

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	20
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-SOIC (0.295", 7.50mm Width)
Supplier Device Package	24-50
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/t89c51cc02ca-tdsim

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Туре	Description
P3.0:7	I/O	Port 3: Is an 8-bit bi-directional I/O port with internal pull-ups. Port 3 pins that have 1's written to them are pulled high by the internal pull-up transistors and can be used as inputs in this state. As inputs, Port 3 pins that are being pulled low externally will be a source of current (I _{IL} , See section 'Electrical Characteristic') because of the internal pull-ups. The output latch corresponding to a secondary function must be programmed to one for that function to operate (except for TxD and WR). The secondary functions are assigned to the pins of port 3 as follows: P3.0/RxD: Receiver data input (asynchronous) or data input/output (synchronous) of the serial interface P3.1/TxD: Transmitter data output (asynchronous) or clock output (synchronous) of the serial interface P3.2/INT0: External interrupt 0 input/timer 0 gate control input P3.3/INT1: External interrupt 1 input/timer 1 gate control input P3.4/T0: Timer 0 counter input P3.5/T1: Timer 1 counter input P3.6: Regular I/O port pin P3.7: Regular I/O port pin
P4.0:1	I/O	Port 4: Is an 2-bit bi-directional I/O port with internal pull-ups. Port 4 pins that have 1's written to them are pulled high by the internal pull-ups and can be used as inputs in this state. As inputs, Port 4 pins that are being pulled low externally will be a source of current (IIL, on the datasheet) because of the internal pull-up transistor. The output latch corresponding to a secondary function RxDC must be programmed to one for that function to operate. The secondary functions are assigned to the two pins of port 4 as follows: P4.0/TxDC: Transmitter output of CAN controller P4.1/RxDC: Receiver input of CAN controller. It can drive CMOS inputs without external pull-ups.
RESET	I/O	Reset: A high level on this pin during two machine cycles while the oscillator is running resets the device. An internal pull-down resistor to VSS permits power-on reset using only an external capacitor to VCC.
XTAL1	I	XTAL1: Input of the inverting oscillator amplifier and input of the internal clock generator circuits. To drive the device from an external clock source, XTAL1 should be driven, while XTAL2 is left unconnected. To operate above a frequency of 16 MHz, a duty cycle of 50% should be maintained.
XTAL2	0	XTAL2: Output from the inverting oscillator amplifier.

oscrst/vddrst	1ms	10ms	100ms
5ms	2.7µF	4.7µF	47µF
20ms	10µF	15µF	47µF

Table 14. Minimum Reset Capacitor for a 15k Pull-down Resistor

Note: These values assume VDD starts from 0v to the nominal value. If the time between two on/off sequences is too fast, the power-supply decoupling capacitors may not be fully discharged, leading to a bad reset sequence.

During a Normal Operation (Warm Reset)

Reset pin must be maintained for at least 2 machine cycles (24 oscillator clock periods) to apply a reset sequence during normal operation. The number of clock periods is mode independent (X2 or X1).

Watchdog Reset

A 1K resistor must be added in series with the capacitor to allow the use of watchdog reset pulse output on the RST pin or when an external power-supply supervisor is used. Figure 6 shows the reset circuitry when a capacitor is used.

Figure 6. Reset Circuitry for a Watchdog Configuration

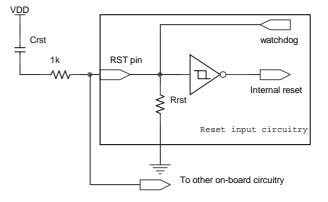
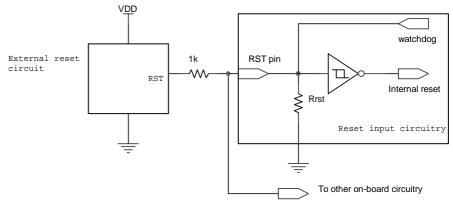



Figure 7 shows the reset circuitry when an external reset circuit is used.

