

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	60
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 45x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf66k40-e-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

10.0 MEMORY ORGANIZATION

There are three types of memory in PIC18 enhanced microcontroller devices:

- Program Memory
- Data RAM
- Data EEPROM

As Harvard architecture devices, the data and program memories use separate buses; this allows for concurrent access of the two memory spaces. The data EEPROM, for practical purposes, can be regarded as a peripheral device, since it is addressed and accessed through a set of control registers.

Additional detailed information on the operation of the Program Flash Memory and Data EEPROM Memory is provided in **Section 11.0 "Nonvolatile Memory** (NVM) Control".

10.1 Program Memory Organization

PIC18 microcontrollers implement a 21-bit program counter, which is capable of addressing a 2 Mbyte program memory space. Accessing a location between the upper boundary of the physically implemented memory and the 2 Mbyte address will return all '0's (a NOP instruction).

These devices contains the following:

- PIC18(L)F65K40: 32 K bytes of Flash memory, up to 16,384 single-word instructions
- PIC18(L)F66K40: 64 Kbytes of Flash memory, up to 32,768 single-word instructions

PIC18 devices have two interrupt vectors. The Reset vector address is at 0000h and the interrupt vector addresses are at 0008h and 0018h.

Note: For memory information on this family of devices, see Table 10-1 and Table 10-2.

							1020 (00		/	
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR
E9Eh	INLVLC	INLVLC7	INLVLC6	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	11111111
E9Dh	IOCCP	IOCCP7	IOCCP6	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	00000000
E9Ch	IOCCN	IOCCN7	IOCCN6	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	00000000
E9Bh	IOCCF	IOCCF7	IOCCF6	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	00000000
E9Ah	ANSELB	ANSELB7	ANSELB6	ANSELB5	ANSELB4	ANSELB3	ANSELB2	ANSELB1	ANSELB0	11111111
E99h	WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	00000000
E98h	ODCONB	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	00000000
E97h	SLRCONB	SLRB7	SLRB6	SLRB5	SLRB4	SLRB3	SLRB2	SLRB1	SLRB0	11111111
E96h	INLVLB	INLVLB7	INLVLB6	INLVLB5	INLVLB4	INLVLB3	INLVLB2	INLVLB1	INLVLB0	11111111
E95h	IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	00000000
E94h	IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	00000000
E93h	IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	00000000
E92h	ANSELA	ANSELA7	ANSELA6	ANSELA5	ANSELA4	ANSELA3	ANSELA2	ANSELA1	ANSELA0	11111111
E91h	WPUA	WPUA7	WPUA6	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	00000000
E90h	ODCONA	ODCA7	ODCA6	ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	00000000
E8Fh	SLRCONA	SLRA7	SLRA6	SLRA5	SLRA4	SLRA3	SLRA2	SLRA1	SLRA0	11111111
E8Eh	INLVLA	INLVLA7	INLVLA6	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	11111111
E8Dh	RH3PPS	_	—			RH3P	PS<5:0>			000000
E8Ch	RH2PPS	_	—			RH2P	PS<5:0>			000000
E8Bh	RH1PPS	_	—			RH1P	PS<5:0>			000000
E8Ah	RH0PPS	_	—			RH0P	PS<5:0>			000000
E89h	RG7PPS	_	—			RG7P	PS<5:0>			000000
E88h	RG6PPS	_	—			RG6P	PS<5:0>			000000
E87h	—				Unimpl	emented				_
E86h	RG4PPS	_	—			RG4P	PS<5:0>			000000
E85h	RG3PPS	_	—			RG3P	PS<5:0>			000000
E84h	RG2PPS	_	—			RG2P	PS<5:0>			000000
E83h	RG1PPS	-	—			RG1P	PS<5:0>			000000
E82h	RG0PPS	-	—			RG0P	PS<5:0>			000000
E81h	RF7PPS	_	—			RF7PI	PS<5:0>			000000
E80h	RF6PPS	_	—			RF6PI	PS<5:0>			000000
E7Fh	RF5PPS	_	—			RF5PI	PS<5:0>			000000
E7Eh	RF4PPS	_	—			RF4PI	PS<5:0>			000000
E7Dh	RF3PPS	_	—			RF3PI	PS<5:0>			000000
E7Ch	RF2PPS	_	—			RF2PI	PS<5:0>			000000
E7Bh	RF1PPS	—	-			RF1PI	PS<5:0>			000000
E7Ah	RF0PPS	_	_			RF0PI	PS<5:0>			000000
E79h	RE7PPS	_	_			RE7PI	PS<5:0>			000000
E78h	RE6PPS	_	_			RE6PI	PS<5:0>			000000
E77h	RE5PPS	_	_			RE5PI	PS<5:0>			000000
E76h	RE4PPS	—	—			RE4PI	PS<5:0>			000000

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition

Note 1: Not available on LF devices.

11.1.2 CONTROL REGISTERS

Several control registers are used in conjunction with the TBLRD and TBLWT instructions. These include the following registers:

- NVMCON1 register
- NVMCON2 register
- TABLAT register
- TBLPTR registers

11.1.2.1 NVMCON1 and NVMCON2 Registers

The NVMCON1 register (Register 11-1) is the control register for memory accesses. The NVMCON2 register is not a physical register; it is used exclusively in the memory write and erase sequences. Reading NVMCON2 will read all '0's.

