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Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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PIC18(L)F65/66K40
Digital Peripherals (Continued)

• Programmable CRC with Memory Scan:
- Reliable data/program memory monitoring for 

Fail-Safe operation (e.g., Class B)
- Calculate CRC over any portion of Flash or 

EEPROM
- High-speed or background operation

• Hardware Limit Timer (TMR2/4/6/8+HLT):
- Hardware monitoring and Fault detection

• Peripheral Pin Select (PPS):
- Enables pin mapping of digital I/O 

• Data Signal Modulator (DSM)

• Two Signal Measurement Timer (SMT1/2):
- 24-bit timer/counter with prescaler
- Multiple gate and clock inputs 

Analog Peripherals

• 10-Bit Analog-to-Digital Converter with Computa-
tion (ADC2):
- 47 external channels
- Conversion available during Sleep
- Four internal analog channels
- Internal and external trigger options
- Automated math functions on input signals:

- averaging, filter calculations, oversam-
pling and threshold comparison

-

• Zero-Cross Detect (ZCD):
- Detect when AC signal on pin crosses 

ground
• 5-Bit Digital-to-Analog Converter (DAC):

- Output available externally
- Programmable 5-bit voltage (% of VDD)
- Internal connections to comparators, Fixed 

Voltage Reference and ADC
• Three Comparators (CMP):

- Five external inputs
- External output via PPS

• Fixed Voltage Reference (FVR) module:
- 1.024V, 2.048V and 4.096V output levels

Clocking Structure

• High-Precision Internal Oscillator Block (HFINTOSC):
- Selectable frequency range up to 64 MHz
- ±1% at calibration

• 32 kHz Low-Power Internal Oscillator (LFINTOSC)
• External 32 kHz Crystal Oscillator (SOSC)
• External Oscillator Block:

- Three crystal/resonator modes
- 4x PLL with external sources

• Fail-Safe Clock Monitor:
- Allows for safe shutdown if peripheral clock 

stops
• Oscillator Start-up Timer (OST)

Programming/Debug Features

• In-Circuit Debug Integrated On-Chip
• In-Circuit Serial Programming™ (ICSP™) via Two 

Pins
• In-Circuit Debug (ICD) with Three Breakpoints via 

Two Pins
 2016-2017 Microchip Technology Inc. Preliminary DS40001842C-page 2
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4.3.2.6 Oscillator Status and Manual Enable 

The Ready status of each oscillator (including the
ADCRC oscillator) is displayed in OSCSTAT
(Register 4-4). The oscillators (but not the PLL) may be
explicitly enabled through OSCEN (Register 4-7).

4.3.2.7 HFOR and MFOR Bits

The HFOR and MFOR bits indicate that the HFINTOSC
and MFINTOSC is ready. These clocks are always
valid for use at all times, but only accurate after they are
ready. 

When a new value is loaded into the OSCFRQ register,
the HFOR and MFOR bits will clear, and set again
when the oscillator is ready. During pending OSCFRQ
changes the MFINTOSC clock will stall at a high or a
low state, until the HFINTOSC resumes operation.

4.4 Clock Switching

The system clock source can be switched between
external and internal clock sources via software using
the New Oscillator Source (NOSC) bits of the
OSCCON1 register. The following clock sources can be
selected using the following:

• External oscillator

• Internal Oscillator Block (INTOSC)

4.4.1 NEW OSCILLATOR SOURCE 
(NOSC) AND NEW DIVIDER 
SELECTION REQUEST (NDIV) BITS

The New Oscillator Source (NOSC) and New Divider
Selection Request (NDIV) bits of the OSCCON1
register select the system clock source and frequency
that are used for the CPU and peripherals.

When new values of NOSC and NDIV are written to
OSCCON1, the current oscillator selection will
continue to operate while waiting for the new clock
source to indicate that it is stable and ready. In some
cases, the newly requested source may already be in
use, and is ready immediately. In the case of a
divider-only change, the new and old sources are the
same, so the old source will be ready immediately. The
device may enter Sleep while waiting for the switch as
described in Section 4.4.2 “Clock Switch and
Sleep”.

When the new oscillator is ready, the New Oscillator
Ready (NOSCR) bit of OSCCON3 is set and also the
Clock Switch Interrupt Flag (CSWIF) bit of PIR1 sets. If
Clock Switch Interrupts are enabled (CSWIE = 1), an
interrupt will be generated at that time. The Oscillator
Ready (ORDY) bit of OSCCON3 can also be polled to
determine when the oscillator is ready in lieu of an
interrupt.

If the Clock Switch Hold (CSWHOLD) bit of OSCCON3
is clear, the oscillator switch will occur when the New
Oscillator is Ready bit (NOSCR) is set, and the
interrupt (if enabled) will be serviced at the new
oscillator setting.

If CSWHOLD is set, the oscillator switch is suspended,
while execution continues using the current (old) clock
source. When the NOSCR bit is set, software should:

• Set CSWHOLD = 0 so the switch can complete, 
or

• Copy COSC into NOSC to abandon the switch.

If DOZE is in effect, the switch occurs on the next clock
cycle, whether or not the CPU is operating during that
cycle.

Changing the clock post-divider without changing the
clock source (i.e., changing FOSC from 1 MHz to
2 MHz) is handled in the same manner as a clock
source change, as described previously. The clock
source will already be active, so the switch is relatively
quick. CSWHOLD must be clear (CSWHOLD = 0) for
the switch to complete.