Figure 7. Reset Circuitry Example Using an External Reset Circuit

Hardware Security Byte

 Table 31.
 Hardware Security byte

7	6	5	4	3	2	1	0				
X2B	BLJB	-	LB2 LB1 LB0								
Bit Number	Bit Mnemonic	Description	Description								
7	X2B		X2 bit Set this bit to start in standard mode Clear this bit to start in X2 Mode.								
6	BLJB		ne user's app	lication on nex r(@F800h) loo	· ·	000h) located	d in FM0,				
5 - 3	-	Reserved The value rea	Reserved The value read from these bits are indeterminate.								
2 - 0	LB2:0	Lock bits (see Table 22)									

Default value after erasing chip: FFh

Notes: 1. Only the 4 MSB bits can be accessed by software.

2. The 4 LSB bits can only be accessed by parallel mode.

Registers

Table 32. SCON Register

SCON (S:98h) Serial Control Register

7	6	5	4	3	2	1	0				
FE/SM0	SM1	SM2	REN	TB8	RB8	ТІ	RI				
Bit Number	Bit Mnemonic	Description	scription								
7	op bit.										
	SM0		Iode bit 0 (S I for serial por	MOD0 = 0) rt mode select	on.						
6	SM1	-	$\begin{array}{c cccc} 0 & 0 & Shift Register & F_{XTAL}/12 \ (or & F_{XTAL}/6 \ in \ mode \ X2) \\ 0 & 1 & 8-bit \ UART & Variable \\ 1 & 0 & 9bit \ UART & F_{XTAL}/64 \ or \ F_{XTAL}/32 \end{array}$								
5	SM2	Clear to disa	Serial port Mode 2 bit/Multiprocessor Communication Enable bit Clear to disable multiprocessor communication feature. Set to enable multiprocessor communication feature in mode 2 and 3.								
4	REN		nable bit ble serial rece serial recept	•							
3	TB8	Clear to trans	bit 8/Ninth b smit a logic 0 hit a logic 1 in		in Modes 2 a	and 3					
2	RB8	Cleared by h	ardware if 9th	Received in M bit received is received is a lo	s a logic 0.	1					
1	ті	Clear to ackr Set by hardw	Transmit Interrupt Flag Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode 0 or at the beginning of the stop bit in the other modes.								
0	RI	Clear to ackr Set by hardw	Receive Interrupt Flag Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode 0, See Figure 22. and Figure 23. in the other modes.								

Reset Value = 0000 0000b bit addressable

Table 36. PCON RegisterPCON (S:87h)Power Control Register

7	6	5	4	3	2	1	0				
SMOD1	SMOD0	-	POF	GF1	GF0	PD	IDL				
Bit Number	Bit Mnemonic	Description	escription								
7	SMOD1		Serial port Mode bit 1 Set to select double baud rate in mode 1, 2 or 3.								
6	SMOD0	Clear to sele	Serial port Mode bit 0 Clear to select SM0 bit in SCON register. Set to select FE bit in SCON register.								
5	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.								
4	POF	Clear to reco	Power-off Flag Clear to recognize next reset type. Set by hardware when V _{CC} rises from 0 to its nominal voltage. Can also be set by software.								
3	GF1		ser for genera	al purpose usa rpose usage.	ige.						
2	GF0		ser for generation	al purpose usa rpose usage.	ige.						
1	PD	Cleared by h	Power-down Mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.								
0	IDL	Idle Mode b Clear by hard Set to enter i	dware when i	nterrupt or res	et occurs.						

Reset Value = 00X1 0000b Not bit addressable

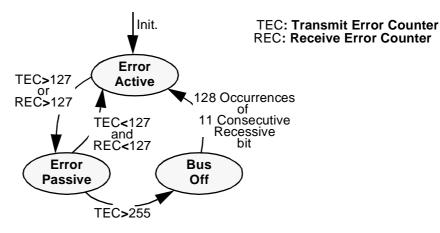
I.

Fault Confinement

With respect to fault confinement, a unit may be in one of the three following status:

- Error active
- Error passive
- Bus off

An error active unit takes part in bus communication and can send an active error frame when the CAN macro detects an error.


An error passive unit cannot send an active error frame. It takes part in bus communication, but when an error is detected, a passive error frame is sent. Also, after a transmission, an error passive unit will wait before initiating further transmission.

A bus off unit is not allowed to have any influence on the bus.

For fault confinement, two error counters (TEC and REC) are implemented.