The NVMREG<1:0> control bits determine if the access will be to Data EEPROM Memory locations. PFM locations or User IDs, Configuration bits, Rev ID and Device ID. When NVMREG<1:0> = 00, any subsequent operations will operate on the Data EEPROM Memory. When NVMREG<1:0> = 10, any subsequent operations will operate on the program memory. When NVMREG<1:0> = x1, any subsequent operations will operate on the Data IDS, Rev ID and Device ID.

The FREE bit allows the program memory erase operation. When the FREE bit is set, an erase operation is initiated on the next WR command. When FREE is clear, only writes are enabled. This bit is applicable only to the PFM and not to data EEPROM.

When set, the WREN bit will allow a program/erase operation. The WREN bit is cleared on power-up.

The WRERR bit is set by hardware when the WR bit is set and cleared when the internal programming timer expires and the write operation is successfully complete.

The WR control bit initiates erase/write cycle operation when the NVMREG<1:0> bits point to the Data EEPROM Memory location, and it initiates a write operation when the NVMREG<1:0> bits point to the PFM location. The WR bit cannot be cleared by firmware; it can only be set by firmware. Then the WR bit is cleared by hardware at the completion of the write operation.

The NVMIF Interrupt Flag bit of the PIR7 register is set when the write is complete. The NVMIF flag stays set until cleared by firmware.

11.1.2.2 TABLAT – Table Latch Register

The Table Latch (TABLAT) is an 8-bit register mapped into the SFR space. The Table Latch register is used to hold 8-bit data during data transfers between program memory and data RAM.

11.1.2.3 TBLPTR – Table Pointer Register

The Table Pointer (TBLPTR) register addresses a byte within the program memory. The TBLPTR is comprised of three SFR registers: Table Pointer Upper Byte, Table Pointer High Byte and Table Pointer Low Byte (TBLPTRU:TBLPTRH:TBLPTRL). These three registers join to form a 22-bit wide pointer. The low-order 21 bits allow the device to address up to 2 Mbytes of program memory space. The 22nd bit allows access to the Device ID, the User ID and the Configuration bits.

The Table Pointer register, TBLPTR, is used by the TBLRD and TBLWT instructions. These instructions can update the TBLPTR in one of four ways based on the table operation. These operations on the TBLPTR affect only the low-order 21 bits.

11.1.2.4 Table Pointer Boundaries

TBLPTR is used in reads, writes and erases of the Program Flash Memory.

When a TBLRD is executed, all 22 bits of the TBLPTR determine which byte is read from program memory directly into the TABLAT register.

When a TBLWT is executed the byte in the TABLAT register is written, not to Flash memory but, to a holding register in preparation for a program memory write. The holding registers constitute a write block which varies depending on the device (see Table 11-3). The 3, 4, or 5 LSbs of the TBLPTRL register determine which specific address within the holding register block is written to. The MSBs of the Table Pointer have no effect during TBLWT operations.

When a program memory write is executed the entire holding register block is written to the Flash memory at the address determined by the MSbs of the TBLPTR. The 3, 4, or 5 LSBs are ignored during Flash memory writes. For more detail, see **Section 11.1.6 "Writing to Program Flash Memory"**.

Figure 11-3 describes the relevant boundaries of TBLPTR based on Program Flash Memory operations.

13.2 Register Definitions: CRC and Scanner Control

Long bit name prefixes for the CRC and Scanner peripherals are shown in Table 13-1. Refer to **Section 1.4.2.2 "Long Bit Names"** for more information.

TABLE 13-1:

Peripheral	Bit Name Prefix				
CRC	CRC				

REGISTER 13-1: CRCCON0: CRC CONTROL REGISTER 0

R/W-0/0	R/W-0/0	R-0	R/W-0/0	U-0	U-0	R/W-0/0	R-0
EN	GO	BUSY	ACCM	—	—	SHIFTM	FULL
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	 EN: CRC Enable bit 1 = CRC module is released from Reset 0 = CRC is disabled and consumes no operating current
bit 6	GO: CRC Start bit 1 = Start CRC serial shifter 0 = CRC serial shifter turned off
bit 5	BUSY: CRC Busy bit 1 = Shifting in progress or pending 0 = All valid bits in shifter have been shifted into accumulator and EMPTY = 1
bit 4	ACCM: Accumulator Mode bit 1 = Data is augmented with zeros 0 = Data is not augmented with zeros
bit 3-2	Unimplemented: Read as '0'
bit 1	SHIFTM: Shift Mode bit 1 = Shift right (LSb) 0 = Shift left (MSb)
bit 0	FULL: Data Path Full Indicator bit 1 = CRCDATH/L registers are full 0 = CRCDATH/L registers have shifted their data into the shifter

REGISTER 13-2: CRCCON1: CRC CONTROL REGISTER 1

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
	DLEN<	<3:0>		PLEN<3:0>					
bit 7							bit 0		

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchan	ged x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	
bit 7-4	DLEN<3:0>: Data Length bits	
	Denotes the length of the data word -1 (See E	Example 13-1)
bit 3-0	PLEN<3:0>: Polynomial Length bits	

13.6 CRC Check Value

The CRC check value will be located in the CRCACC registers after the CRC calculation has finished. The check value will depend on two mode settings of the CRCCON register: ACCM and SHIFTM.