The current COSC and CDIV are indicated in the
OSCCON2 register up to the moment when the switch
actually occurs, at which time OSCCON2 is updated
and ORDY is set. NOSCR is cleared by hardware to
indicate that the switch is complete.

Note: The Clock Switch Enable bit in
Configuration Word 1 can be used to
enable or disable the clock switching
capability. When cleared, the NOSC and
NDIV bits cannot be changed by user
software. When set, writing to NOSC and
NDIV is allowed and would switch the
clock frequency.

Note: The CSWIF interrupt will not wake the
system from Sleep.
 2016-2017 Microchip Technology Inc. Preliminary DS40001842C-page 45
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5.1 Clock Source

The input to the reference clock output can be selected
using the CLKRCLK register.

5.1.1 CLOCK SYNCHRONIZATION

Once the reference clock enable (EN) is set, the mod-
ule is ensured to be glitch-free at start-up.  

When the reference clock output is disabled, the output
signal will be disabled immediately. 

Clock dividers and clock duty cycles can be changed
while the module is enabled, but glitches may occur on
the output. To avoid possible glitches, clock dividers
and clock duty cycles should be changed only when the
CLKREN is clear.

5.2 Programmable Clock Divider

The module takes the clock input and divides it based
on the value of the DIV<2:0> bits of the CLKRCON reg-
ister (Register 5-1). 

The following configurations can be made based on the
DIV<2:0> bits:

• Base FOSC value
• FOSC divided by 2
• FOSC divided by 4
• FOSC divided by 8
• FOSC divided by 16
• FOSC divided by 32
• FOSC divided by 64
• FOSC divided by 128

The clock divider values can be changed while the
module is enabled; however, in order to prevent
glitches on the output, the DIV<2:0> bits should only be
changed when the module is disabled (EN = 0).

5.3 Selectable Duty Cycle

The DC<1:0> bits of the CLKRCON register can be
used to modify the duty cycle of the output clock. A duty
cycle of 25%, 50%, or 75% can be selected for all clock
rates, with the exception of the undivided base FOSC

value.

The duty cycle can be changed while the module is
enabled; however, in order to prevent glitches on the
output, the DC<1:0> bits should only be changed when
the module is disabled (EN = 0).

5.4 Operation in Sleep Mode

The reference clock output module clock is based on
the system clock. When the device goes to Sleep, the
module outputs will remain in their current state. This
will have a direct effect on peripherals using the
reference clock output as an input signal. No change
should occur in the module from entering or exiting
from Sleep.

Note: The DC1 bit is reset to ‘1’. This makes the
default duty cycle 50% and not 0%.
 2016-2017 Microchip Technology Inc. Preliminary DS40001842C-page 53
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11.1.2 CONTROL REGISTERS

Several control registers are used in conjunction with
the TBLRD and TBLWT instructions. These include the
following registers:

• NVMCON1 register

• NVMCON2 register

• TABLAT register

• TBLPTR registers

11.1.2.1 NVMCON1 and NVMCON2 
Registers

The NVMCON1 register (Register 11-1) is the control
register for memory accesses. The NVMCON2 register
is not a physical register; it is used exclusively in the
memory write and erase sequences. Reading
NVMCON2 will read all ‘0’s.

The NVMREG<1:0> control bits determine if the
access will be to Data EEPROM Memory locations.
PFM locations or User IDs, Configuration bits, Rev ID
and Device ID. When NVMREG<1:0> = 00, any
subsequent operations will operate on the Data
EEPROM Memory. When NVMREG<1:0> = 10, any
subsequent operations will operate on the program
memory. When NVMREG<1:0> = x1, any subsequent
operations will operate on the Configuration bits, User
IDs, Rev ID and Device ID.

The FREE bit allows the program memory erase
operation. When the FREE bit is set, an erase
operation is initiated on the next WR command. When
FREE is clear, only writes are enabled. This bit is
applicable only to the PFM and not to data EEPROM.

When set, the WREN bit will allow a program/erase
operation. The WREN bit is cleared on power-up. 

The WRERR bit is set by hardware when the WR bit is
set and cleared when the internal programming timer
expires and the write operation is successfully
complete. 

The WR control bit initiates erase/write cycle operation
when the NVMREG<1:0> bits point to the Data
EEPROM Memory location, and it initiates a write
operation when the NVMREG<1:0> bits point to the
PFM location. The WR bit cannot be cleared by
firmware; it can only be set by firmware. Then the WR
bit is cleared by hardware at the completion of the write
operation.

The NVMIF Interrupt Flag bit of the PIR7 register is set
when the write is complete. The NVMIF flag stays set
until cleared by firmware.

11.1.2.2 TABLAT – Table Latch Register

The Table Latch (TABLAT) is an 8-bit register mapped
into the SFR space. The Table Latch register is used to
hold 8-bit data during data transfers between program
memory and data RAM.

11.1.2.3 TBLPTR – Table Pointer Register

The Table Pointer (TBLPTR) register addresses a byte
within the program memory. The TBLPTR is comprised
of three SFR registers: Table Pointer Upper Byte, Table
Pointer High Byte and Table Pointer Low Byte
(TBLPTRU:TBLPTRH:TBLPTRL). These three
registers join to form a 22-bit wide pointer. The low-
order 21 bits allow the device to address up to 2 Mbytes
of program memory space. The 22nd bit allows access
to the Device ID, the User ID and the Configuration bits.

The Table Pointer register, TBLPTR, is used by the
TBLRD and TBLWT instructions. These instructions can
update the TBLPTR in one of four ways based on the
table operation. These operations on the TBLPTR
affect only the low-order 21 bits.