See CAN Specification for details on Fault confinement.

Figure 38. Line Error Mode

T89C51CC02

CAN SFRs

Table 54. SFR Mapping

	0/8 ⁽¹⁾	1/9	2/A	3/B	4/C	5/D	6/E	7/F	
F8h	IPL1 xxxx x000	CH 0000 0000	CCAP0H 0000 0000	CCAP1H 0000 0000					FFh
F0h	B 0000 0000		ADCLK xxx0 0000	ADCON x000 0000	ADDL 0000 0000	ADDH 0000 0000	ADCF 0000 0000	IPH1 xxxx x000	F7h
E8h	IEN1 xxxx x000	CL 0000 0000	CCAP0L 0000 0000	CCAP1L 0000 0000					EFh
E0h	ACC 0000 0000								E7h
D8h	CCON 0000 0000	CMOD 0xxx x000	CCAPM0 x000 0000	CCAPM1 x000 0000					DFh
D0h	PSW 0000 0000	FCON 0000 0000	EECON xxxx xx00						D7h
C8h	T2CON 0000 0000	T2MOD xxxx xx00	RCAP2L 0000 0000	RCAP2H 0000 0000	TL2 0000 0000	TH2 0000 0000		CANEN xxxx 0000	CFh
C0h	P4 xxxx xx11	CANGIE 1100 0000		CANIE 1111 0000	CANIDM1 xxxx xxxx	CANIDM2 xxxx xxxx	CANIDM3 xxxx xxxx	CANIDM4 xxxx xxxx	C7h
B8h	IPL0 x000 0000	SADEN 0000 0000		CANSIT xxxx 0000	CANIDT1 xxxx xxxx	CANIDT2 xxxx xxxx	CANIDT3 xxxx xxxx	CANIDT4 xxxx xxxx	BFh
B0h	P3 1111 1111	CANPAGE 1100 0000	CANSTCH xxxx xxxx	CANCONCH xxxx xxxx	CANBT1 xxxx xxxx	CANBT2 xxxx xxxx	CANBT3 xxxx xxxx	IPH0 x000 0000	B7h
A8h	IEN0 0000 0000	SADDR 0000 0000	CANGSTA 1010 0000	CANGCON 0000 0000	CANTIML 0000 0000	CANTIMH 0000 0000	CANSTMPL xxxx xxxx	CANSTMPH xxxx xxxx	AFh
A0h	P2 xxxx xx11	CANTCON 0000 0000	AUXR1 ⁽²⁾ xxxx 00x0	CANMSG xxxx xxxx	CANTTCL 0000 0000	CANTTCH 0000 0000	WDTRST 1111 1111	WDTPRG xxxx x000	A7h
98h	SCON 0000 0000	SBUF 0000 0000		CANGIT 0x00 0000	CANTEC 0000 0000	CANREC 0000 0000			9Fh
90h	P1 1111 1111								97h
88h	TCON 0000 0000	TMOD 0000 0000	TL0 0000 0000	TL1 0000 0000	TH0 0000 0000	TH1 0000 0000		CKCON 0000 0000	8Fh
80h		SP 0000 0111	DPL 0000 0000	DPH 0000 0000				PCON 00x1 0000	87h
	0/8 ⁽¹⁾	1/9	2/A	3/B	4/C	5/D	6/E	7/F	

Table 58. CANTEC RegisterCANTEC (S:9Ch Read Only) – CAN Transmit Error Counter

7	e	6	5	4	3	2	1	0
TEC7	TEC7 TEC6		TEC5	TEC4	TEC3	TEC2	TEC1	TEC0
Bit Numb	Bit Number Bit Mnen		Vnemonic	Description				
7 - 0	7 - 0		TEC7:0	Transmit Err See Figure 3				

Reset Value = 00h

Table 59. CANREC RegisterCANREC (S:9Dh Read Only) – CAN Reception Error Counter

7	(6	5	4	3	2	1	0
REC7	C7 REC6		REC5	REC4	REC3	REC2	REC1	REC0
Bit Numb	Bit Number Bit Mnemonic		Description					
7 - 0	7 - 0		REC7:0	Reception E See Figure 3	rror Counter 8			