When the ACCM bit is set, the CRC module augments the data with a number of zeros equal to the length of the polynomial to align the final check value. When the ACCM bit is not set, the CRC will stop at the end of the data. A number of zeros equal to the length of the polynomial can then be entered into CRCDAT to find the same check value as augmented mode. Alternatively, the expected check value can be entered at this point to make the final result equal 0.

When the CRC check value is computed with the SHIFTM bit set, selecting LSb first, and the ACCM bit is set then the final value in the CRCACC registers will be reversed such that the LSb will be in the MSb position and vice versa. This is the expected check value in bit reversed form. If you are creating a check value to be appended to a data stream then a bit reversal must be performed on the final value to achieve the correct checksum. You can use the CRC to do this reversal by the following method:

- Save CRCACC value in user RAM space
- Clear the CRCACC registers
- Clear the CRCXOR registers
- Write the saved CRCACC value to the CRCDAT input

The properly oriented check value will be in the CRCACC registers as the result.

13.7 CRC Interrupt

The CRC will generate an interrupt when the BUSY bit transitions from 1 to 0. The CRCIF Interrupt Flag bit of the PIR7 register is set every time the BUSY bit transitions, regardless of whether or not the CRC interrupt is enabled. The CRCIF bit can only be cleared in software. The CRC interrupt enable is the CRCIE bit of the PIE7 register.

13.8 Configuring the CRC

The following steps illustrate how to properly configure the CRC.

- Determine if the automatic program memory scan will be used with the scanner or manual calculation through the SFR interface and perform the actions specified in Section 13.5 "CRC Data Sources", depending on which decision was made.
- 2. If desired, seed a starting CRC value into the CRCACCH/L registers.
- 3. Program the CRCXORH/L registers with the desired generator polynomial.
- Program the DLEN<3:0> bits of the CRCCON1 register with the length of the data word - 1 (refer to Example 13-1). This determines how many times the shifter will shift into the accumulator for each data word.
- 5. Program the PLEN<3:0> bits of the CRCCON1 register with the length of the polynomial -2 (refer to Example 13-1).
- Determine whether shifting in trailing zeros is desired and set the ACCM bit of the CRCCON0 register appropriately.
- 7. Likewise, determine whether the MSb or LSb should be shifted first and write the SHIFTM bit of the CRCCON0 register appropriately.
- 8. Write the CRCGO bit of the CRCCON0 register to begin the shifting process.
- 9a. If manual SFR entry is used, monitor the FULL bit of the CRCCON0 register. When FULL = 0, another word of data can be written to the CRCDATH/L registers, keeping in mind that CRCDATH should be written first if the data has more than eight bits, as the shifter will begin upon the CRCDATL register being written.
- 9b. If the scanner is used, the scanner will automatically stuff words into the CRCDATH/L registers as needed, as long as the SCANGO bit is set.
- 10a. If using the Flash memory scanner, monitor the SCANIF (or the SCANGO bit) for the scanner to finish pushing information into the CRCDATA registers. After the scanner is completed, monitor the BUSY bit to determine that the CRC has been completed and the check value can be read from the CRCACC registers. If both the interrupt flags are set (or both BUSY and SCANGO bits are cleared), the completed CRC calculation can be read from the CRCACCH/L registers.
- 10b. If manual entry is used, monitor the BUSY bit to determine when the CRCACC registers will hold the check value.

Peripheral	PPS Input Register	Default Pin Selection at POR	Register Reset Value at POR	Inj	out Av	vailab	le fro	m Sel	ected	I POR	Tx
Interrupt 0	INT0PPS	RB0	0x08	Α	В	_	_	_	_	_	_
Interrupt 1	INT1PPS	RB1	0x09	_	В	С	_		_	-	-
Interrupt 2	INT2PPS	RB2	0x0A	_	В	_	D		_		-
Interrupt 3	INT3PPS	RB3	0x0B	_	В	_	_	Е	_		-
Timer0 Clock	T0CKIPPS	RA4	0x04	А	В	_	_		_		-
Timer1 Clock	T1CKIPPS	RC0	0x10	_	_	С	D		_		-
Timer1 Gate	T1GPPS	RB5	0x0D	_	В	С	_		_		-
Timer3 Clock	T3CKIPPS	RB5	0x0D	_	В	С	_		_		-
Timer3 Gate	T3GPPS	RA5	0x05	А	_	С	_		_		-
Timer5 Clock	T5CKIPPS	RD1	0x19	_	_	_	D	Е	_		-
Timer5 Gate	T5GPPS	RG4	0x34	_	_	_	_	Е	_	G	-
Timer7 Clock	T7CKIPPS	RG4	0x34	_	_	_	_	Е	_	G	-
Timer7 Gate	T7GPPS	RD1	0x19	_	_	_	D	Е	_	_	_
Timer2 Clock	T2INPPS	RA1	0x01	А	_	С	_	_	_	_	_
Timer4 Clock	T4INPPS	RE4	0x24	_	В	_	_	Е	_		-
Timer6 Clock	T6INPPS	RC1	0x11	_	В	С	_		_		-
Timer8 Clock	T8INPPS	RA0	0x00	А	_	_	_	Е	_		-
ADC Conversion Trigger	ADACTPPS	RH1	0x39	_	В	С	_		_		-
CCP1	CCP1PPS	RE5	0x25	_	_	_	_	Е	_	G	-
CCP2	CCP2PPS	RE4	0x24	—	—	—	—	Е	_	G	_
CCP3	CCP3PPS	RE6	0x26	_	_	С	_	Е	_		
CCP4	CCP4PPS	RG3	0x33	—	—	С	—	Е	_	_	_
CCP5	CCP5PPS	RG4	0x34	_	_	С	_	Е	_		
SMT1 Window	SMT1WINPPS	RE6	0x26	_	_	С	_	Е	_		
SMT1 Signal	SMT1SIGPPS	RE7	0x27	_	_	С	_	Е	_	—	—
SMT2 Window	SMT2WINPPS	RG6	0x36	_	_	С	_	_	_	G	_
SMT2 Signal	SMT2SIGPPS	RG7	0x37	_		С	_	_	_	G	—
CWG	CWG1PPS	RC2	0x12	А	_	С	_	_	_	_	_
DSM Carrier Low	MDCARLPPS	RD3	0x1B	_	_	_	D	—	_	—	Н
DSM Carrier High	MDCARHPPS	RD4	0x1C	—	_	_	D	_	_	_	Н
DSM Source	MDSRCPPS	RD5	0x1D		_	_	D	—	_	—	Н
EUSART1 Receive	RX1PPS	RC7	0x17	_	_	С	D	_	_	_	_
EUSART1 Transmit	TX1PPS	RC6	0x16	_	_	С	D	_	_	_	_
EUSART2 Receive	RX2PPS	RG2	0x32	_	_	_	D	_	_	G	_
EUSART2 Transmit	TX2PPS	RG1	0x31	_	_	_	D	_	_	G	_
EUSART3 Receive	RX3PPS	RE1	0x21	_	В	_	_	Е	_	_	_