11.1.2.4 Table Pointer Boundaries

TBLPTR is used in reads, writes and erases of the
Program Flash Memory. 

When a TBLRD is executed, all 22 bits of the TBLPTR
determine which byte is read from program memory
directly into the TABLAT register.

When a TBLWT is executed the byte in the TABLAT
register is written, not to Flash memory but, to a holding
register in preparation for a program memory write. The
holding registers constitute a write block which varies
depending on the device (see Table 11-3).The 3, 4, or
5 LSbs of the TBLPTRL register determine which
specific address within the holding register block is
written to. The MSBs of the Table Pointer have no effect
during TBLWT operations. 

When a program memory write is executed the entire
holding register block is written to the Flash memory at
the address determined by the MSbs of the TBLPTR.
The 3, 4, or 5 LSBs are ignored during Flash memory
writes. For more detail, see Section 11.1.6 “Writing to
Program Flash Memory”.

Figure 11-3 describes the relevant boundaries of
TBLPTR based on Program Flash Memory operations.
 2016-2017 Microchip Technology Inc. Preliminary DS40001842C-page 130
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REGISTER 14-29: IPR7: PERIPHERAL INTERRUPT PRIORITY REGISTER 7

U-0 U-0 U-0 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1

— — — CCP5IP CCP4IP CCP3IP CCP2IP CCP1IP

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-5 Unimplemented: Read as ‘0’

bit 4 CCP5IP: ECCP5 Interrupt Priority bit
1 = High priority
0 = Low priority

bit 3 CCP4IP: ECCP4 Interrupt Priority bit
1 = High priority
0 = Low priority

bit 2 CCP3IP: ECCP3 Interrupt Priority bit
1 = High priority
0 = Low priority

bit 1 CCP2IP: ECCP2 Interrupt Priority bit
1 = High priority
0 = Low priority

bit 0 CCP1IP: ECCP1 Interrupt Priority bit
1 = High priority
0 = Low priority
 2016-2017 Microchip Technology Inc. Preliminary DS40001842C-page 202
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TABLE 16-1: IOC REGISTERS

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

IOCBP IOCBP7 IOCBP6 IOCBP5 IOCBP4 IOCBP3 IOCBP2 IOCBP1 IOCBP0

IOCBN IOCBN7 IOCBN6 IOCBN5 IOCBN4 IOCBN3 IOCBN2 IOCBN1 IOCBN0

IOCBF IOCBF7 IOCBF6 IOCBF5 IOCBF4 IOCBF3 IOCBF2 IOCBF1 IOCBF0

IOCCP IOCCP7 IOCCP6 IOCCP5 IOCCP4 IOCCP3 IOCCP2 IOCCP1 IOCCP0

IOCCN IOCCN7 IOCCN6 IOCCN5 IOCCN4 IOCCN3 IOCCN2 IOCCN1 IOCCN0

IOCCF IOCCF7 IOCCF6 IOCCF5 IOCCF4 IOCCF3 IOCCF2 IOCCF1 IOCCF0

IOCEP IOCEP7 IOCEP6 IOCEP5 IOCEP4 IOCEP3 IOCEP2 IOCEP1 IOCEP0

IOCEN IOCEN7 IOCEN6 IOCEN5 IOCEN4 IOCEN3 IOCEN2 IOCEN1 IOCEN0

IOCEF IOCEF7 IOCEF6 IOCEF5 IOCEF4 IOCEF3 IOCEF2 IOCEF1 IOCEF0

IOCGP — — IOCGP5(1) — — — — —

IOCGN — — IOCGN5(1) — — — — —

IOCGF — — IOCGF5(1) — — — — —

Note 1: If MCLRE = 1 or LVP = 1, RG5 port functionality is disabled and IOC on RG5 is not available.

TABLE 16-2: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPT-ON-CHANGE

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Register 
on Page

INTCON GIE/GIEH PEIE/GIEL IPEN ― INT3EDG INT2EDG INT1EDG INT0EDG 173

IOCxF IOCxF7 IOCxF6 IOCxF5 IOCxF4 IOCxF3 IOCxF2 IOCxF1 IOCxF0 220

IOCxN IOCxN7 IOCxN6 IOCxN5 IOCxN4 IOCxN3 IOCxN2 IOCxN1 IOCxN0 220

IOCxP IOCxP7 IOCxP6 IOCxP5 IOCxP4 IOCxP3 IOCxP2 IOCxP1 IOCxP0 220

Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by interrupt-on-change.
 2016-2017 Microchip Technology Inc. Preliminary DS40001842C-page 221
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20.5.4 LEVEL-TRIGGERED HARDWARE 
LIMIT MODE

In the Level-Triggered Hardware Limit Timer modes the
counter is reset by high or low levels of the external
signal TMRx_ers, as shown in Figure 20-7. Selecting
MODE<4:0> = 00110 will cause the timer to reset on a
low level external signal. Selecting
MODE<4:0> = 00111 will cause the timer to reset on a
high level external signal. In the example, the counter
is reset while TMRx_ers = 1. ON is controlled by BSF
and BCF instructions. When ON = 0 the external signal
is ignored.

When the CCP uses the timer as the PWM time base
then the PWM output will be set high when the timer
starts counting and then set low only when the timer
count matches the CCPRx value. The timer is reset
when either the timer count matches the PRx value or
two clock periods after the external Reset signal goes
true and stays true. 