Reset Value = 00h

Table 63. CANIE Register

CANIE (S:C3h) – CAN Enable Interrupt message object Registers 2

7	6	5	4	3	2	1	0			
-	-	-	-	IECH 3	IECH 2	IECH 1	IECH 0			
Bit Number	Bit	Vnemonic	Description	Description						
7 - 4	- Reserved - The values read from these bits are indeterminate. Do not set bits.						not set these			
3 - 0	I	ECH3:0	Enable Interrupt by Message Object 0 - disable IT. 1 - enable IT. IECH3:0 = 0b 0000 1100 -> Enable IT's of message objects 3 &							

Reset Value = xxxx 0000b

Table 64. CANBT1 RegisterCANBT1 (S:B4h) – CAN bit Timing Registers 1

7	6	5	4	3	2	1	0		
-	BRP 5	BRP 4	BRP 3	BRP 2	BRP 1	BRP 0	-		
Bit Numb	er Bitl	Mnemonic	Description						
7		t is indetermir	ate. Do not se	et this bit.					
6 - 1	6 - 1 BRP5:0				ines the indivi BRP[50] -	n clock Tscl is dual bit timing + 1			
0		-	Reserved The value read from this bit is indeterminate. Do not set this bit.						

Note: 1. The CAN controller bit timing registers must be accessed only if the CAN controller is disabled with the ENA bit of the CANGCON register set to 0. See Figure 37.

No default value after reset.

Table 78. CANIDM1 Register for V2.0 part ACANIDM1 for V2.0 part A (S:C4h)CAN Identifier Mask Registers 1

	7	(6	5	4	3	2	1	0
[IDMSK 10	IDM	SK 9	IDMSK 8	IDMSK 7	IDMSK 6	IDMSK 5	IDMSK 4	IDMSK 3
ſ	Bit Number		Bit	Vnemonic	Description				
	7 - 0		ID.	TMSK10:3	IDentifier Ma 0 - compariso 1 - bit compa See Figure 3	on true forced. rison enabled			

No default value after reset.

Table 79. CANIDM2 Register for V2.0 part ACANIDM2 for V2.0 part A (S:C5h)CAN Identifier Mask Registers 2

7	6	;	5	4	3	2	1	0
IDMSK 2	IDMS	SK 1	IDMSK 0	-	-	-	-	-
Bit Numb	ber	Bit I	Vnemonic	Description				
7 5		חו	TMSK20	IDentifier Ma 0 - compariso				

7 - 5	IDTMSK2:0	1 - bit comparison enabled. See Figure 39.
4 -0	-	Reserved The values read from these bits are indeterminate. Do not set these bits.

No default value after reset.

Table 80. CANIDM3 Register for V2.0 part ACANIDM3 for V2.0 part A (S:C6h)CAN Identifier Mask Registers 3

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-
Bit Numb	ber Bit	Mnemonic	Description				
7 - 0		-	Reserved The values re	ead from these	e bits are inde	eterminate.	

No default value after reset.

Table 81. CANIDM4 Register for V2.0 part ACANIDM4 for V2.0 part A (S:C7h)CAN Identifier Mask Registers 4

7	6	5	4	3	2	1	0
-	-	-	-	-	RTRMSK	-	IDEMSK
Bit Numb	er Bit	Mnemonic	Description				
7 - 3		-	Reserved The values re bits.	ead from these	e bits are indet	erminate. Do	not set these
2		RTRMSK	0 - compariso	smission req on true forced rison enabled		alue	
1		-	Reserved The value rea	ad from this bi	t is indetermir	nate. Do not se	et this bit.
0		IDEMSK	0 - compariso	tension Masl on true forced. rison enabled			

Note: The ID Mask is only used for reception.

No default value after reset.

Table 82. CANIDM1 Register for V2.0 Part BCANIDM1 for V2.0 Part B (S:C4h)CAN Identifier Mask Registers 1

7	6	i	5	4	3	2	1	0
IDMSK 28	IDMS	K 27	IDMSK 26	IDMSK 25	IDMSK 24	IDMSK 23	IDMSK 22	IDMSK 21
Bit Numb	er	Bit I	Vnemonic	Description				
7 - 0		IDI	MSK28:21	•	on true forced. rison enabled			

Note: The ID Mask is only used for reception.

