:** Registers SCANHADRU/H/L form a 22-bit value, but are not guarded for atomic or asynchronous access; registers should only be read or written while SCANGO = 0 (SCANCON0 register).
 - 2: While SCANGO = 1 (SCANCON0 register), writing to this register is ignored.

U-0	U-0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0		
	_	RC5IF	TX5IF	RC4IF	TX4IF	RC3IF	TX3IF		
bit 7		•			•		bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown		
bit 7-6	Unimplemen	ted: Read as '	כי						
bit 5	RC5IF: EUSA	RT5 Receive I	nterrupt Flag	bit					
	1 = The EUS	ART5 receive	buffer, RC5RE	EG, is full (clea	red by reading l	RC5REG)			
	0 = The EUS	ART5 receive	buffer is empt	у					
bit 4	TX5IF: EUSART5 Transmit Interrupt Flag bit								
	1 = The EUS	ART5 transmit	buffer, TX5R	EG, is empty (o	cleared by writin	ig TX5REG)			
	0 = The EUS	ART5 transmit	buffer is full						
bit 3	RC4IF: EUSA	RT4 Receive I	nterrupt Flag	bit					
	1 = The EUS	ART4 receive	buffer, RC4RE	EG, is full (clea	red by reading I	RC4REG)			
	0 = The EUS	ART4 receive	buffer is empt	У					
bit 2	TX4IF: EUSA	RT4 Transmit I	nterrupt Flag	bit					
	1 = The EUS	ART4 transmit	buffer, TX4R	EG, is empty (o	cleared by writin	ig TX4REG)			
	0 = The EUS	ART4 transmit	buffer is full						
bit 1	RC3IF: EUSA	RT3 Receive I	nterrupt Flag	bit					
	1 = The EUS	ART3 receive	buffer, RC3RE	EG, is full (clea	red by reading I	RC3REG)			
	0 = The EUS	ART3 receive	buffer is empt	у					
bit 0	TX3IF: EUSA	RT3 Transmit I	nterrupt Flag	bit					
	1 = The EUS	ART3 transmit	buffer, TX3R	EG, is empty (o	cleared by writin	ig TX3REG)			
	0 = The EUS	ART3 transmit	buffer is full						

REGISTER 14-6: PIR4: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 4

PIC18(L)F65/66K40

2: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge of the clock.

FIGURE 19-4: TIMER1/3/5/7 GATE ENABLE MODE

24.0 COMPLEMENTARY WAVEFORM GENERATOR (CWG) MODULE

The Complementary Waveform Generator (CWG) produces half-bridge, full-bridge, and steering of PWM waveforms. It is backwards compatible with previous CCP functions. The PIC18(L)F6xK40 family has one instance of the CWG module.

The CWG has the following features:

- Six operating modes:
 - Synchronous Steering mode
 - Asynchronous Steering mode
 - Full-Bridge mode, Forward
 - Full-Bridge mode, Reverse
 - Half-Bridge mode
 - Push-Pull mode
- Output polarity control
- Output steering
- Independent 6-bit rising and falling event deadband timers
 - Clocked dead band
 - Independent rising and falling dead-band enables
- Auto-shutdown control with:
 - Selectable shutdown sources
 - Auto-restart option
 - Auto-shutdown pin override control

24.1 Fundamental Operation

The CWG generates two output waveforms from the selected input source.

The off-to-on transition of each output can be delayed from the on-to-off transition of the other output, thereby, creating a time delay immediately where neither output is driven. This is referred to as dead time and is covered in **Section 24.6 "Dead-Band Control"**.

It may be necessary to guard against the possibility of circuit faults or a feedback event arriving too late or not at all. In this case, the active drive must be terminated before the Fault condition causes damage. This is referred to as auto-shutdown and is covered in **Section 24.10 "Auto-Shutdown"**.

24.2 Operating Modes

The CWG module can operate in six different modes, as specified by the MODE<2:0> bits of the CWG1CON0 register:

- Half-Bridge mode
- Push-Pull mode
- Asynchronous Steering mode
- Synchronous Steering mode
- Full-Bridge mode, Forward
- Full-Bridge mode, Reverse

All modes accept a single pulse data input, and provide up to four outputs as described in the following sections.