The timer starts counting, and the PWM output is set
high, on either the clock following the PRx match or two
clocks after the external Reset signal relinquishes the
Reset. The PWM output will remain high until the timer
counts up to match the CCPRx pulse width value. If the
external Reset signal goes true while the PWM output
is high then the PWM output will remain high until the
Reset signal is released allowing the timer to count up
to match the CCPRx value.

FIGURE 20-7: LEVEL-TRIGGERED HARDWARE LIMIT MODE TIMING DIAGRAM
(MODE = 00111)

Rev. 10-000198B
5/30/2014

TMRx_clk

ON

PRx

TMRx

BSF BCF BSF

5

0 1 2 0 1 2 3 4 5 1 2 3

MODE 0b00111

TMRx_ers

0 0 4

TMRx_postscaled

5 0

PWM Duty 
Cycle 3

PWM Output

Instruction(1)

Note 1:   BSF and BCF represent Bit-Set File and Bit-Clear File instructions executed by the CPU to 
set or clear the ON bit of TxCON. CPU execution is asynchronous to the timer clock input.
 2016-2017 Microchip Technology Inc. Preliminary DS40001842C-page 261
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TABLE 22-4: SUMMARY OF REGISTERS ASSOCIATED WITH PWM

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Register 
on Page

CCPTMRS1 — — P7TSEL<1:0> P6TSEL<1:0> C5TSEL<1:0> 298

PWM6CON EN — OUT POL — — — — 297

PWM6DCH DC<7:0> 299

PWM6DCL PWM6DC<9:8> — — — — — — 299

PWM7CON EN — PWM7OUT PWM7POL — — — — 297

PWM7DCH PWM7DCH<7:0> 299

PWM7DCL PWM7DCL<7:6> — — — — — — 299

INTCON GIE/GIEH PEIE/GIEL IPEN — INT3EDG INT2EDG INT1EDG INT0EDG 173

PIE5 TMR8IE TMR7IE TMR6IE TMR5IE TMR4IE TMR3IE TMR2IE TMR1IE 190

PIR5 TMR8IF TMR7IF TMR6IF TMR5IF TMR4IF TMR3IF TMR2IF TMR1IF 179

IPR5 TMR8IP TMR7IP TMR6IP TMR5IP TMR4IP TMR3IP TMR2IP TMR1IP 200

RxyPPS — — RxyPPS<5:0> 228

TMR2 TMR2<7:0> 255*

PR2 PR2<7:0> 255*

T2CON T2ON T2CKPS<2:0> T2OUTPS<3:0> 273

T2HLT T2PSYNC T2CPOL T2CSYNC T2MODE<4:0> 274

T2CLKCON — — — — T2CS<3:0> 275

T2RST — — — — T2RSEL<3:0> 276

PMD4 — PWM7MD PWM6MD CCP5MD CCP4MD CCP3MD CCP2MD CCP1MD 70

Legend:  - = Unimplemented locations, read as ‘0’, u = unchanged, x = unknown. Shaded cells are not used by the PWM.
* Not a physical location.
 2016-2017 Microchip Technology Inc. Preliminary DS40001842C-page 300
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25.7.10 GATED COUNTER MODE

This mode counts pulses on the SMTx_signal input,
gated by the SMTxWIN input. It begins incrementing
the timer upon seeing a rising edge of the SMTxWIN
input and updates the SMTxCPW register upon a fall-
ing edge on the SMTxWIN input. See Figure 25-19
and Figure 25-20.
 2016-2017 Microchip Technology Inc. Preliminary DS40001842C-page 374
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27.5 SPI Mode Operation

Transmissions involve two shift registers, eight bits in
size, one in the master and one in the slave. With either
the master or the slave device, data is always shifted
out one bit at a time, with the Most Significant bit (MSb)
shifted out first. At the same time, a new Least
Significant bit (LSb) is shifted into the same register.

Figure 27-3 shows a typical connection between two
processors configured as master and slave devices.

Data is shifted out of both shift registers on the
programmed clock edge and latched on the opposite
edge of the clock.

The master device transmits information out on its SDO
output pin which is connected to, and received by, the
slave’s SDI input pin. The slave device transmits infor-
mation out on its SDO output pin, which is connected
to, and received by, the master’s SDI input pin.

To begin communication, the master device first sends
out the clock signal. Both the master and the slave
devices should be configured for the same clock polar-
ity. 

The master device starts a transmission by sending out
the MSb from its shift register. The slave device reads
this bit from that same line and saves it into the LSb
position of its shift register. 

During each SPI clock cycle, a full-duplex data
transmission occurs. This means that while the master
device is sending out the MSb from its shift register (on
its SDO pin) and the slave device is reading this bit and
saving it as the LSb of its shift register, that the slave
device is also sending out the MSb from its shift register
(on its SDO pin) and the master device is reading this
bit and saving it as the LSb of its shift register.

After eight bits have been shifted out, the master and
slave have exchanged register values.

If there is more data to exchange, the shift registers are
loaded with new data and the process repeats itself.

Whether the data is meaningful or not (dummy data),
depends on the application software. This leads to
three scenarios for data transmission:

• Master sends useful data and slave sends dummy 
data.

• Master sends useful data and slave sends useful 
data.

• Master sends dummy data and slave sends useful 
data.

Transmissions may involve any number of clock
cycles. When there is no more data to be transmitted,
the master stops sending the clock signal and it
deselects the slave.

Every slave device connected to the bus that has not
been selected through its slave select line must disre-
gard the clock and transmission signals and must not
transmit out any data of its own.