No default value after reset.

Table 90. CANSTMPH RegisterCANSTMPH (S:AFh Read Only)CAN Stamp Timer High

	7	(6	5	4	3	2	1	0
	TIMSTMP 15		STMP 4	TIMSTMP 13	TIMSTMP 12	TIMSTMP 11	TIMSTMP 10	TIMSTMP 9	TIMSTMP 8
ſ	Bit Numb	er	Bit	Mnemonic	Description				
	7 - 0		TIM	ISTMP15:8	High byte of See Figure 4	•			

No default value after reset

Table 91. CANSTMPL RegisterCANSTMPL (S:AEh Read Only)CAN Stamp Timer Low

7	6	5	4	3	2	1	0
TIMSTMP 7	TIMSTMF	P 6 TIMSTMP 5	TIMSTMP 4	TIMSTMP 3	TIMSTMP 2	TIMSTMP 1	TIMSTMP 0
Bit Numb	er E	Bit Mnemonic	Description				
7 - 0		TIMSTMP7:0	Low byte of See Figure 4	•			

No default value after reset

Table 92. CANTTCH RegisterCANTTCH (S:A5h Read Only)CAN TTC Timer High

7	6	5	4	3	2	1	0
TIMTTC 15	TIMTTC 14	TIMTTC 13	TIMTTC 12	TIMTTC 11	TIMTTC 10	TIMTTC 9	TIMTTC 8

Bit Number	Bit Mnemonic	Description
7 - 0	TIMTTC15:8	High byte of TTC Timer See Figure 40.

Reset Value = 0000 0000b

Table 93. CANTTCL RegisterCANTTCL (S:A4h Read Only)CAN TTC Timer Low

7	(6	5	4	3	2	1	0
TIMTTC 7	ТІМТ	TC 6	TIMTTC 5	TIMTTC 4	TIMTTC 3	TIMTTC 2	TIMTTC 1	TIMTTC 0
Bit Numb	er	Bit I	Inemonic	Description				
7 - 0		TI	MTTC7:0	Low Byte of See Figure 4				

Reset Value = 0000 0000b

Table 96. CCAPnH Registers

CCAP0H (S:FAh) CCAP1H (S:FBh) PCA High Byte Compare/Capture Module n Register (n=0..1)

7	6	5	4	3	2	1	0
CCAPnH 7	CCAPnH 6	CCAPnH 5	CCAPnH 4	CCAPnH 3	CCAPnH 2	CCAPnH 1	CCAPnH 0
Bit Numb	oer Bit	Mnemonic	Description				

|--|

Reset Value = 0000 0000b

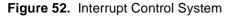
Table 97. CCAPnL Registers

CCAP0L (S:EAh) CCAP1L (S:EBh) PCA Low Byte Compare/Capture Module n Register (n=0..1)

7	6	5	4	3	2	1	0
CCAPnL 7	CCAPnL 6	CCAPnL 5	CCAPnL 4	CCAPnL 3	CCAPnL 2	CCAPnL 1	CCAPnL 0

Bit Number	Bit Mnemonic	Description
7:0	CCAPnL 7:0	Low byte of EWC-PCA comparison or capture values