All modes include auto-shutdown control as described in Section 24.10 "Auto-Shutdown"

Note: Except as noted for Full-bridge mode (Section 24.2.3 "Full-Bridge Modes"), mode changes should only be performed while EN = 0 (Register 24-1).

24.2.1 HALF-BRIDGE MODE

In Half-Bridge mode, two output signals are generated as true and inverted versions of the input as illustrated in Figure 24-2. A non-overlap (dead-band) time is inserted between the two outputs to prevent shoot through current in various power supply applications. Dead-band control is described in **Section 24.6 "Dead-Band Control"**. The output steering feature cannot be used in this mode. A basic block diagram of this mode is shown in Figure 24-1.

The unused outputs CWG1C and CWG1D drive similar signals, with polarity independently controlled by the POLC and POLD bits of the CWG1CON1 register, respectively.

26.1 Register Definitions: Modulation Control

Long bit name prefixes for the Modulation peripheral is shown in Table 26-1. Refer to **Section 1.4.2.2 "Long Bit Names"** for more information.

TABLE 26-1:

Peripheral	Bit Name Prefix
MD	MD

REGISTER 26-1: MDCON0: MODULATION CONTROL REGISTER 0

R/W-0/0	U-0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0
EN	—	OUT	OPOL	—	—	—	BIT
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	EN: Modulator Module Enable bit
	 1 = Modulator module is enabled and mixing input signals 0 = Modulator module is disabled and has no output
bit 6	Unimplemented: Read as '0'
bit 5	OUT: Modulator Output bit
	Displays the current output value of the Modulator module. ⁽¹⁾
bit 4	OPOL: Modulator Output Polarity Select bit
	 1 = Modulator output signal is inverted; idle high output 0 = Modulator output signal is not inverted; idle low output
bit 3-1	Unimplemented: Read as '0'
bit 0	BIT: Allows software to manually set modulation source input to module ⁽²⁾
Note 1:	The modulated output frequency can be greater and asynchronous from the clock that updates this register bit, the bit value may not be valid for higher speed modulator or carrier signals.
2:	MDBIT must be selected as the modulation source in the MDSRC register for this operation.

R/W-0) R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
WCOL	_ SSPOV ⁽¹⁾	SSPEN ⁽²⁾	CKP	SSPM3 ⁽⁴⁾	SSPM2 ⁽⁴⁾	SSPM1 ⁽⁴⁾	SSPM0 ⁽⁴⁾	
bit 7							bit (
Logondi								
R = Read	able bit	W = Writable h	hit	LI = Unimplen	nented hit rea	1 as '0'		
-n = Value	e at POR	'1' = Bit is set		0' = Bit is clear	ared	x = Bit is unkr	nown	
bit 7	WCOL: Wri	te Collision Detec	t bit					
	1 = The SS	PxBUF register is	s written while	e it is still transn	nitting the previ	ious word (mus	t be cleared in	
	softwar	e)						
		sion						
bit 6	SSPOV: Re	ceive Overflow In	dicator bit("					
	$\frac{SPI Slave m}{1 - A row}$	<u>100e:</u>	while the COT		is still balding	the previous d		
	$\perp = A hew$	w the data in SSF	vinite the SSF PxSR is lost (Overflow can or	is suil noiding	the previous da	ata. In case o iser must read	
	the SS	PxBUF, even if	only transmit	tting data, to a	void setting o	verflow (must	be cleared i	
	softwar	e).	2	0	0	Υ.		
	0 = No ove	rflow						
bit 5	SSPEN: Ma	ster Synchronous	s Serial Port E	Enable bit ⁽²⁾				
	1 = Enables 0 = Disables	erial port and configures SCKx, SDOx, SDIx and SSx as serial port pins serial port and configures these pins as I/O port pins						
bit 4	CKP: Clock	Polarity Select bi	t					
	1 = Idle stat	e for the clock is	a high level					
	0 = Idle stat	e for the clock is	a low level					
bit 3-0	SSPM<3:0>	Master Synchrophysics	onous Serial F	Port Mode Selec	ct bits ⁽⁴⁾			
	1010 = SPI	Master mode: Cl	ock = FOSC/	(4 <u>* (S</u> SPxADD	+ 1)) ⁽³⁾			
	0101 = SPI	Slave mode: Clo	ck = SCKx pii ck = SCKx pii	n; <u>SSx</u> pin contr	ol is disabled;	SSx can be use	ed as I/O pin	
	0100 = SPI	Master mode: Clo	ck = SCKX pill	n, sox pin conu hutnut/2	or is enabled			
	0010 = SPI	Master mode: Cl	ock = Fosc/6	4				
	0001 = SPI	Master mode: Cl	ock = Fosc/1	6				
	0000 = SPI	Master mode: Cl	ock = Fosc/4					
Note 1:	In Master mode	, the overflow bit	is not set sind	ce each new rec	ception (and tra	ansmission) is ir	nitiated by	
0-	When eachied	SPXBUF register.	o proporty of	onfigurad as iss	uto or cutouto			
∠:			be property co	ningured as inp	uts of outputs.			
J:	337XADD = 01	s not supported.						

