
STMicroelectronics - STM32F723IEK6 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor ARM® Cortex®-M7

Core Size 32-Bit Single-Core

Speed 216MHz

Connectivity CANbus, EBI/EMI, I²C, IrDA, LINbus, MMC/SD, QSPI, SAI, SPI, UART/USART, USB

Peripherals Brown-out Detect/Reset, DMA, I²S, POR, PWM, WDT

Number of I/O 138

Program Memory Size 512KB (512K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 256K x 8

Voltage - Supply (Vcc/Vdd) 1.7V ~ 3.6V

Data Converters A/D 24x12b; D/A 2x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 176-UFBGA

Supplier Device Package 176-UFBGA (10x10)

Purchase URL https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f723iek6

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/stm32f723iek6-4392995
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Contents PM0253

4/252 DocID028474 Rev 3

3.5 General data processing instructions . 85

3.5.1 ADD, ADC, SUB, SBC, and RSB . 87

3.5.2 AND, ORR, EOR, BIC, and ORN . 89

3.5.3 ASR, LSL, LSR, ROR, and RRX . 90

3.5.4 CLZ . 91

3.5.5 CMP and CMN . 92

3.5.6 MOV and MVN . 93

3.5.7 MOVT . 94

3.5.8 REV, REV16, REVSH, and RBIT . 95

3.5.9 SADD16 and SADD8 . 96

3.5.10 SHADD16 and SHADD8 . 97

3.5.11 SHASX and SHSAX . 98

3.5.12 SHSUB16 and SHSUB8 . 99

3.5.13 SSUB16 and SSUB8 . 100

3.5.14 SASX and SSAX . 101

3.5.15 TST and TEQ . 102

3.5.16 UADD16 and UADD8 . 103

3.5.17 UASX and USAX . 104

3.5.18 UHADD16 and UHADD8 . 105

3.5.19 UHASX and UHSAX . 106

3.5.20 UHSUB16 and UHSUB8 . 107

3.5.21 SEL . 108

3.5.22 USAD8 . 108

3.5.23 USADA8 . 109

3.5.24 USUB16 and USUB8 . 110

3.6 Multiply and divide instructions .111

3.6.1 MUL, MLA, and MLS . 112

3.6.2 UMULL, UMAAL, UMLAL . 113

3.6.3 SMLA and SMLAW . 115

3.6.4 SMLAD . 116

3.6.5 SMLAL and SMLALD . 117

3.6.6 SMLSD and SMLSLD . 119

3.6.7 SMMLA and SMMLS . 121

3.6.8 SMMUL . 122

3.6.9 SMUAD and SMUSD . 123

3.6.10 SMUL and SMULW . 124

3.6.11 UMULL, UMLAL, SMULL, and SMLAL . 126

DocID028474 Rev 3 19/252

PM0253 The Cortex-M7 processor

51

2 The Cortex-M7 processor

2.1 Programmers model

This section describes the Cortex®-M7 programmers model. In addition to the individual
core register descriptions, it contains information about the processor modes and privilege
levels for software execution and stacks.

2.1.1 Processor mode and privilege levels for software execution

The processor modes are:

The privilege levels for software execution are:

In Thread mode, the CONTROL register controls whether software execution is privileged or
unprivileged, see CONTROL register on page 27. In Handler mode, software execution is
always privileged.

Only privileged software can write to the CONTROL register to change the privilege level for
software execution in Thread mode. Unprivileged software can use the SVC instruction to
make a supervisor call to transfer control to privileged software.

2.1.2 Stacks

The processor uses a full descending stack. This means the stack pointer holds the address
of the last stacked item in memory. When the processor pushes a new item onto the stack, it
decrements the stack pointer and then writes the item to the new memory location. The
processor implements two stacks, the main stack and the process stack, with a pointer for
each held in independent registers, see Stack Pointer on page 21.

In Thread mode, the CONTROL register controls whether the processor uses the main
stack or the process stack, see CONTROL register on page 27. In Handler mode, the
processor always uses the main stack. The options for processor operations are:

Thread mode Executes application software. The processor enters Thread mode
when it comes out of reset.