TABLE 17-1: PPS INPUT REGISTER DETAILS

19.0 TIMER1/3/5/7 MODULE WITH GATE CONTROL

Timer1/3/5/7 module is a 16-bit timer/counter with the following features:

- 16-bit timer/counter register pair (TMRxH:TMRxL)
- Programmable internal or external clock source
- · 2-bit prescaler
- Dedicated Secondary 32 kHz oscillator circuit
- · Optionally synchronized comparator out
- Multiple Timer1/3/5/7 gate (count enable) sources
- Interrupt on overflow
- Wake-up on overflow (external clock, Asynchronous mode only)
- 16-Bit Read/Write Operation
- Time base for the Capture/Compare function with the CCP modules
- Special Event Trigger (with CCP)
- Selectable Gate Source Polarity
- Gate Toggle mode
- Gate Single-pulse mode
- Gate Value Status
- Gate Event Interrupt

Figure 19-1 is a block diagram of the Timer1/3/5/7 module.

19.9 Timer1/3/5/7 Interrupt

The Timer1/3/5/7 register pair (TMRxH:TMRxL) increments to FFFFh and rolls over to 0000h. When Timer1/3/5/7 rolls over, the Timer1/3/5/7 interrupt flag bit of the PIR5 register is set. To enable the interrupt-on-rollover, you must set these bits:

- TMRxON bit of the TxCON register
- TMRxIE bits of the PIE5 register
- PEIE/GIEL bit of the INTCON register
- · GIE/GIEH bit of the INTCON register

The interrupt is cleared by clearing the TMRxIF bit in the Interrupt Service Routine.

For more information on selecting high or low priority status for the Timer1/3/5/7 Overflow Interrupt, see **Section 14.0 "Interrupts"**.

Note: The TMRxH:TMRxL register pair and the TMRxIF bit should be cleared before enabling interrupts.

19.10 Timer1/3/5/7 Operation During Sleep

Timer1/3/5/7 can only operate during Sleep when set up in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device:

- TMRxON bit of the TxCON register must be set
- TMRxIE bit of the PIE5 register must be set
- PEIE/GIEL bit of the INTCON register must be set
- TxSYNC bit of the TxCON register must be set
- Configure the TMRxCLK register for using secondary oscillator as the clock source
- Enable the SOSCEN bit of the OSCEN register (Register 4-7)

The device will wake-up on an overflow and execute the next instruction. If the GIE/GIEH bit of the INTCON register is set, the device will call the Interrupt Service Routine.

The secondary oscillator will continue to operate in Sleep regardless of the $\overline{\text{TxSYNC}}$ bit setting.

19.11 CCP Capture/Compare Time Base

The CCP modules use the TMRxH:TMRxL register pair as the time base when operating in Capture or Compare mode.

In Capture mode, the value in the TMRxH:TMRxL register pair is copied into the CCPRxH:CCPRxL register pair on a configured event.

In Compare mode, an event is triggered when the value in the CCPRxH:CCPRxL register pair matches the value in the TMRxH:TMRxL register pair. This event can be a Special Event Trigger.

For more information, see Section 21.0 "Capture/Compare/PWM Module".

19.12 CCP Special Event Trigger

When any of the CCP's are configured to trigger a special event, the trigger will clear the TMRxH:TMRxL register pair. This special event does not cause a Timer1/3/5/7 interrupt. The CCP module may still be configured to generate a CCP interrupt.