Reset Value = 0000 0000b


Analog-to-Digital Converter (ADC)	This section describes the on-chip 10-bit analog-to-digital converter of the T89C51CC02. Eight ADC channels are available for sampling of the external sources AN0 to AN7. An analog multiplexer allows the single ADC converter to select one from the 8 ADC channels as ADC input voltage (ADCIN). ADCIN is converted by the 10-bit-cascaded potentiometric ADC.				
	Two modes of conversion are available: - Standard conversion (8 bits). - Precision conversion (10 bits).				
	For the precision conversion, set bit PSIDLE in ADCON register and start conversion. The device is in a pseudo-idle mode, the CPU does not run but the peripherals are always running. This mode allows digital noise to be as low as possible, to ensure high precision conversion.				
	For this mode it is necessary to work with end of conversion interrupt, which is the only way to wake the device up.				
	If another interrupt occurs during the precision conversion, it will be served only after this conversion is completed.				
Features	 8 channels with multiplexed inputs 10-bit cascaded potentiometric ADC Conversion time 16 micro-seconds (typ.) Zero Error (offset) ± 2 LSB max Positive External Reference Voltage Range (VAREF) 2.4 to 3.0-volt (typ.) ADCIN Range 0 to 3-volt Integral non-linearity typical 1 LSB, max. 2 LSB Differential non-linearity typical 0.5 LSB, max. 1 LSB Conversion Complete Flag or Conversion Complete Interrupt Selectable ADC Clock 				
ADC Port1 I/O Functions	Port 1 pins are general I/O that are shared with the ADC channels. The channel select bit in ADCF register define which ADC channel/port1 pin will be used as ADCIN. The remaining ADC channels/port1 pins can be used as general purpose I/O or as the alternate function that is available.				
	A conversion launched on a channel which are not selected on ADCF register will not have any effect.				
VAREF	VAREF should be connected to a low impedance point and must remain in the range specified VAREF absolute maximum range (See section "AC-DC").				
	. If the ADC is not used, it is recommended to tie VAREF to VAGND.				

Interrupt System

Introduction

The CAN Controller has a total of 10 interrupt vectors: two external interrupts ($\overline{INT0}$ and $\overline{INT1}$), three timer interrupts (timers 0, 1 and 2), a serial port interrupt, a PCA, a CAN interrupt, a timer overrun interrupt and an ADC. These interrupts are shown below.

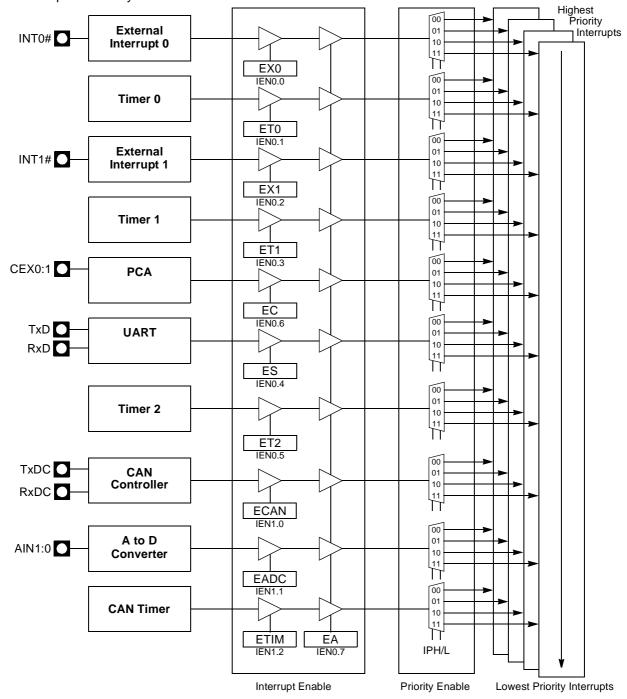


Table 112.IPH1 RegisterIPH1 (S:F7h)Interrupt high priority Register 1

7	6	5	4	3	2	1	0	
-	-	-	-		POVRH	PADCH	PCANH	
Bit Number	Bit Mnemonic	Description						
7	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.					
6	-	Reserved The value re	ad from this b	oit is indetermi	nate. Do not s	et this bit.		
5	-	Reserved The value re	ad from this b	oit is indetermi	nate. Do not s	et this bit.		
4	-	Reserved The value re	ad from this b	oit is indetermi	nate. Do not s	et this bit.		
3	-	Reserved The value re	ad from this b	oit is indetermi	nate. Do not s	et this bit.		
2	POVRH		un Interrupt OVRLPriorit 0 Lowest 1 0 1 Highest		l Most Signifi	cant bit		
1	PADCH	PADCH PA 0 0 1	pt Priority Lo A <u>DCL Priority</u> 0 Lowest 1 0 1 Highest		nificant bit			
0	PCANH		pt Priority Lo CANLPriorit 0 Lowest 1 0 1 Highest	-	nificant bit			