Handler mode Handles exceptions. The processor returns to Thread mode when it has
finished all exception processing.

Unprivileged The software:

• Has limited access to system registers using the MSR and MRS
instructions, and cannot use the CPS instruction to mask interrupts.

• Cannot access the system timer, NVIC, or system control block.

• Might have restricted access to memory or peripherals.

Unprivileged software executes at the unprivileged level.

Privileged The software can use all the instructions and has access to all
resources.

Privileged software executes at the privileged level.

The Cortex-M7 processor PM0253

24/252 DocID028474 Rev 3

Execution Program Status register

The EPSR contains the Thumb state bit, and the execution state bits for either the:

• If-Then (IT) instruction.

• Interruptible-Continuable Instruction (ICI) field for an interrupted load multiple or store
multiple instruction.

See the register summary in Table 6 on page 24 for the EPSR attributes. The bit
assignments are

Table 5. IPSR bit assignments

Bits Name Function

[31:9] - Reserved

[8:0] ISR_NUMBER

This is the number of the current exception:

0 = Thread mode.

1 = Reserved.

2 = NMI.

3 = HardFault.

4 = MemManage.

5 = BusFault

6 = UsageFault

7-10 = Reserved

11 = SVCall.

12 = Reserved for debug

13 = Reserved

14 = PendSV.

15 = SysTick.

16 = IRQ0.

.

.

256 = IRQ239.

see Exception types on page 39 for more information.

Table 6. EPSR bit assignments

Bits Name Function

[31:27] - Reserved.

[26:25], [15:10] ICI
Interruptible-continuable instruction bits, see Interruptible-continuable
instructions on page 25.

[26:25], [15:10] IT
Indicates the execution state bits of the IT instruction, see IT on
page 148.

[24] T Thumb state bit, see Thumb state.

[23:16] - Reserved.

[9:0] - Reserved.

DocID028474 Rev 3 59/252

PM0253 The Cortex-M7 instruction set

182

VCMPE.F<32|64>

<Sd|Dd>, <<Sm|Dm> |
#0.0>

Compare two floating-point
registers, or one floating-
point register and zero with
Invalid Operation check

FPSCR 3.11.3 on page 154

VCVT
F<32|64>.<S|U>,
<16|32>

Convert from floating-point
to fixed point

- 3.11.5 on page 156

VCVT
<S|U>,
<16|32>.F<32|64>

Convert from fixed point to
floating-point

3.11.5 on page 156

VCVT.S32.F<32|64>
<Sd|Dd>, <Sm|Dm> Convert from floating-point

to integer
- 3.11.4 on page 155

VCVT<B|T>.F<32|64
>.F16

<Sd|Dd>, Sm Convert half-precision value
to single-precision or
double-precision

- 3.11.6 on page 157

VCVTA.F<32|64>

<Sd|Dd>, <Sm|Dm> Convert from floating-point
to integer with directed
rounding to nearest ties
away

- 3.11.33 on page 173

VCVTM.F<32|64>

<Sd|Dd>, <Sm|Dm> Convert from floating-point
to integer with directed
rounding towards minus
infinity

- 3.11.33 on page 173

VCVTN.F<32|64>
<Sd|Dd>, <Sm|Dm> Convert from floating-point

to integer with directed
rounding to nearest even

- 3.11.33 on page 173

VCVTP.F<32|64>

<Sd|Dd>, <Sm|Dm> Convert from floating-point
to integer with directed
rounding towards plus
infinity

- 3.11.33 on page 173

VCVTR.S32.F<32|64
>

<Sd|Dd>, <Sm|Dm> Convert between floating-
point and integer with
rounding.