In this mode of operation, the CCPRxH:CCPRxL register pair becomes the period register for Timer1/3/5/7.

Timer1/3/5/7 should be synchronized and Fosc/4 should be selected as the clock source in order to utilize the Special Event Trigger. Asynchronous operation of Timer1/3/5/7 can cause a Special Event Trigger to be missed.

In the event that a write to TMRxH or TMRxL coincides with a Special Event Trigger from the CCP, the write will take precedence.

23.0 ZERO-CROSS DETECTION (ZCD) MODULE

The ZCD module detects when an A/C signal crosses through the ground potential. The actual zero-crossing threshold is the zero-crossing reference voltage, VCPINV, which is typically 0.75V above ground.

The connection to the signal to be detected is through a series current-limiting resistor. The module applies a current source or sink to the ZCD pin to maintain a constant voltage on the pin, thereby preventing the pin voltage from forward biasing the ESD protection diodes. When the applied voltage is greater than the reference voltage, the module sinks current. When the applied voltage is less than the reference voltage, the module sources current. The current source and sink action keeps the pin voltage constant over the full range of the applied voltage. The ZCD module is shown in the simplified block diagram Figure 23-2.

The ZCD module is useful when monitoring an A/C waveform for, but not limited to, the following purposes:

- A/C period measurement
- · Accurate long term time measurement
- · Dimmer phase delayed drive
- Low EMI cycle switching

23.1 External Resistor Selection

The ZCD module requires a current-limiting resistor in series with the external voltage source. The impedance and rating of this resistor depends on the external source peak voltage. Select a resistor value that will drop all of the peak voltage when the current through the resistor is nominally 300 μ A. Refer to Equation 23-1 and Figure 23-1. Make sure that the ZCD I/O pin internal weak pull-up is disabled so it does not interfere with the current source and sink.

EQUATION 23-1: EXTERNAL RESISTOR

$$RSERIES = \frac{VPEAK}{3 \times 10^{-4}}$$

FIGURE 23-1: EXTERNAL VOLTAGE

FIGURE 25-6: PERIOD AND DUTY-CYCLE REPEAT ACQUISITION MODE TIMING DIAGRAM

FIGURE 25-8: HIGH A

HIGH AND LOW MEASURE MODE REPEAT ACQUISITION TIMING DIAGRAM

PIC18(L)F65/66K40

28.1 Register Definitions: EUSART Control

R/W-/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-1/1	R/W-0/0
CSRC	TX9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unk	nown	-n/n = Value	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	CSRC: Clock Asynchronou Don't care Synchronous 1 = Master r 0 = Slave m	: Source Select <u>s mode</u> : <u>mode</u> : mode (clock ge ode (clock from	t bit merated intern	nally from BRG)		
bit 6	TX9: 9-bit Tra 1 = Selects 0 = Selects	ansmit Enable 9-bit transmiss 8-bit transmiss	bit ion ion				
bit 5	TXEN: Trans 1 = Transmit 0 = Transmit	mit Enable bit ^{(*} enabled disabled	1)				
bit 4	SYNC: EUSA 1 = Synchror 0 = Asynchror	ART Mode Sele nous mode onous mode	ect bit				
bit 3	SENDB: Sen Asynchronouu 1 = Send Syn 0 = Sync Bre Synchronous Don't care	d Break Chara <u>s mode</u> : nc Break on ne eak transmissic <u>mode</u> :	cter bit ext transmissio on disabled or	on (cleared by completed	hardware upon	completion)	
bit 2	BRGH: High Asynchronouu 1 = High spe 0 = Low spee Synchronous Unused in thi	Baud Rate Sel <u>s mode</u> : ed, if BRG16 = ed <u>mode:</u> s mode	ect bit = 1, baud rate	is baudclk/4; e	lse baudclk/16		
bit 1	TRMT: Transi 1 = TSR emp 0 = TSR full	mit Shift Regis [.] oty	ter Status bit				
bit 0	TX9D: Ninth I Can be addre	bit of Transmit ess/data bit or a	Data a parity bit.				
Note 1: SR	EN/CREN bits	of RCxSTA (Re	egister 28-2) o	verride TXEN	in Sync mode.		

REGISTER 28-1: TXxSTA: TRANSMIT STATUS AND CONTROL REGISTER

TABLE 32-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES^(1,4)

ADC C	lock Period (TAD)	Device Frequency (Fosc)								
ADC Clock Source	ADCS<5:0> 64 MHz 32 MHz 20 MHz 16 MHz 8 MHz 4		4 MHz	1 MHz						
Fosc/2	000000	31.25 ns ⁽²⁾	62.5 ns ⁽²⁾	100 ns ⁽²⁾	125 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs		
Fosc/4	000001	62.5 ns ⁽²⁾	125 ns ⁽²⁾	200 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs	4.0 μs		
Fosc/6	000010	125 ns ⁽²⁾	187.5 ns ⁽²⁾	300 ns ⁽²⁾	375 ns ⁽²⁾	750 ns ⁽²⁾	1.5 μs	6.0 μs		
Fosc/8	000011	187.5 ns ⁽²⁾	250 ns ⁽²⁾	400 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs	2.0 μs	8.0 μs ⁽³⁾		
Fosc/16	000100	250 ns ⁽²⁾	500 ns ⁽²⁾	800 ns ⁽²⁾	1.0 μs	2.0 μs	4.0 μs	16.0 μs ⁽³⁾		
Fosc/128	111111	2.0 μs	4.0 μs	6.4 μs	8.0 μs	16.0 μs ⁽³⁾	32.0 μs ⁽²⁾	128.0 μs ⁽²⁾		
FRC	ADCS(ADCON0<4>) = 1	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs		

Legend: Shaded cells are outside of recommended range.