REGISTER 27-2: SSPxCON1: MSSPx CONTROL REGISTER 1 (SPI MODE)

4: Bit combinations not specifically listed here are either reserved or implemented in I²C mode only.

After the write to the SSPxBUF, each bit of the address will be shifted out on the falling edge of SCL until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will release the SDA pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDA pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT Status bit of the SSPxCON2 register. Following the falling edge of the ninth clock transmission of the address, the SSPxIF is set, the BF flag is cleared and the Baud Rate Generator is turned off until another write to the SSPxBUF takes place, holding SCL low and allowing SDA to float.

27.10.6.1 BF Status Flag

In Transmit mode, the BF bit of the SSPxSTAT register is set when the CPU writes to SSPxBUF and is cleared when all eight bits are shifted out.

27.10.6.2 WCOL Status Flag

If the user writes the SSPxBUF when a transmit is already in progress (i.e., SSPSR is still shifting out a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

The WCOL bit must be cleared by software before the next transmission.

27.10.6.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit of the SSPxCON2 register is cleared when the slave has sent an Acknowledge ($\overline{ACK} = 0$) and is set when the slave does not Acknowledge ($\overline{ACK} = 1$). A slave sends an Acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.

27.10.6.4 Typical transmit sequence:

- 1. The user generates a Start condition by setting the SEN bit of the SSPxCON2 register.
- 2. SSPxIF is set by hardware on completion of the Start.
- 3. SSPxIF is cleared by software.
- 4. The MSSP module will wait the required start time before any other operation takes place.
- 5. The user loads the SSPxBUF with the slave address to transmit.
- 6. Address is shifted out the SDA pin until all eight bits are transmitted. Transmission begins as soon as SSPxBUF is written to.
- 7. The MSSP module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPxCON2 register.
- 8. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPxIF bit.

- 9. The user loads the SSPxBUF with eight bits of data.
- 10. Data is shifted out the SDA pin until all eight bits are transmitted.
- 11. The MSSP module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPxCON2 register.
- 12. Steps 8-11 are repeated for all transmitted data bytes.
- 13. The user generates a Stop or Restart condition by setting the PEN or RSEN bits of the SSPxCON2 register. Interrupt is generated once the Stop/Restart condition is complete.

28.2 EUSART Asynchronous Mode

The EUSART transmits and receives data using the standard non-return-to-zero (NRZ) format. NRZ is implemented with two levels: a VOH Mark state which represents a '1' data bit, and a VOL Space state which represents a '0' data bit. NRZ refers to the fact that consecutively transmitted data bits of the same value stay at the output level of that bit without returning to a neutral level between each bit transmission. An NRZ transmission port idles in the Mark state. Each character transmission consists of one Start bit followed by eight or nine data bits and is always terminated by one or more Stop bits. The Start bit is always a space and the Stop bits are always marks. The most common data format is eight bits. Each transmitted bit persists for a period of 1/(Baud Rate). An on-chip dedicated 8-bit/16-bit Baud Rate Generator is used to derive standard baud rate frequencies from the system oscillator. See Table 28-5 for examples of baud rate configurations.