When initializing the SPI, several options need to be
specified. This is done by programming the appropriate
control bits (SSPxCON1<5:0> and SSPxSTAT<7:6>).
These control bits allow the following to be specified:

• Master mode (SCK is the clock output)

• Slave mode (SCK is the clock input)

• Clock Polarity (Idle state of SCK)

• Data Input Sample Phase (middle or end of data 
output time)

• Clock Edge (output data on rising/falling edge of 
SCK)

• Clock Rate (Master mode only)

• Slave Select mode (Slave mode only)

To enable the serial port, SSP Enable bit, SSPEN of the
SSPxCON1 register, must be set. To reset or reconfig-
ure SPI mode, clear the SSPEN bit, re-initialize the
SSPxCONx registers and then set the SSPEN bit. This
configures the SDI, SDO, SCK and SS pins as serial
port pins. For the pins to behave as the serial port
function, some must have their data direction bits (in
the TRIS register) appropriately programmed as
follows:

• SDI must have corresponding TRIS bit set 

• SDO must have corresponding TRIS bit cleared

• SCK (Master mode) must have corresponding 
TRIS bit cleared

• SCK (Slave mode) must have corresponding 
TRIS bit set 

• SS must have corresponding TRIS bit set 

Any serial port function that is not desired may be
overridden by programming the corresponding data
direction (TRIS) register to the opposite value.

The MSSP consists of a transmit/receive shift register
(SSPSR) and a buffer register (SSPxBUF). The
SSPSR shifts the data in and out of the device, MSb
first. The SSPxBUF holds the data that was written to
the SSPSR until the received data is ready. Once the
eight bits of data have been received, that byte is
moved to the SSPxBUF register. Then, the Buffer Full
Detect bit, BF of the SSPxSTAT register, and the inter-
rupt flag bit, SSPxIF, are set. This double-buffering of
the received data (SSPxBUF) allows the next byte to
start reception before reading the data that was just
received. Any write to the SSPxBUF register during
transmission/reception of data will be ignored and the
write collision detect bit, WCOL of the SSPxCON1 reg-
ister, will be set. User software must clear the WCOL bit
to allow the following write(s) to the SSPxBUF register
to complete successfully. 
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27.9.8 GENERAL CALL ADDRESS 
SUPPORT

The addressing procedure for the I2C bus is such that
the first byte after the Start condition usually deter-
mines which device will be the slave addressed by the
master device. The exception is the general call
address which can address all devices. When this
address is used, all devices should, in theory, respond
with an acknowledge.

The general call address is a reserved address in the
I2C protocol, defined as address 0x00. When the
GCEN bit of the SSPxCON2 register is set, the slave
module will automatically ACK the reception of this
address regardless of the value stored in SSPxADD.
After the slave clocks in an address of all zeros with
the R/W bit clear, an interrupt is generated and slave
software can read SSPxBUF and respond.
Figure 27-24 shows a general call reception
sequence.

In 10-bit Address mode, the UA bit will not be set on
the reception of the general call address. The slave
will prepare to receive the second byte as data, just as
it would in 7-bit mode.

If the AHEN bit of the SSPxCON3 register is set, just
as with any other address reception, the slave
hardware will stretch the clock after the eighth falling
edge of SCL. The slave must then set its ACKDT
value and release the clock with communication
progressing as it would normally.

27.9.9 SSP MASK REGISTER

An SSP Mask (SSPxMSK) register (Register 27-12) is
available in I2C Slave mode as a mask for the value
held in the SSPSR register during an address
comparison operation. A zero (‘0’) bit in the SSPxMSK
register has the effect of making the corresponding bit
of the received address a “don’t care”.

This register is reset to all ‘1’s upon any Reset
condition and, therefore, has no effect on standard
SSP operation until written with a mask value.

The SSP Mask register is active during:

• 7-bit Address mode: address compare of A<7:1>.

10-bit Address mode: address compare of A<7:0>
only. The SSP mask has no effect during the reception
of the first (high) byte of the address.

FIGURE 27-24: SLAVE MODE GENERAL CALL ADDRESS SEQUENCE

SDA

SCL

S

SSPxIF

BF (SSPxSTAT<0>)

Cleared by software

SSPxBUF is read

R/W = 0

ACKGeneral Call Address

Address is compared to General Call Address

Receiving Data ACK

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

D7 D6 D5 D4 D3 D2 D1 D0

after ACK, set interrupt

GCEN (SSPxCON2<7>)

’1’
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27.10.5 I2C MASTER MODE REPEATED 
START CONDITION TIMING

A Repeated Start condition (Figure 27-27) occurs when
the RSEN bit of the SSPxCON2 register is pro-
grammed high and the master state machine is no lon-
ger active. When the RSEN bit is set, the SCL pin is
asserted low. When the SCL pin is sampled low, the
Baud Rate Generator is loaded and begins counting.
The SDA pin is released (brought high) for one Baud
Rate Generator count (TBRG). When the Baud Rate
Generator times out, if SDA is sampled high, the SCL
pin will be deasserted (brought high). When SCL is
sampled high, the Baud Rate Generator is reloaded
and begins counting. SDA and SCL must be sampled
high for one TBRG. This action is then followed by
assertion of the SDA pin (SDA = 0) for one TBRG while
SCL is high. SCL is asserted low. Following this, the
RSEN bit of the SSPxCON2 register will be automati-
cally cleared and the Baud Rate Generator will not be
reloaded, leaving the SDA pin held low. As soon as a
Start condition is detected on the SDA and SCL pins,
the S bit of the SSPxSTAT register will be set. The
SSPxIF bit will not be set until the Baud Rate Generator
has timed out.