FPSCR 3.11.4 on page 155

VCVT<B|T>.F16.F<3
2|64>

Sd, <Sm|Dm> Convert single-precision or
double precision register to
half-precision

- 3.11.5 on page 156

VDIV.F<32|64>
{<Sd|Dd>,} <Sn|Dn>,
<Sm|Dm>

Floating-point Divide - 3.11.7 on page 157

VFMA.F<32|64>
{<Sd|Dd>,} <Sn|Dn>,
<Sm|Dm>

Floating-point Fused
Multiply Accumulate

- 3.11.8 on page 158

VFMS.F<32|64>
{<Sd|Dd>,} <Sn|Dn>,
<Sm|Dm>

Floating-point Fused
Multiply Subtract

- 3.11.8 on page 158

VFNMA.F<32|64>
{<Sd|Dd>,} <Sn|Dn>,
<Sm|Dm>

Floating-point Fused
Negate Multiply Accumulate

- 3.11.9 on page 159

VFNMS.F<32|64>
{<Sd|Dd>,} <Sn|Dn>,
<Sm|Dm>

Floating-point Fused
Negate Multiply Subtract

- 3.11.9 on page 159

Table 22. Cortex®-M7 instructions (continued)

Mnemonic Operands Brief description Flags Page

The Cortex-M7 instruction set PM0253

70/252 DocID028474 Rev 3

Condition code suffixes

The instructions that can be conditional have an optional condition code, shown in syntax
descriptions as {cond}. Conditional execution requires a preceding IT instruction. An
instruction with a condition code is only executed if the condition code flags in the APSR
meet the specified condition. Table 25 shows the condition codes to use.

The conditional execution can be used with the IT instruction to reduce the number of
branch instructions in the code.

Table 25 also shows the relationship between condition code suffixes and the N, Z, C, and V
flags.

Example 3-1: absolute value shows the use of a conditional instruction to find the absolute
value of a number. R0 = abs(R1).

Example 3-1: absolute value

 MOVS R0, R1 ; R0 = R1, setting flags.
 IT MI ; Skipping next instruction if value 0 or
 ; positive.
 RSBMI R0, R0, #0 ; If negative, R0 = -R0.

Table 25. Condition code suffixes

Suffix Flags Meaning

EQ Z = 1 Equal

NE Z = 0 Not equal

CS or HS C = 1 Higher or same, unsigned

CC or LO C = 0 Lower, unsigned

MI N = 1 Negative

PL N = 0 Positive or zero

VS V = 1 Overflow

VC V = 0 No overflow

HI C = 1 and Z = 0 Higher, unsigned

LS C = 0 or Z = 1 Lower or same, unsigned

GE N = V Greater than or equal, signed

LT N != V Less than, signed

GT Z = 0 and N = V Greater than, signed

LE Z = 1 and N != V Less than or equal, signed

AL Can have any value Always. This is the default when no suffix is specified.

The Cortex-M7 instruction set PM0253

74/252 DocID028474 Rev 3

Where:

op Is one of:
LDR Load register.
STR Store register.

type Is one of:
B Unsigned byte, zero extend to 32 bits on loads.
SB Signed byte, sign extend to 32 bits (LDR only).
H Unsigned halfword, zero extend to 32 bits on loads.
SH Signed halfword, sign extend to 32 bits (LDR only).
- Omit, for word.

cond Is an optional condition code. See Conditional execution on page 68.

Rt Is the register to load or store.

Rn Is the register on which the memory address is based.

offset Is an offset from Rn. If offset is omitted, the address is the contents of Rn.

Rt2 Is the additional register to load or store for two-word operations.

Operation

LDR instructions load one or two registers with a value from memory.

STR instructions store one or two register values to memory.

Load and store instructions with immediate offset can use the following addressing modes:

Offset addressing

The offset value is added to or subtracted from the address obtained from the
register Rn. The result is used as the address for the memory access. The
register Rn is unaltered. The assembly language syntax for this mode is:

[Rn, #offset]

Pre-indexed addressing

The offset value is added to or subtracted from the address obtained from the
register Rn. The result is used as the address for the memory access and
written back into the register Rn. The assembly language syntax for this mode
is:

[Rn, #offset]!

Post-indexed addressing

The address obtained from the register Rn is used as the address for the
memory access. The offset value is added to or subtracted from the address,
and written back into the register Rn. The assembly language syntax for this
mode is:

[Rn], #offset

The value to load or store can be a byte, halfword, word, or two words. Bytes and halfwords
can either be signed or unsigned. See Address alignment on page 68.