The EUSART transmits and receives the LSb first. The EUSART's transmitter and receiver are functionally independent, but share the same data format and baud rate. Parity is not supported by the hardware, but can be implemented in software and stored as the ninth data bit.

28.2.1 EUSART ASYNCHRONOUS TRANSMITTER

The EUSART transmitter block diagram is shown in Figure 28-1. The heart of the transmitter is the serial Transmit Shift Register (TSR), which is not directly accessible by software. The TSR obtains its data from the transmit buffer, which is the TXxREG register.

28.2.1.1 Enabling the Transmitter

The EUSART transmitter is enabled for asynchronous operations by configuring the following three control bits:

- TXEN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the TXEN bit of the TXxSTA register enables the transmitter circuitry of the EUSART. Clearing the SYNC bit of the TXxSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCxSTA register enables the EUSART and automatically configures the TXx/CKx I/O pin as an output. If the TXx/CKx pin is shared with an analog peripheral, the analog I/O function must be disabled by clearing the corresponding ANSEL bit.

Note: The TXxIF Transmitter Interrupt flag is set when the TXEN enable bit is set.

28.2.1.2 Transmitting Data

A transmission is initiated by writing a character to the TXxREG register. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXxREG is immediately transferred to the TSR register. If the TSR still contains all or part of a previous character, the new character data is held in the TXxREG until the Stop bit of the previous character has been transmitted. The pending character in the TXxREG is then transferred to the TSR in one TcY immediately following the Stop bit sequence commences immediately following the transfer of the data to the TSR from the TXxREG.

28.2.1.3 Transmit Data Polarity

The polarity of the transmit data can be controlled with the SCKP bit of the BAUDxCON register. The default state of this bit is '0' which selects high true transmit idle and data bits. Setting the SCKP bit to '1' will invert the transmit data resulting in low true idle and data bits. The SCKP bit controls transmit data polarity in Asynchronous mode only. In Synchronous mode, the SCKP bit has a different function. See **Section 28.5.1.2 "Clock Polarity**".

28.2.1.4 Transmit Interrupt Flag

The TXxIF interrupt flag bit of the PIR3/4 registers is set whenever the EUSART transmitter is enabled and no character is being held for transmission in the TXxREG. In other words, the TXxIF bit is only clear when the TSR is busy with a character and a new character has been queued for transmission in the TXxREG. The TXxIF flag bit is not cleared immediately upon writing TXxREG. TXxIF becomes valid in the second instruction cycle following the write execution. Polling TXxIF immediately following the TXxREG write will return invalid results. The TXxIF bit is read-only, it cannot be set or cleared by software.

The TXxIF interrupt can be enabled by setting the TXxIE interrupt enable bit of the PIE3/4 registers. However, the TXxIF flag bit will be set whenever the TXxREG is empty, regardless of the state of TXxIE enable bit.

To use interrupts when transmitting data, set the TXxIE bit only when there is more data to send. Clear the TXxIE interrupt enable bit upon writing the last character of the transmission to the TXxREG.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDxCON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	451
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	—	INT3EDG	INT2EDG	INT1EDG	INT0EDG	173
PIE3	RC2IE	TX2IE	RC1IE	TX1IE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	188
PIR3	RC2IF	TX2IF	RC1IF	TX1IF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	177
IPR3	RC2IP	TX2IP	RC1IP	TX1IP	BCL2IP	SSP2IP	BCL1IP	SSP1IP	198
PIE4	_	—	RC5IE	TX5IE	RC4IE	TX4IE	RC3IE	TX3IE	189
PIR4	—	_	RC5IF	TX5IF	RC4IF	TX4IF	RC3IF	TX3IF	178
IPR4	—	—	RC5IP	TX5IP	RC4IP	TX4IP	RC3IP	TX3IP	199
RCxSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	450
RxyPPS	—	—			RxyPF	PS<5:0>			228
TXxPPS	—	—			TXPP	S<5:0>			225
SPxBRGH			EUSARTx	Baud Rate	Generator, H	igh Byte			460*
SPxBRGL			EUSART	Baud Rate	Generator, L	ow Byte			460*
TXxREG			EUSA	ARTx Transm	nit Data Regi	ster			452*
TXxSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	449