Reset Value = XXXX X000b

AC Parameters

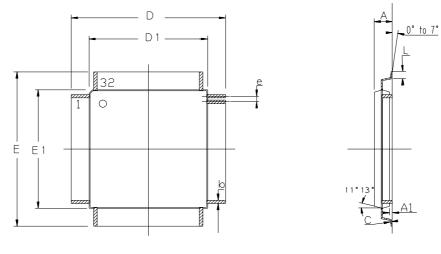
Serial Port Timing - Shift Register Mode

Table 115. Symbol Description (F = 40 MHz)

Symbol	Parameter
T _{XLXL}	Serial port clock cycle time
T _{QVHX}	Output data set-up to clock rising edge
T _{XHQX}	Output data hold after clock rising edge
T _{XHDX}	Input data hold after clock rising edge
T _{XHDV}	Clock rising edge to input data valid

Table 116. AC Parameters for a Fix Clock (F = 40 MHz)

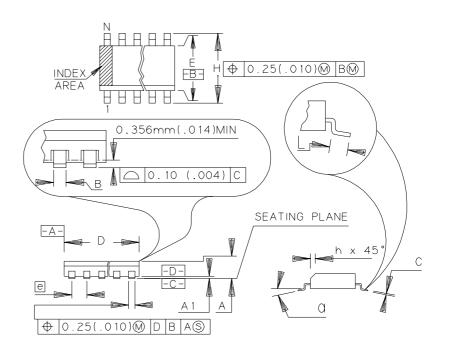
Symbol	Min	Мах	Units
T _{XLXL}	300		ns
T _{QVHX}	200		ns
T _{XHQX}	30		ns
T _{XHDX}	0		ns
T _{XHDV}		117	ns


Table 117. AC Parameters for a Variable Clock

Symbol	Туре	Standard Clock	X2 Clock	x parameter for -M range	Units
T _{XLXL}	Min	12 T	6 T		ns
T _{QVHX}	Min	10 T - x	5 T - x	50	ns
T _{XHQX}	Min	2 T - x	T - x	20	ns
T _{XHDX}	Min	х	х	0	ns
T _{XHDV}	Max	10 T - x	5 T- x	133	ns

Package Drawings

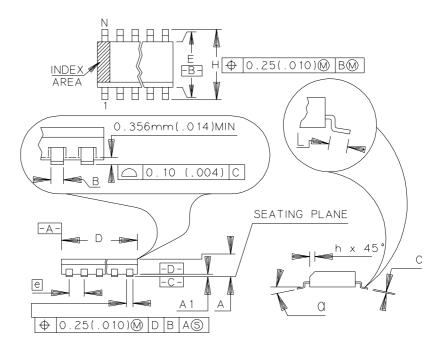
VQFP32



	м	M	INCH		
	Min	Max	Min	Max	
A	I	1.60	_	. 063	
A1	0.05	0.15	. 002	.006	
A2	1.35	1.45	. 053	. 057	
С	0.09	0,20	. 004	. 008	
D	9.00 BSC		.354 BSC		
D1	7.00 BSC		.276 BSC		
E	9.00 BSC		.354 BSC		
E1	7.00	7.00 BSC		BSC	
L	0.45	0.75	. 018	. 030	
е	0.80 BSC		. 03	15 BSC	
b	0.30	0.45	. 012	. 018	

T89C51CC02

SOIC24



	М	M	ΙN	СН
A	2.35	2.65	. 093	. 104
A1	0.10	0.30	. 004	. 012
В	0.35	0.49	. 014	.019
С	0.23	0.32	.009	. 013
D	15.20	15.60	. 599	. 614
E	7.40	7.60	. 291	. 299
e	1.27	BZC	.050	BSC
н	10.00	10.65	. 394	. 419
h	0.25	0.75	. 010	. 029
L	0.40	1.27	. 016	. 050
N	24			24
۵		0°	8°	

	M	М	IN	СН
A	2, 35	2.65	. 093	. 104
A1	0.10	0.30	. 004	. 012
В	0.35	0.49	. 014	. 019
С	0.23	0.32	. 009	. 013
D	17.70	18.10	. 697	. 713
E	7.40	7.60	. 291	. 299
e	1.27	BSC	.050	BSC
н	10.00	10.65	. 394	. 419
h	0.25	0.75	. 010	. 029
L	0.40	1.27	. 016	. 050
N	28			28
۵		0°		8°