

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	20
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SO
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/t89c51cc02ca-tisim

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Register

Table 12.CKCON RegisterCKCON (S:8Fh)Clock Control Register

7	6	5	4	3	2	1	0				
CANX2	WDX2	PCAX2	SIX2	T2X2	T1X2	T0X2	X2				
Bit Number	Bit Mnemonic	Description									
7	CANX2	CAN Clock ⁽ Clear to sele Set to select	CAN Clock ⁽¹⁾ Clear to select 6 clock periods per peripheral clock cycle. Set to select 12 clock periods per peripheral clock cycle.								
6	WDX2	Watchdog C Clear to sele Set to select	Watchdog Clock ⁽¹⁾ Clear to select 6 clock periods per peripheral clock cycle. Set to select 12 clock periods per peripheral clock cycle.								
5	PCAX2	Programma Clear to sele Set to select	Programmable Counter Array Clock ⁽¹⁾ Clear to select 6 clock periods per peripheral clock cycle. Set to select 12 clock periods per peripheral clock cycle.								
4	SIX2	Enhanced U Clear to sele Set to select	Enhanced UART clock (MODE 0 and 2) ⁽¹⁾ Clear to select 6 clock periods per peripheral clock cycle. Set to select 12 clock periods per peripheral clock cycle.								
3	T2X2	Timer 2 Cloc Clear to sele Set to select	c k ⁽¹⁾ ct 6 clock per 12 clock perio	iods per peripl ods per periph	neral clock cy eral clock cyc	cle. le.					
2	T1X2	Timer 1 Cloc Clear to sele Set to select	ck ⁽¹⁾ ct 6 clock per 12 clock perio	iods per peripl ods per periph	neral clock cy eral clock cyc	cle. le.					
1	T0X2	Timer 0 Cloc Clear to sele Set to select	c k ⁽¹⁾ ct 6 clock per 12 clock perio	iods per peripl ods per periph	neral clock cy eral clock cyc	cle. le.					
0	X2	CPU Clock Clear to sele the periphera Set to select individual pe	ct 12 clock pe Ils. 6 clock period ripherals 'X2'	eriods per mac ds per machin bits.	hine cycle (S e cycle (X2 M	ΓD mode) for ode) and to e	CPU and all				

Note: 1. This control bit is validated when the CPU clock bit X2 is set; when X2 is low, this bit has no effect.

oscrst/vddrst	1ms	10ms	100ms
5ms	2.7µF	4.7µF	47µF
20ms	10µF	15µF	47µF

Table 14. Minimum Reset Capacitor for a 15k Pull-down Resistor

Note: These values assume VDD starts from 0v to the nominal value. If the time between two on/off sequences is too fast, the power-supply decoupling capacitors may not be fully discharged, leading to a bad reset sequence.

During a Normal Operation (Warm Reset)

Reset pin must be maintained for at least 2 machine cycles (24 oscillator clock periods) to apply a reset sequence during normal operation. The number of clock periods is mode independent (X2 or X1).

Watchdog Reset

A 1K resistor must be added in series with the capacitor to allow the use of watchdog reset pulse output on the RST pin or when an external power-supply supervisor is used. Figure 6 shows the reset circuitry when a capacitor is used.

Figure 6. Reset Circuitry for a Watchdog Configuration

Figure 7 shows the reset circuitry when an external reset circuit is used.

Figure 7. Reset Circuitry Example Using an External Reset Circuit

Operation Cross Memory Access

Space addressable in read and write are:

RAM

•

- ERAM (Expanded RAM access by movx)
- EEPROM DATA
- FM0 (user flash)
- Hardware byte
- XROW
- Boot Flash
- Flash Column latch

The table below provides the different kind of memory which can be accessed from different code location.

Table 25. Cross Memory Access

	Action	RAM	ERAM	Boot FLASH	FM0	E ² Data	Hardware Byte	XROW
boot FLASH	Read			OK	OK	OK	ОК	-
	Write			-	OK (RWW)	OK (RWW)	OK (RWW)	OK (RWW)
FM0	Read			OK (confidential)	ОК	ОК	-OK	-
	Write			-	OK (idle)	OK(RWW)	-	-OK

Table 44. T2MOD RegisterT2MOD (S:C9h)Timer 2 Mode Control Register

7	6	5	4	3	2	1	0			
-	-	-	-	-	-	T2OE	DCEN			
Bit Number	Bit Mnemonic	Description								
7	-	Reserved The value read from this bit is indeterminate. Do not set this bit.								
6	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.							
5	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.							
4	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.							
3	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not s	et this bit.				
2	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.							
1	T2OE	Timer 2 Out Clear to prog Set to progra	Timer 2 Output Enable bit Clear to program P1.0/T2 as clock input or I/O port. Set to program P1.0/T2 as clock output.							
0	DCEN	Down Count Clear to disa Set to enable	ter Enable bir ble Timer 2 as e Timer 2 as u	t s up/down cou p/down count	inter. er.					