27.10.6 I2C MASTER MODE 
TRANSMISSION

Transmission of a data byte, a 7-bit address or the
other half of a 10-bit address is accomplished by simply
writing a value to the SSPxBUF register. This action will
set the Buffer Full flag bit, BF, and allow the Baud Rate
Generator to begin counting and start the next trans-
mission. Each bit of address/data will be shifted out
onto the SDA pin after the falling edge of SCL is
asserted. SCL is held low for one Baud Rate Generator
rollover count (TBRG). Data should be valid before SCL
is released high. When the SCL pin is released high, it
is held that way for TBRG. The data on the SDA pin
must remain stable for that duration and some hold
time after the next falling edge of SCL. After the eighth
bit is shifted out (the falling edge of the eighth clock),
the BF flag is cleared and the master releases SDA.
This allows the slave device being addressed to
respond with an ACK bit during the ninth bit time if an
address match occurred, or if data was received prop-
erly. The status of ACK is written into the ACKSTAT bit
on the rising edge of the ninth clock. If the master
receives an Acknowledge, the Acknowledge Status bit,
ACKSTAT, is cleared. If not, the bit is set. After the ninth
clock, the SSPxIF bit is set and the master clock (Baud
Rate Generator) is suspended until the next data byte
is loaded into the SSPxBUF, leaving SCL low and SDA
unchanged (Figure 27-28).

FIGURE 27-27: REPEATED START CONDITION WAVEFORM   

Note 1: If RSEN is programmed while any other
event is in progress, it will not take effect.

2: A bus collision during the Repeated Start
condition occurs if: 

• SDA is sampled low when SCL 
goes from low-to-high.

• SCL goes low before SDA is 
asserted low. This may indicate 
that another master is attempting 
to transmit a data ‘1’. 

SDA

SCL

Repeated Start

Write to SSPxCON2 

Write to SSPxBUF occurs here

At completion of Start bit, 
hardware clears the RSEN bit

1st bit

S bit set by hardware

TBRG

TBRG

SDA = 1, SDA = 1, 

SCL (no change) SCL = 1

occurs here

TBRG TBRG TBRG

     and sets SSPxIF

Sr
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SDA

SCL

SSPxIF 

BF (SSPxSTAT<0>)

SEN

A7 A6 A5 A4 A3 A2 A1 ACK = 0 D7 D6 D5 D4 D3 D2 D1 D

Transmitting Data or Second HalfR/W = 0Transmit Address to Slave

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8

Cleared by software service routine

SSPxBUF is written by software

from SSP interrupt

After Start condition, SEN cleared by hardware

S

SSPxBUF written with 7-bit address and R/W
start transmit

SCL held low
while CPU

responds to SSPxIF

SEN = 0

of 10-bit Address

Write SSPxCON2<0> SEN = 1
Start condition begins
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27.10.13.1 Bus Collision During a Start 
Condition

During a Start condition, a bus collision occurs if:

a) SDA or SCL are sampled low at the beginning of
the Start condition (Figure 27-33).

b) SCL is sampled low before SDA is asserted low
(Figure 27-34).

During a Start condition, both the SDA and the SCL
pins are monitored. 

If the SDA pin is already low, or the SCL pin is already
low, then all of the following occur:

• the Start condition is aborted, 

• the BCLxIF flag is set and

•  the MSSP module is reset to its Idle state 
(Figure 27-33). 

The Start condition begins with the SDA and SCL pins
deasserted. When the SDA pin is sampled high, the
Baud Rate Generator is loaded and counts down. If the
SCL pin is sampled low while SDA is high, a bus
collision occurs because it is assumed that another
master is attempting to drive a data ‘1’ during the Start
condition. 

If the SDA pin is sampled low during this count, the
BRG is reset and the SDA line is asserted early
(Figure 27-35). If, however, a ‘1’ is sampled on the SDA
pin, the SDA pin is asserted low at the end of the BRG
count. The Baud Rate Generator is then reloaded and
counts down to zero; if the SCL pin is sampled as ‘0’
during this time, a bus collision does not occur. At the
end of the BRG count, the SCL pin is asserted low.      

FIGURE 27-33: BUS COLLISION DURING START CONDITION (SDA ONLY)      

Note: The reason that bus collision is not a
factor during a Start condition is that no
two bus masters can assert a Start condi-
tion at the exact same time. Therefore,
one master will always assert SDA before
the other. This condition does not cause a
bus collision because the two masters
must be allowed to arbitrate the first
address following the Start condition. If the
address is the same, arbitration must be
allowed to continue into the data portion,
Repeated Start or Stop conditions.

SDA

SCL

SEN

SDA sampled low before 

SDA goes low before the SEN bit is set.

S bit and SSPxIF set because

SSPx module reset into Idle state.
SEN cleared automatically because of bus collision. 

S bit and SSPxIF set because

Set SEN, enable Start
condition if SDA = 1, SCL = 1

SDA = 0, SCL = 1.

BCLxIF

S

SSPxIF

SDA = 0, SCL = 1.