Table 27 shows the ranges of offset for immediate, pre-indexed and post-indexed forms

DocID028474 Rev 3 75/252

PM0253 The Cortex-M7 instruction set

182

 .

Restrictions

For load instructions:

• Rt can be SP or PC for word loads only.

• Rt must be different from Rt2 for two-word loads.

• Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.

When Rt is PC in a word load instruction:

• Bit[0] of the loaded value must be 1 for correct execution.

• A branch occurs to the address created by changing bit[0] of the loaded value to 0.

• If the instruction is conditional, it must be the last instruction in the IT block.

For store instructions:

• Rt can be SP for word stores only.

• Rt must not be PC.

• Rn must not be PC.

• Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.

Condition flags

These instructions do not change the flags.

Examples

 LDR R8, [R10] ; Loads R8 from the address in R10.
 LDRNE R2, [R5, #960]! ; Loads (conditionally) R2 from a word
 ; 960 bytes above the address in R5,
 ; and increments R5 by 960.
 STR R2, [R9,#const-struc] ; const-struc is an expression
 ; evaluating to a constant in the range
 ; 0-4095.
 STRH R3, [R4], #4 ; Store R3 as halfword data into
 ; address in R4, then increment R4 by
 ; 4.
 LDRD R8, R9, [R3, #0x20] ; Load R8 from a word 32 bytes above
 ; the address in R3, and load R9 from a
 ; word 36 bytes above the address in
 ; R3.
 STRD R0, R1, [R8], #-16 ; Store R0 to address in R8, and store
 ; R1 to a word 4 bytes above the
 ; address in R8, and then decrement R8
 ; by 16.

Table 27. Offset ranges

Instruction type Immediate offset Pre-indexed Post-indexed

Word, halfword, signed
halfword, byte, or signed byte

-255 to 4095 -255 to 255 -255 to 255

Two words
multiple of 4 in the
range -1020 to 1020

multiple of 4 in the
range -1020 to 1020

multiple of 4 in the
range -1020 to 1020

DocID028474 Rev 3 89/252

PM0253 The Cortex-M7 instruction set

182

subtraction shows instructions that subtract a 96-bit integer contained in R9, R1, and R11
from another contained in R6, R2, and R8. The example stores the result in R6, R9, and R2.

Example 3-5: 96-bit subtraction

 SUBS R6, R6, R9 ; Subtract the least significant words.
 SBCS R9, R2, R1 ; Subtract the middle words with carry.
 SBC R2, R8, R11 ; Subtract the most significant words with

 ; carry.

3.5.2 AND, ORR, EOR, BIC, and ORN

Logical AND, OR, Exclusive OR, Bit Clear, and OR NOT.

Syntax

op{S}{cond} {Rd,} Rn, Operand2

Where:

op Is one of:

AND Logical AND.

ORR Logical OR, or bit set.

EOR Logical Exclusive OR.

BIC Logical AND NOT, or bit clear.

ORN Logical OR NOT.

S Is an optional suffix. If S is specified, the condition code flags are updated on
the result of the operation, see Conditional execution on page 68.

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

Rn Is the register holding the first operand.

Operand2 Is a flexible second operand. See Flexible second operand on page 64 for
details of the options.

Operation

The AND, EOR, and ORR instructions perform bitwise AND, Exclusive OR, and OR
operations on the values in Rn and Operand2.

The BIC instruction performs an AND operation on the bits in Rn with the complements of
the corresponding bits in the value of Operand2.

The ORN instruction performs an OR operation on the bits in Rn with the complements of
the corresponding bits in the value of Operand2.

Restrictions

Do not use SP and do not use PC.

DocID028474 Rev 3 97/252

PM0253 The Cortex-M7 instruction set

182

3.5.10 SHADD16 and SHADD8

Signed Halving Add 16 and Signed Halving Add 8.

Syntax

op{cond}{Rd,} Rn, Rm

Where:

op Is one of:

SHADD16 Signed Halving Add 16

SHADD8 Signed Halving Add 8

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

Rn Is the first operand register.

Rm Is the second operand register.

Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing
the result to the destination register.