TABLE 28-7:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
TRANSMISSION

Legend:

— = unimplemented location, read as '0'. Shaded cells are not used for synchronous master transmission.

Page provides register information.

R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x			
ADUTH<15:8>										
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'						
u = Bit is unch	anged	x = Bit is unkno	unknown -n/n = Value at POR and BOR/Value at all other				other Resets			
'1' = Bit is set		'0' = Bit is clea	red							

REGISTER 32-30: ADUTHH: ADC UPPER THRESHOLD HIGH BYTE REGISTER

bit 7-0 **ADUTH<15:8>**: ADC Upper Threshold MSB. ADLTH and ADUTH are compared with ADERR to set the ADUTHR and ADLTHR bits of ADSTAT. Depending on the setting of ADTMD, an interrupt may be triggered by the results of this comparison.

REGISTER 32-31: ADUTHL: ADC UPPER THRESHOLD LOW BYTE REGISTER

| R/W-x/x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | ADUTH | 1<7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ADUTH<7:0>**: ADC Upper Threshold LSB. ADLTH and ADUTH are compared with ADERR to set the ADUTHR and ADLTHR bits of ADSTAT. Depending on the setting of ADTMD, an interrupt may be triggered by the results of this comparison.

36.0 INSTRUCTION SET SUMMARY

PIC18(L)F6xK40 devices incorporate the standard set of 75 PIC18 core instructions, as well as an extended set of eight new instructions, for the optimization of code that is recursive or that utilizes a software stack. The extended set is discussed later in this section.

36.1 Standard Instruction Set

The standard PIC18 instruction set adds many enhancements to the previous PIC^{\circledast} MCU instruction sets, while maintaining an easy migration from these PIC^{\circledast} MCU instruction sets. Most instructions are a single program memory word (16 bits), but there are four instructions that require two program memory locations.

Each single-word instruction is a 16-bit word divided into an opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into four basic categories:

- Byte-oriented operations
- **Bit-oriented** operations
- · Literal operations
- · Control operations

The PIC18 instruction set summary in Table 36-2 lists **byte-oriented**, **bit-oriented**, **literal** and **control** operations. Table 36-1 shows the opcode field descriptions.

Most byte-oriented instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The destination of the result (specified by 'd')
- 3. The accessed memory (specified by 'a')

The file register designator 'f' specifies which file register is to be used by the instruction. The destination designator 'd' specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the WREG register. If 'd' is one, the result is placed in the file register specified in the instruction.

All **bit-oriented** instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The bit in the file register (specified by 'b')
- 3. The accessed memory (specified by 'a')

The bit field designator 'b' selects the number of the bit affected by the operation, while the file register designator 'f' represents the number of the file in which the bit is located. The literal instructions may use some of the following operands:

- A literal value to be loaded into a file register (specified by 'k')
- The desired FSR register to load the literal value into (specified by 'f')
- No operand required (specified by '—')

The control instructions may use some of the following operands:

- A program memory address (specified by 'n')
- The mode of the CALL or RETURN instructions (specified by 's')
- The mode of the table read and table write instructions (specified by 'm')
- No operand required (specified by '—')

All instructions are a single word, except for four double-word instructions. These instructions were made double-word to contain the required information in 32 bits. In the second word, the four MSbs are '1's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

All single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles, with the additional instruction cycle(s) executed as a NOP.

The double-word instructions execute in two instruction cycles.