Note 1: See TAD parameter for FRC source typical TAD value.

2: These values violate the required TAD time.

- **3:** Outside the recommended TAD time.
- 4: The ADC clock period (TAD) and total ADC conversion time can be minimized when the ADC clock is derived from the system clock FOSC. However, the FRC oscillator source must be used when conversions are to be performed with the device in Sleep mode.

FIGURE 32-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES

32.2 ADC Operation

32.2.1 STARTING A CONVERSION

To enable the ADC module, the ADON bit of the ADCON0 register must be set to a '1'. A conversion may be started by any of the following:

- Software setting the ADGO bit of ADCON0 to '1'
- An external trigger (selected by Register 32-3)
- A continuous-mode retrigger (see section Section 32.5.8 "Continuous Sampling mode")

Note: The ADGO bit should not be set in the same instruction that turns on the ADC. Refer to Section 32.2.6 "ADC Conversion Procedure (Basic Mode)".

32.2.2 COMPLETION OF A CONVERSION

When any individual conversion is complete, the value already in ADRES is written into ADPREV (if ADPSIS = 1) and the new conversion results appear in ADRES. When the conversion completes, the ADC module will:

- Clear the ADGO bit (unless the ADCONT bit of ADCON0 is set)
- · Set the ADIF Interrupt Flag bit
- Set the ADMATH bit
- Update ADACC

When ADDSEN = 0 then after every conversion, or when ADDSEN = 1 then after every other conversion, the following events occur:

- ADERR is calculated
- ADTIF is set if ADERR calculation meets threshold comparison

Importantly, filter and threshold computations occur after the conversion itself is complete. As such, interrupt handlers responding to ADIF should check ADTIF before reading filter and threshold results.

32.2.3 ADC OPERATION DURING SLEEP

The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. When the FRC oscillator source is selected, the ADC waits one additional instruction before starting the conversion. This allows the SLEEP instruction to be executed, which can reduce system noise during the conversion. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set.

32.2.4 EXTERNAL TRIGGER DURING SLEEP

If the external trigger is received during sleep while ADC clock source is set to the FRC, ADC module will perform the conversion and set the ADIF bit upon completion.

If an external trigger is received when the ADC clock source is something other than FRC, the trigger will be recorded, but the conversion will not begin until the device exits Sleep.

32.2.5 AUTO-CONVERSION TRIGGER

The Auto-conversion Trigger allows periodic ADC measurements without software intervention. When a rising edge of the selected source occurs, the ADGO bit is set by hardware.

The Auto-conversion Trigger source is selected with the ADACT<4:0> bits of the ADACT register.

Using the Auto-conversion Trigger does not assure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met. See Table 32-2 for auto-conversion sources.

TABLE 32-2: ADC AUTO-CONVERSION TABLE

Source Peripheral	Description
ADCACTPPS	Pin selected by ADCACTPPS
TMR0	Timer0 overflow condition
TMR1/3/5/7	Timer1/3/5/7 overflow condition
TMR2/4/6/8	Match between Timer2/4/6/8 postscaled value and PR2/4/6/8
CCP1/2/3/4/5	CCP1/2/3/4/5 output
PWM/6/7	PWM/6/7 output
C1/2/3	Comparator C1/2/3 output
IOC	Interrupt-on-change interrupt trigger
ADERR	Read of ADERRH register
ADRESH	Read of ADRESH register
ADPCH	Write of ADPCH register
SMT1/2	Signal Measurement Timer 1/2 Out

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
ADPRE<7:0>										
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
u = Bit is unc	hanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets			
'1' = Bit is set	t	'0' = Bit is clea	ared							
bit 7-0	ADPRE<7:0	>: Precharge Ti	me Select bits	S a af tha a alasta						
	11111111 = Precharge time is 255 clocks of the selected ADC clock									
	•									
	•									

REGISTER 32-9: ADPRE: ADC PRECHARGE TIME CONTROL REGISTER

00000001 = Precharge time is 1 clock of the selected ADC clock 00000000 = Precharge time is not included in the data conversion cycle

REGISTER 32-10: ADACQ: ADC ACQUISITION TIME CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
	ADACQ<7:0>									
bit 7 bit										

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0	ADACQ<7:0>: Acquisition (charge share time) Select bits
	11111111 = Acquisition time is 255 clocks of the selected ADC clock
	11111110 = Acquisition time is 254 clocks of the selected ADC clock
	•
	•
	•
	00000001 = Acquisition time is 1 clock of the selected ADC clock
	00000000 = Acquisition time is not included in the data conversion cycle
Nata	If ADDEE is not actual to (a) than ADACO - $b^2(0000000)$ means Acquisition time is 250 also

Note: If ADPRE is not equal to '0', then ADACQ = b'00000000 means Acquisition time is 256 clocks of the selected ADC clock.