The SHADD16 instruction:

1. Adds each halfword from the first operand to the corresponding halfword of the second
operand.

2. Shuffles the result by one bit to the right, halving the data.

3. Writes the halfword results in the destination register.

The SHADDB8 instruction:

1. Adds each byte of the first operand to the corresponding byte of the second operand.

2. Shuffles the result by one bit to the right, halving the data.

3. Writes the byte results in the destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not change the flags.

Examples

SHADD16 R1, R0 ; Adds halfwords in R0 to corresponding halfword of R1
 ; and writes halved result to corresponding halfword in
 ; R1.
SHADD8 R4, R0, R5 ; Adds bytes of R0 to corresponding byte in R5 and
 ; writes halved result to corresponding byte in R4.

DocID028474 Rev 3 109/252

PM0253 The Cortex-M7 instruction set

182

Where:

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

Rn Is the first operand register.

Rm Is the second operand register.

Operation

The USAD8 instruction:

1. Subtracts each byte of the second operand register from the corresponding byte of the
first operand register.

2. Adds the absolute values of the differences together.
1. Writes the result to the destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not change the flags.

Examples

USAD8 R1, R4, R0 ; Subtracts each byte in R0 from corresponding byte
 ; of R4 adds the differences and writes to R1.
USAD8 R0, R5 ; Subtracts bytes of R5 from corresponding byte in
 ; R0, adds the differences and writes to R0.

3.5.23 USADA8

Unsigned Sum of Absolute Differences and Accumulate.

Syntax

USADA8{cond}{Rd,} Rn, Rm, Ra

Where:

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

Rn Is the first operand register.

Rm Is the second operand register.

Ra Is the register that contains the accumulation value.

Operation

The USADA8 instruction:

DocID028474 Rev 3 113/252

PM0253 The Cortex-M7 instruction set

182

The MLS instruction multiplies the values from Rn and Rm, subtracts the product from the
value from Ra, and places the least significant 32 bits of the result in Rd.

The results of these instructions do not depend on whether the operands are signed or
unsigned.

Restrictions

In these instructions, do not use SP and do not use PC.

If the S suffix is used with the MUL instruction:

• Rd, Rn, and Rm must all be in the range R0 to R7.

• Rd must be the same as Rm.

• The cond suffix must not be used.

Condition flags

If S is specified, the MUL instruction:

• Updates the N and Z flags according to the result.

• Does not affect the C and V flags.

Examples

 MUL R10, R2, R5 ; Multiply, R10 = R2 x R5
 MLA R10, R2, R1, R5 ; Multiply with accumulate, R10 = (R2 x R1) +
 ; R5
 MULS R0, R2, R2 ; Multiply with flag update, R0 = R2 x R2
 MULLT R2, R3, R2 ; Conditionally multiply, R2 = R3 x R2
 MLS R4, R5, R6, R7 ; Multiply with subtract, R4 = R7 - (R5 x R6)

3.6.2 UMULL, UMAAL, UMLAL

Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and producing a
64-bit result.

Syntax

op{cond} RdLo, RdHi, Rn, Rm

Where:

op Is one of:

UMULL Unsigned Long Multiply.

UMAAL Unsigned Long Multiply with Accumulate Accumulate.

UMLAL Unsigned Long Multiply, with Accumulate.

cond Is an optional condition code. See Conditional execution on page 68.

RdHi, RdLo Are the destination registers. For UMAAL, UMLAL and UMLAL they also hold the
accumulating value.

Rn, Rm Are registers holding the first and second operands.

The Cortex-M7 instruction set PM0253

130/252 DocID028474 Rev 3

3.7.2 SSAT16 and USAT16

Signed Saturate and Unsigned Saturate to any bit position for two halfwords.

Syntax

op{cond} Rd, #n, Rm

Where:

op Is one of:

SSAT16 Saturates a signed halfword value to a signed range.

USAT16 Saturates a signed halfword value to an unsigned range.

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

n Specifies the bit position to saturate to:

• n ranges from 1 to 16 for SSAT.

• n ranges from 0 to 15 for USAT.

Rm Is the register containing the value to saturate.