SSPxIF and BCLxIF are
cleared by software

SSPxIF and BCLxIF are
cleared by software

Set BCLxIF,

Start condition. Set BCLxIF.
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REGISTER 28-3: BAUDxCON: BAUD RATE CONTROL REGISTER

R-0/0 R-1/1 U-0 R/W-0/0 R/W-0/0 U-0 R/W-0/0 R/W-0/0

ABDOVF RCIDL — SCKP BRG16 — WUE ABDEN

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7 ABDOVF: Auto-Baud Detect Overflow bit

Asynchronous mode:
1 = Auto-baud timer overflowed
0 = Auto-baud timer did not overflow
Synchronous mode:
Don’t care

bit 6 RCIDL: Receive Idle Flag bit

Asynchronous mode:
1 = Receiver is Idle
0 = Start bit has been received and the receiver is receiving
Synchronous mode:
Don’t care

bit 5 Unimplemented: Read as ‘0’

bit 4 SCKP: Synchronous Clock Polarity Select bit

Asynchronous mode:

1 = Idle state for transmit (TX) is a low level (transmit data inverted)
0 = Idle state for transmit (TX) is a high level (transmit data is non-inverted)

Synchronous mode:
1 = Data is clocked on rising edge of the clock
0 = Data is clocked on falling edge of the clock

bit 3 BRG16: 16-bit Baud Rate Generator bit

1 = 16-bit Baud Rate Generator is used
0 = 8-bit Baud Rate Generator is used

bit 2 Unimplemented: Read as ‘0’

bit 1 WUE: Wake-up Enable bit

Asynchronous mode:

1 = Receiver is waiting for a falling edge. No character will be received, byte RCxIF will be set. WUE
will automatically clear after RCxIF is set.

0 = Receiver is operating normally
Synchronous mode:

Don’t care

bit 0 ABDEN: Auto-Baud Detect Enable bit

Asynchronous mode:

1 = Auto-Baud Detect mode is enabled (clears when auto-baud is complete)
0 = Auto-Baud Detect mode is disabled
Synchronous mode:
Don’t care
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29.3 Register Definitions: FVR Control

      

REGISTER 29-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

R/W-0/0 R-q/q R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

FVREN FVRRDY(1) TSEN(3) TSRNG(3) CDAFVR<1:0> ADFVR<1:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition

bit 7 FVREN: Fixed Voltage Reference Enable bit
1 = Fixed Voltage Reference is enabled
0 = Fixed Voltage Reference is disabled

bit 6 FVRRDY: Fixed Voltage Reference Ready Flag bit(1)

1 = Fixed Voltage Reference output is ready for use
0 = Fixed Voltage Reference output is not ready or not enabled

bit 5 TSEN: Temperature Indicator Enable bit(3)

1 = Temperature Indicator is enabled
0 = Temperature Indicator is disabled

bit 4 TSRNG: Temperature Indicator Range Selection bit(3)

1 = VOUT = VDD - 4VT (High Range)
0 = VOUT = VDD - 2VT (Low Range)

bit 3-2 CDAFVR<1:0>: Comparator FVR Buffer Gain Selection bits
11 = Comparator FVR Buffer Gain is 4x, (4.096V)(2)

10 = Comparator FVR Buffer Gain is 2x, (2.048V)(2)

01 = Comparator FVR Buffer Gain is 1x, (1.024V)
00 = Comparator FVR Buffer is off

bit 1-0 ADFVR<1:0>: ADC FVR Buffer Gain Selection bit
11 = ADC FVR Buffer Gain is 4x, (4.096V)(2)

10 = ADC FVR Buffer Gain is 2x, (2.048V)(2)

01 = ADC FVR Buffer Gain is 1x, (1.024V)
00 = ADC FVR Buffer is off

Note 1: FVRRDY is always ‘1’.
2: Fixed Voltage Reference output cannot exceed VDD.

3: See Section 30.0 “Temperature Indicator Module” for additional information.

TABLE 29-1: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Register 
on page

FVRCON FVREN FVRRDY TSEN TSRNG CDAFVR<1:0> ADFVR<1:0> 479

ADCON0 ADON ADCONT — ADCS — ADFM — ADGO 504

CMxNCH — — — — — CxNCH<2:0> 525

CMxPCH — — — — — CxPCH<2:0> 526

DAC1CON1 — — — DAC1R<4:0> 485

Legend: — = Unimplemented location, read as ‘0’. Shaded cells are not used with the Fixed Voltage Reference.
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REGISTER 32-13: ADCNT: ADC REPEAT COUNTER REGISTER

R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u

ADCNT<7:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 ADCNT<7:0>: ADC Repeat Count bits
Determines the number of times that the ADC is triggered before the threshold is checked when the
computation is Low-pass Filter, Burst Average, or Average modes. See Table 32-2 for more details.

REGISTER 32-14: ADFLTRH: ADC FILTER HIGH BYTE REGISTER

R-x R-x R-x R-x R-x R-x R-x R-x

ADFLTR<15:8>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 ADFLTR<15:8>: ADC Filter Output Most Significant bits
In Accumulate, Average, and Burst Average mode, this is equal to ADACC right shifted by the ADCRS
bits of ADCON2. In LPF mode, this is the output of the Low-pass Filter.

REGISTER 32-15: ADFLTRL: ADC FILTER LOW BYTE REGISTER

R-x R-x R-x R-x R-x R-x R-x R-x

ADFLTR<7:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 ADFLTR<7:0>: ADC Filter Output Least Significant bits
In Accumulate, Average, and Burst Average mode, this is equal to ADACC right shifted by the ADCRS
bits of ADCON2. In LPF mode, this is the output of the Low-pass Filter.
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36.0 INSTRUCTION SET SUMMARY

PIC18(L)F6xK40 devices incorporate the standard set of
75 PIC18 core instructions, as well as an extended set
of eight new instructions, for the optimization of code that
is recursive or that utilizes a software stack. The
extended set is discussed later in this section.