FIGURE 33-2: COMPARATOR MODULE SIMPLIFIED BLOCK DIAGRAM

Unconditional Branch								
Syntax: BRA n								
$-1024 \le n \le 1$	023							
(PC) + 2 + 2r	$n \rightarrow PC$							
None								
1101	0nnn nnni	n nnnn						
Add the 2's c the PC. Since mented to fet new address instruction is	omplement num e the PC will ha ch the next inst will be PC + 2 a 2-cycle instru	nber '2n' to ve incre- ruction, the + 2n. This ction.						
1	1							
2								
Q2	Q3	Q4						
Read literal 'n'	Process Data	Write to PC						
No	No	No						
operation	operation	operation						
	$\begin{array}{c} \text{BRA} n \\ -1024 \leq n \leq 1 \\ (\text{PC}) + 2 + 2r \\ \hline \text{None} \\ \hline 1101 \\ \hline \text{Add the 2's c} \\ \text{the PC. Since mented to fet new address instruction is } \\ 1 \\ 2 \\ \hline \hline \text{Q2} \\ \hline \hline \text{Read literal } \\ rn' \\ \hline \hline \text{No operation} \\ \end{array}$	BRA n -1024 ≤ n ≤ 1023 (PC) + 2 + 2n → PC None 1101 0nnn Add the 2's complement num the PC. Since the PC will ha mented to fetch the next inst new address will be PC + 2 + instruction is a 2-cycle instruct 1 2 Q2 Q3 Read literal Process 'n' Data No No operation operation						

BSF	Bit Set f								
Syntax:	BSF f, b {	,a}							
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \\ a \in [0,1] \end{array}$	$0 \le f \le 255$ $0 \le b \le 7$ $a \in [0,1]$							
Operation:	$1 \rightarrow \text{f}$								
Status Affected:	None								
Encoding:	1000	bbba ffi	f ffff						
Description:	Bit 'b' in reg If 'a' is '0', tl If 'a' is '1', tl GPR bank. If 'a' is '0' a set is enabl in Indexed I mode when tion 36.2.3 Oriented In eral Offset	Bit 'b' in register 'f' is set. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 36.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit-							
Words:	1								
Cycles:	1								
Q Cycle Activity:									
Q1	Q2	Q3	Q4						
Decode	Read register 'f'	Process Data	Write register 'f'						
Example: Before Instruc FLAG_RI After Instructic FLAG RI	BSF F tion EG = 0A on EG = 8A	LAG_REG, 7 h h	, 1						

© 2016-2017 Microchip Technology Inc.

SLEEP	Enter Sle	ep mode		S
Syntax:	SLEEP			S
Operands:	None			0
Operation:	$\begin{array}{l} \text{00h} \rightarrow \text{WE} \\ 0 \rightarrow \underline{\text{WDT}} \\ 1 \rightarrow \underline{\text{TO}}, \\ 0 \rightarrow \overline{\text{PD}} \end{array}$	DT, postscaler,		0
Status Affected:	TO, PD			F
Encoding:	0000	0000 000	0011	
Description:	The Powe cleared. The is set. Wat caler are c The proce with the os	r-down Status he Time-out Si chdog Timer a cleared. ssor is put into scillator stoppe	bit (PD) is tatus bit (TO) and its posts- o Sleep mode ed.	_
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3	Q4	
Decode	No operation	Process Data	Go to Sleep	
Example:	SLEEP			W
$\frac{\text{TO}}{\text{PD}} = \frac{1}{2}$? ? ?			C (
After Instruction TO = PD =	on 1† 0			
† If WDT causes	wake-up, this t	oit is cleared.		<u>E</u> :
				E
				<u>E</u> :

UB	FWB	5	Subtr	ract	f from	W wi	th borrow
ynta	ax:		SUBF	WB	f {,d {,	a}}	
per	ands:	C) ≤ f ≤	255			
		C	$l \in [0, \infty)$,1]			
nor	ation:	((∈ [0,	, I] (f)	<u>(C)</u> 74	oct	
hei Dei	a Affected	((I) – C I	(C) → u	651	
.สเน	dina:	г Г	v , Ov,	, C, I 1	01 do	£ £ 4	
	rintion:		Subtra	⊥ Loct re	oister 'f	' and (
		() rr ii f s t t f f f f f f s c c c c c c c c c c c c c	borrow netho n W. I egiste f 'a' is electe o sele f 'a' is et is e operat Addres ≤ 95 66.2.3 ented	w) fr d). If f 'd' er 'f' 'o', ed. If ect th 'o' a enab ces ir (5Fh "By Inst	(default) (default) (the According to the According (default) the According the According (default) (defau	2's con , the re e resu). ess Ba ;, the I bank. extende instru d Liter whene Section ited an s in In	ank is ank is assult is stored in ank is assR is used ed instruction rat Offset ever an Bit-Ori- dexed Literal
lore	lo:	(Offset	Mod	de" for d	letails.	
		1	1				
) C	vole Activity						
	Q1		02		Q	3	04
	Decode	re	Read gister	'f'	Proce	ess a	Write to destination
xan	nple 1:	2	SUBFW	lΒ	REG,	1, 0	
	Before Instruc REG W C	tion = = =	3 2 1		- ,		
	After Instructio REG	on = =	FF 2				
	C Z	=	0 0				
	Ν	=	1	; res	sult is ne	egative	9
xan	<u>iple 2</u> : Defere lestrue	2 *:	SUBFW	IB	REG,	0, 0	
	REG	uon =	2				
	W C	=	5 1				
	After Instructio	n					
	REG W	=	2 3				
	C	=	1				
	N	=	0	; res	sult is po	ositive	
xan	nple <u>3</u> :	5	SUBFW	IB	REG,	1, 0	
	Before Instruc	tion	4				
	W	=	2				
	C After Instruction	=	0				
		// =	Λ				
	I LO		0				
	W	=	2 1				
	W C Z	= = =	2 1 1	; res	sult is ze	ero	