One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true, or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s. Two-word branch instructions (if true) would take 3 μ s.

Figure 36-1 shows the general formats that the instructions can have. All examples use the convention 'nnh' to represent a hexadecimal number.

The Instruction Set Summary, shown in Table 36-2, lists the standard instructions recognized by the Microchip Assembler (MPASMTM).

Section 36.1.1 "Standard Instruction Set" provides a description of each instruction.

FIGURE 36-1:	General Format for Instructions	
	Byte-oriented file register operations	Example Instruction
	15 10 9 8 7 0 OPCODE d a f (FILE #) d = 0 for result destination to be WREG register d = 1 for result destination to be file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address	ADDWF MYREG, W, B
	Byte to Byte move operations (2-word)	
	15 12 11 0 OPCODE f (Source FILE #) 15 12 11 0 1111 f (Destination FILE #) 1111 f = 12-bit file register address	MOVFF MYREG1, MYREG2
	Bit-oriented file register operations	
	15 12 11 9 8 7 0 OPCODE b (BIT #) a f (FILE #) b = 3-bit position of bit in file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address	BSF MYREG, bit, B
	15 8 7 0 OPCODE k (literal)	MOVLW 7Fh
	Control operations	
	CALL, GOTO and Branch operations 15 8 7 0 OPCODE n<7:0> (literal)	GOTO Label
	15 12 11 0 1111 n<19:8> (literal) 1	
	n = 20-bit immediate value	
	15 8 7 0 OPCODE S n<7:0> (literal) 15 12 11 0 1111 n<19:8> (literal) S = Fast bit	CALL MYFUNC
	15 11 10 0 OPCODE n<10:0> (literal)	BRA MYFUNC
	15 8 7 0 OPCODE n<7:0> (literal) 10	BC MYFUNC

SUE	BFSR	Subtrac	Subtract Literal from FSR						
Syntax:		SUBFSR	SUBFSR f, k						
Oper	ands:	$0 \le k \le 63$	$0 \le k \le 63$						
		$f \in [\ 0, \ 1,$	2]						
Oper	ation:	FSR(f) –	$FSR(f) - k \rightarrow FSRf$						
Statu	is Affected:	None	None						
Enco	oding:	1110	1001	ffkk	kkkk				
Description:		The 6-bit	The 6-bit literal 'k' is subtracted from						
		the conte	the contents of the FSR specified by						
		ʻf'.							
Words:		1							
Cycles:		1							
Q Cycle Activity:									
	Q1	Q2	Q3		Q4				
	Decode	Read	Proce	ess	Write to				
		register 'f'	Data	a d	estination				
Evar	nnlo:	CUDECD	0 00h						

Example: SUBFSR 2, 23h

Before Instru	iction	
FSR2	=	03FFh

After Instruct	ion	
FSR2	=	03DCh

Suntax	CI		L.				
Syntax:	SU	SUBULNK K					
Operands:	0 ≤	≤ k ≤ 63					
Operation:	FS	$R2 - k \rightarrow$	FSF	R2			
	(T($OS) \rightarrow PC$					
Status Affected:	Nc	one					
Encoding:	-	1110	100)1	11kk	kkkl	¢
	contents of the FSR2. A RETURN is then executed by loading the PC with the TOS. The instruction takes two cycles to execute; a NOP is performed during the second cycle. This may be thought of as a special case of the SUBFSR instruction, where f = 3 (binary '11'): it operates only on FSR2.						
Words:	1						
Cycles:	2						
Q Cycle Activit	y:						
Q1		Q2			Q3	Q4	
Decode	è	Read		Pro	ocess	Write t	0
		register	'f'	D)ata	destinat	ior
No		No			No	No	
Operatio	n	Operatio	on	Ope	ration	Operati	on

Example: SUBULNK 23h

Before Instruction							
FSR2	=	03FFh					
PC	=	0100h					
After Instruction							
FSR2	=	03DCh					
PC	=	(TOS)					

FIGURE 38-11: ADC CONVERSION TIMING (ADC CLOCK FROM ADCRC)