Operation

The SSAT16 instruction:

1. Saturates two signed 16-bit halfword values of the register with the value to saturate
from selected by the bit position in n.

2. Writes the results as two signed 16-bit halfwords to the destination register.

The USAT16 instruction:

1. Saturates two unsigned 16-bit halfword values of the register with the value to saturate
from selected by the bit position in n.

2. Writes the results as two unsigned halfwords in the destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples

SSAT16 R7, #9, R2 ; Saturates the top and bottom highwords of R2
 ; as 9-bit values, writes to corresponding
 ; halfword of R7.
USAT16NE R0, #13, R5 ; Conditionally saturates the top and bottom
 ; halfwords of R5 as 13-bit values, writes to
 ; corresponding halfword of R0.

DocID028474 Rev 3 133/252

PM0253 The Cortex-M7 instruction set

182

Condition flags

These instructions do not affect the condition code flags.

Examples

QASX R7, R4, R2 ; Adds top halfword of R4 to bottom halfword of R2,
 ; saturates to 16 bits, writes to top halfword of
 ; R7, Subtracts top highword of R2 from bottom
 ; halfword of R4, saturates to 16 bits and writes
 ; to bottom halfword of R7
QSAX R0, R3, R5 ; Subtracts bottom halfword of R5 from top halfword
 ; of R3, saturates to 16 bits, writes to top
 ; halfword of R0
 ; Adds bottom halfword of R3 to top halfword of R5,
 ; saturates to 16 bits, writes to bottom halfword
 ; of R0.

3.7.5 QDADD and QDSUB

Saturating Double and Add and Saturating Double and Subtract, signed.

Syntax

op{cond} {Rd}, Rm, Rn

Where:

op Is one of:

QDADD Saturating Double and Add.

QDSUB Saturating Double and Subtract.

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

Rm, Rn Are registers holding the first and second operands.

Operation

The QDADD instruction:

• Doubles the second operand value.

• Adds the result of the doubling to the signed saturated value in the first operand.

• Writes the result to the destination register.

The QDSUB instruction:

• Doubles the second operand value.

• Subtracts the doubled value from the signed saturated value in the first operand.

• Writes the result to the destination register.

Both the doubling and the addition or subtraction have their results saturated to the 32-bit
signed integer range –231 ≤ x ≤ 231– 1. If saturation occurs in either operation, it sets the Q
flag in the APSR.

Restrictions

Do not use SP and do not use PC.

DocID028474 Rev 3 135/252

PM0253 The Cortex-M7 instruction set

182

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not affect the condition code flags.

Examples

UQASX R7, R4, R2 ; Adds top halfword of R4 with bottom halfword of R2,
 ; saturates to 16 bits, writes to top halfword of R7
 ; Subtracts top halfword of R2 from bottom halfword of
 ; R4, saturates to 16 bits, writes to bottom halfword
 ; of R7
UQSAX R0, R3, R5 ; Subtracts bottom halfword of R5 from top halfword of
 ; R3, saturates to 16 bits, writes to top halfword of
 ; R0
 ; Adds bottom halfword of R4 to top halfword of R5
 ; saturates to 16 bits, writes to bottom halfword of
 ; R0.

DocID028474 Rev 3 143/252

PM0253 The Cortex-M7 instruction set

182

3.9.2 SBFX and UBFX

Signed Bit Field Extract and Unsigned Bit Field Extract.

Syntax

SBFX{cond} Rd, Rn, #lsb, #width

UBFX{cond} Rd, Rn, #lsb, #width

Where:

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

Rn Is the source register.

lsb Is the position of the least significant bit of the bit field. lsb must be in the range
0 to 31.

width Is the width of the bit field and must be in the range 1 to 32−lsb.

Operation

SBFX extracts a bit field from one register, sign extends it to 32 bits, and writes the result to
the destination register.

UBFX extracts a bit field from one register, zero extends it to 32 bits, and writes the result to
the destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not affect the flags.

Examples

 SBFX R0, R1, #20, #4 ; Extract bit 20 to bit 23 (4 bits) from R1 and
 ; sign extend to 32 bits and then write the
 ; result to R0.
 UBFX R8, R11, #9, #10 ; Extract bit 9 to bit 18 (10 bits) from R11 and
 ; zero extend to 32 bits and then write the
 ; result to R8.