36.1 Standard Instruction Set

The standard PIC18 instruction set adds many
enhancements to the previous PIC® MCU instruction
sets, while maintaining an easy migration from these
PIC® MCU instruction sets. Most instructions are a
single program memory word (16 bits), but there are
four instructions that require two program memory
locations. 

Each single-word instruction is a 16-bit word divided
into an opcode, which specifies the instruction type and
one or more operands, which further specify the
operation of the instruction. 

The instruction set is highly orthogonal and is grouped
into four basic categories:

• Byte-oriented operations

• Bit-oriented operations

• Literal operations

• Control operations

The PIC18 instruction set summary in Table 36-2 lists
byte-oriented, bit-oriented, literal and control
operations. Table 36-1 shows the opcode field
descriptions.

Most byte-oriented instructions have three operands: 

1. The file register (specified by ‘f’) 
2. The destination of the result (specified by ‘d’) 
3. The accessed memory (specified by ‘a’) 

The file register designator ‘f’ specifies which file
register is to be used by the instruction. The destination
designator ‘d’ specifies where the result of the opera-
tion is to be placed. If ‘d’ is zero, the result is placed in
the WREG register. If ‘d’ is one, the result is placed in
the file register specified in the instruction.

All bit-oriented instructions have three operands:

1. The file register (specified by ‘f’) 
2. The bit in the file register (specified by ‘b’) 
3. The accessed memory (specified by ‘a’) 

The bit field designator ‘b’ selects the number of the bit
affected by the operation, while the file register
designator ‘f’ represents the number of the file in which
the bit is located.

The literal instructions may use some of the following
operands:

• A literal value to be loaded into a file register 
(specified by ‘k’) 

• The desired FSR register to load the literal value 
into (specified by ‘f’)

• No operand required 
(specified by ‘—’)

The control instructions may use some of the following
operands:

• A program memory address (specified by ‘n’)
• The mode of the CALL or RETURN instructions 

(specified by ‘s’)
• The mode of the table read and table write 

instructions (specified by ‘m’)
• No operand required 

(specified by ‘—’)

All instructions are a single word, except for four
double-word instructions. These instructions were
made double-word to contain the required information
in 32 bits. In the second word, the four MSbs are ‘1’s. If
this second word is executed as an instruction (by
itself), it will execute as a NOP. 

All single-word instructions are executed in a single
instruction cycle, unless a conditional test is true or the
program counter is changed as a result of the instruc-
tion. In these cases, the execution takes two instruction
cycles, with the additional instruction cycle(s) executed
as a NOP.

The double-word instructions execute in two instruction
cycles.

One instruction cycle consists of four oscillator periods.
Thus, for an oscillator frequency of 4 MHz, the normal
instruction execution time is 1 s. If a conditional test is
true, or the program counter is changed as a result of
an instruction, the instruction execution time is 2 s.
Two-word branch instructions (if true) would take 3 s.

Figure 36-1 shows the general formats that the instruc-
tions can have. All examples use the convention ‘nnh’
to represent a hexadecimal number. 

The Instruction Set Summary, shown in Table 36-2,
lists the standard instructions recognized by the
Microchip Assembler (MPASMTM). 

Section 36.1.1 “Standard Instruction Set” provides
a description of each instruction.
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ADDWF
ADD W to Indexed
(Indexed Literal Offset mode)

Syntax: ADDWF      [k] {,d}

Operands: 0  k  95
d  [0,1]

Operation: (W) + ((FSR2) + k)  dest

Status Affected: N, OV, C, DC, Z

Encoding: 0010 01d0 kkkk kkkk

Description: The contents of W are added to the 
contents of the register indicated by 
FSR2, offset by the value ‘k’. 
If ‘d’ is ‘0’, the result is stored in W. If ‘d’ 
is ‘1’, the result is stored back in 
register ‘f’ (default). 

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read ‘k’ Process 
Data

Write to
destination

Example: ADDWF [OFST] , 0

Before Instruction

W = 17h
OFST = 2Ch
FSR2 = 0A00h
Contents
of 0A2Ch = 20h

After Instruction

W = 37h
Contents
of 0A2Ch = 20h

BSF
Bit Set Indexed 
(Indexed Literal Offset mode)

Syntax: BSF   [k], b

Operands: 0  f  95
0  b  7

Operation: 1  ((FSR2) + k)<b>

Status Affected: None

Encoding: 1000 bbb0 kkkk kkkk

Description: Bit ‘b’ of the register indicated by FSR2, 
offset by the value ‘k’, is set.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process 
Data

Write to
destination

Example: BSF [FLAG_OFST], 7

Before Instruction
FLAG_OFST = 0Ah
FSR2 = 0A00h
Contents 
of 0A0Ah = 55h

After Instruction
Contents
of 0A0Ah = D5h

SETF
Set Indexed
(Indexed Literal Offset mode)

Syntax: SETF   [k]

Operands: 0  k  95

Operation: FFh  ((FSR2) + k)

Status Affected: None

Encoding: 0110 1000 kkkk kkkk

Description: The contents of the register indicated by 
FSR2, offset by ‘k’, are set to FFh. 

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read ‘k’ Process 
Data

Write
register

Example: SETF [OFST]

Before Instruction
OFST = 2Ch
FSR2 = 0A00h
Contents
of 0A2Ch = 00h

After Instruction
Contents
of 0A2Ch = FFh
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