Standard Operating Conditions (unless otherwise stated)										
Param No.	Sym.	Characteristic	Min.	Typ†	Max.	Units	Conditions			
Data EE	Data EEPROM Memory Specifications									
MEM20	ED	DataEE Byte Endurance	100k	—	—	E/W	$-40^\circ C \leq T A \leq +85^\circ C$			
MEM21	T _{D_RET}	Characteristic Retention		40	—	Year	Provided no other specifications are violated			
MEM22	N _{D_REF}	Total Erase/Write Cycles before Refresh	1M 500k	10M —		E/W	$\begin{array}{l} -40^\circ C \leq T_A \leq +60^\circ C \\ -40^\circ C \leq T_A \leq +85^\circ C \end{array}$			
MEM23	$V_{D_{RW}}$	VDD for Read or Erase/Write operation	VDDMIN	_	VDDMAX	V				
MEM24	$T_{D_{BEW}}$	Byte Erase and Write Cycle Time	-	4.0	5.0	ms				
Program	n Flash Me	emory Specifications								
MEM30	E _P	Flash Memory Cell Endurance	10k	—	—	E/W	-40°C ≤ TA ≤ +85°C (Note 1)			
MEM32	T _{P_RET}	Characteristic Retention		40	_	Year	Provided no other specifications are violated			
MEM33	$V_{P_{RD}}$	VDD for Read operation	VDDMIN	_	VDDMAX	V				
MEM34	V _{P_REW}	VDD for Row Erase or Write operation	VDDMIN	_	VDDMAX	V				
MEM35	T _{P_REW}	Self-Timed Row Erase or Self-Timed Write	_	2.0	2.5	ms				

TABLE 38-5: MEMORY PROGRAMMING SPECIFICATIONS

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Flash Memory Cell Endurance for the Flash memory is defined as: One Row Erase operation and one Self-Timed Write.

TABLE 38-11: RESET, WDT, OSCILLATOR START-UP TIMER, POWER-UP TIMER, BROWN-OUT RESET AND LOW-POWER BROWN-OUT RESET SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)								
Param No.	Sym.	Characteristic		Typ†	Max.	Units	Conditions	
RST01*	TMCLR	MCLR Pulse Width Low to ensure Reset	2	_		μS		
RST02*	Tioz	I/O high-impedance from Reset detection	_	_	2	μS		
RST03	TWDT	Watchdog Timer Time-out Period	_	16	_	ms	1:512 Prescaler	
RST04*	TPWRT	Power-up Timer Period	_	65	_	ms		
RST05	Tost	Oscillator Start-up Timer Period ^(1,2)	_	1024	_	Tosc		
RST06	VBOR	Brown-out Reset Voltage ⁽⁴⁾	2.7 2.55 2.3 2.3 1.8	2.85 2.7 2.45 2.45 1.9	3.0 2.85 2.6 2.6 2.1	> > > > >	BORV = 00 BORV = 01 BORV = 10 BORV = 11 (PIC18Fxxx) BORV = 11 (PIC18LFxxx)	
RST07	VBORHYS	Brown-out Reset Hysteresis	_	40	_	mV		
RST08	TBORDC	Brown-out Reset Response Time	—	3		μS		
RST09	VLPBOR	Low-Power Brown-out Reset Voltage	1.8	1.9	2.5	V		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: By design, the Oscillator Start-up Timer (OST) counts the first 1024 cycles, independent of frequency.

2: To ensure these voltage tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 µF and 0.01 µF values in parallel are recommended.

TABLE 38-12: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS

Param. No.	Symbol	Characteristic	Min.	Typ†	Max.	Units	Conditions
HLVD01	V _{DET}	Voltage Detection	_	1.90		V	HLVDSEL<3:0>=0000
			_	2.10	_	V	HLVDSEL<3:0>=0001
			_	2.25	_	V	HLVDSEL<3:0>=0010
			_	2.50		V	HLVDSEL<3:0>=0011
			_	2.60	_	V	HLVDSEL<3:0>=0100
			_	2.75		V	HLVDSEL<3:0>=0101
			_	2.90		V	HLVDSEL<3:0>=0110
			—	3.15	_	V	HLVDSEL<3:0>=0111
			_	3.35		V	HLVDSEL<3:0>=1000
			_	3.60		V	HLVDSEL<3:0>=1001
			—	3.75	_	V	HLVDSEL<3:0>=1010
			_	4.00		V	HLVDSEL<3:0>=1011
			_	4.20		V	HLVDSEL<3:0>=1100
			_	4.35	_	V	HLVDSEL<3:0>=1101
			_	4.65	_	V	HLVDSEL<3:0>=1110

Standard Operating Conditions (unless otherwise stated)