DocID028474 Rev 3 149/252

PM0253 The Cortex-M7 instruction set

182

Other restrictions when using an IT block are:

• A branch or any instruction that modifies the PC must either be outside an IT block or
must be the last instruction inside the IT block. These are:

– ADD PC, PC, Rm.

– MOV PC, Rm.

– B, BL, BX, BLX.

– Any LDM, LDR, or POP instruction that writes to the PC.

– TBB and TBH.

• Do not branch to any instruction inside an IT block, except when returning from an
exception handler

• All conditional instructions except Bcond must be inside an IT block. Bcond can be
either outside or inside an IT block but has a larger branch range if it is inside one

• Each instruction inside the IT block must specify a condition code suffix that is either
the same or logical inverse as for the other instructions in the block.

 The assembler might place extra restrictions on the use of IT blocks, such as prohibiting the
use of assembler directives within them.

Condition flags

This instruction does not change the flags.

Example

 ITTE NE ; Next 3 instructions are conditional
 ANDNE R0, R0, R1 ; ANDNE does not update condition flags
 ADDSNE R2, R2, #1 ; ADDSNE updates condition flags
 MOVEQ R2, R3 ; Conditional move

 CMP R0, #9 ; Convert R0 hex value (0 to 15) into ASCII
 ; ('0'-'9', 'A'-'F')
 ITE GT ; Next 2 instructions are conditional
 ADDGT R1, R0, #55 ; Convert 0xA -> 'A'
 ADDLE R1, R0, #48 ; Convert 0x0 -> '0'

 IT GT ; IT block with only one conditional instruction
 ADDGT R1, R1, #1 ; Increment R1 conditionally

 ITTEE EQ ; Next 4 instructions are conditional
 MOVEQ R0, R1 ; Conditional move
 ADDEQ R2, R2, #10 ; Conditional add
 ANDNE R3, R3, #1 ; Conditional AND
 BNE.W dloop ; Branch instruction can only be used in the last
 ; instruction of an IT block

 IT NE ; Next instruction is conditional
 ADD R0, R0, R1 ; Syntax error: no condition code used in IT block

The Cortex-M7 instruction set PM0253

174/252 DocID028474 Rev 3

Operation

These instructions:

1. Read the source register.

2. Round to the nearest integer value in floating-point format using the rounding mode
specified by the FPSCR.

3. Write the result to the destination register.

4. For the VRINTZX instruction only. Generate a floating-point exception if the result is not
exact.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

3.11.35 VRINTA, VRINTN, VRINTP, VRINTM, VRINTZ

Round a floating-point value to an integer in floating-point format using directed rounding.

Encoding

VRINT<rmode>.F<32|64> <Sd|Dd>, <Sm|Dm>

Where:
<Sd|Dd> Is the destination single-precision or double-precision floating-point value.
<Sn|Dn>, <Sm|Dm>

Are the operand single-precision or double-precision floating-point values.

<rmode> Is one of:

A Round to nearest ties away.

M Round to Nearest Even.

N Round towards Plus Infinity.

P Round towards Minus Infinity.

Z Round towards Zero.

Operation

These instructions:

1. Read the source register.

2. Round to the nearest integer value with a directed rounding mode specified by the
instruction.

3. Write the result to the destination register.

Restrictions

These instructions cannot be conditional. These instructions cannot generate an inexact
exception even if the result is not exact.

DocID028474 Rev 3 187/252

PM0253 Cortex-M7 Peripherals

251

 Writing 1 to the ISPR bit corresponding to:

• An interrupt that is pending has no effect.

• A disabled interrupt sets the state of that interrupt to pending.

4.2.5 Interrupt clear-pending registers

The NVIC_ICPR0-NCVIC_ICPR7 registers remove the pending state from interrupts, and
show which interrupts are pending. See the register summary in Table 39 on page 184 for
the register attributes.

The bit assignments are:

Figure 20. ICPR bit assignments

 Writing 1 to an ICPR bit does not affect the active state of the corresponding interrupt.

Table 43. ISPR bit assignments

Bits Name Function

[31:0] SETPEND

Interrupt set-pending bits.

Write:

0: No effect.
1: Changes interrupt state to pending.

Read:

0: Interrupt is not pending.
1: Interrupt is pending.

Table 44. ICPR bit assignments

Bits Name Function

[31:0] CLRPEND

Interrupt clear-pending bits.

Write:

0: No effect.
1: Removes pending state an interrupt.

Read:

0: Interrupt is not pending.
1: Interrupt is pending.

DocID028474 Rev 3 223/252

PM0253 Cortex-M7 Peripherals

251

4.6.1 MPU Type register

The MPU_TYPE register indicates whether the MPU is present, and if so, how many
regions it supports. If the MPU is not present the MPU_TYPE register is RAZ. See the
register summary in Table 83 for its attributes. The bit assignments are:

Figure 48. TYPE bit assignments

4.6.2 MPU Control register

The MPU_CTRL register:

• Enables the MPU.

• Enables the default memory map background region.

• Enables use of the MPU when in the hard fault, Non Maskable Interrupt (NMI), and
FAULTMASK escalated handlers.

See the register summary in Table 83 on page 222 for the MPU_CTRL attributes. The bit
assignments are:

Figure 49. MPU_CTRL bit assignments

Table 84. TYPE bit assignments

Bits Name Function

[31:24] - Reserved.

[23:16] IREGION
Indicates the number of supported MPU instruction regions.

Always contains 0x00. The MPU memory map is unified and is described
by the DREGION field.

[15:8] DREGION
Indicates the number of supported MPU data regions:

0x08: 8 MPU regions.
0x0F: 16 MPU regions.

[7:1] - Reserved.

[0] SEPARATE
Indicates support for unified or separate instruction and date memory maps:

0: Unified.

Cortex-M7 Peripherals PM0253

238/252 DocID028474 Rev 3

4.7.6 Enabling the FPU

The FPU is disabled from reset. The user must enable it before using any floating-point
instructions. Example 4-1: Enabling the FPU shows an example code sequence for enabling
the FPU in privileged mode. The processor must be in privileged mode to read from and
write to the CPACR.

Example 4-1: Enabling the FPU

CPACR EQU 0xE000ED88
LDR R0, =CPACR ; Read CPACR
LDR r1, [R0] ; Set bits 20-23 to enable CP10 and CP11
 ; coprocessors
ORR R1, R1, #(0xF << 20)
STR R1, [R0] ; Write back the modified value to the CPACR
DSB

ISB ; Reset pipeline now the FPU is enabled.

4.8 Cache maintenance operations

The cache maintenance operations are only accessible by privileged loads and stores.
Unprivileged accesses to these registers always generate a BusFault.

[25] DN Default value for FPSCR.DN

[24] FZ Default value for FPSCR.FZ

[23:22] RMode Default value for FPSCR.RMode

[21:0] - Reserved

Table 98. FPDSCR bit assignments (continued)

Bits Name Function

Table 99. Cache maintenance space register summary

Address Name Type
Required

privilege

Reset

value
Description

0xE000EF50 ICIALLU WO Privileged Unknown
Instruction cache invalidate all to the Point of
Unification (PoU)(1)

0xE000EF54 - - - - Reserved

0xE000EF58 ICIMVAU WO Privileged Unknown Instruction cache invalidate by address to the PoU(1)

0xE000EF5C DCIMVAC WO Privileged Unknown
Data cache invalidate by address to the Point of
Coherency (PoC)(2)

0xE000EF60 DCISW WO Privileged Unknown Data cache invalidate by set/way

0xE000EF64 DCCMVAU WO Privileged Unknown Data cache by address to the PoU(1)

0xE000EF68 DCCMVAC WO Privileged Unknown Data cache clean by address to the PoC(2)

0xE000EF6C DCCSW WO Privileged Unknown Data cache clean by set/way

0xE000EF70 DCCIMVAC WO Privileged Unknown
Data cache clean and invalidate by address to the
PoC(2)