Reset Value = XXXX XX00b Not bit addressable

Table 45. TH2 Register

TH2 (S:CDh) Timer 2 High Byte Register

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-
Bit Number	Bit Mnemonic	Description					
7 - 0		High Byte of	Timer 2				

Reset Value = 0000 0000b Not bit addressable

Table 52.WDTRST RegisterWDTRST (S:A6h Write Only) – Watchdog Timer Enable register

7	6	5	4	3	2	1	0				
-	-										
Bit Number	Bit Mnemonic	Description	Description								
7	-	Watchdog Co	ontrol Value								

Reset Value = 1111 1111b

Note: The WDRST register is used to reset/enable the WDT by writing 1EH then E1H in sequence without instruction between these two sequences.

CAN Controller Mailbox and Registers Organization

The pagination allows management of the 91 registers including $80(4 \times 20)$ Bytes of mailbox via 32 SFRs.

All actions on the message object window SFRs apply to the corresponding message object registers pointed by the message object number find in the Page message object register (CANPAGE) as illustrate in Figure 33.

message object Window SFRs

Working on Message Objects The Page message object register (CANPAGE) is used to select one of the 4 message objects. Then, message object Control (CANCONCH) and message object Status (CANSTCH) are available for this selected message object number in the corresponding SFRs. A single register (CANMSG) is used for the message. The mailbox pointer is managed by the Page message object register with an auto-incrementation at the end of each access. The range of this counter is 8. Note that the maibox is a pure RAM, dedicated to one message object, without overlap.

In most cases, it is not necessary to transfer the received message object, without overlap. In most cases, it is not necessary to transfer the received message into the standard memory. The message to be transmitted can be built directly in the maibox. Most calculations or tests can be executed in the mailbox area which provide quicker access.

CAN Controller Management

In order to enable the CAN Controller correctly the following registers have to be initialized:

- General Control (CANGCON),
- bit Timing (CANBT 1, 2 & 3),
- And for each page of 15 message objects:
 - Message object Control (CANCONCH),
 - Message object Status (CANSTCH).

During operation, the CAN Enable message object registers (CANEN) gives a fast overview of the message objects availability.

The CAN messages can be handled by interrupt or polling modes.

A message object can be configured as follows:

- Transmit message object
- Receive message object
- Receive buffer message object
- Disable

This configuration is made in the CONCH field of the CANCONCH register (See Table 53).

When a message object is configured, the corresponding ENCH bit of CANEN register is set.

Table 53. Configuration for CONCH1:2

CONCH 1	CONCH 2	Type of Message Object
0	0	Disable
0	1	Transmitter
1	0	Receiver
1	1	Receiver buffer

When a Transmitter or Receiver action of a message object is completed, the corresponding ENCH bit of the CANEN register is cleared. In order to re-enable the message object, it is necessary to re-write the configuration in CANCONCH register.

Non-consecutive message objects can be used for all three types of message objects (Transmitter, Receiver and Receiver buffer).

Acceptance Filter

Upon a reception hit (i.e., a good comparison between the ID+RTR+RB+IDE received and an ID+RTR+RB+IDE specified while taking the comparison mask into account) the ID+RTR+RB+IDE received are written over the ID TAG Registers.

ID => IDT0-29

RTR => RTRTAG

RB => RB0-1TAG

IDE => IDE in CANCONCH register


```
example:
To accept only ID = 318h in part A.
ID MSK = 111 1111 1111 b
ID TAG = 011 0001 1000 b
```


Table 69. CANSTCH RegisterCANSTCH (S:B2h) – CAN Message Object Status Register

7	6		5	4	3	2	1	0		
DLCW	ТХО	ĸ	RXOK	BERR	SERR	CERR	FERR	AERR		
Bit Numb	ber	Bit	Mnemonic	Description						
7			DLCW	Data Length The incoming Whatever the is updated by	Data Length Code Warning The incoming message does not have the DLC expected. Whatever the frame type, the DLC field of the CANCONCH register is updated by the received DLC.					
6			тхок	Transmit OK The communication enabled by transmission is completed. When the controller is ready to send a frame, if two or more message objects are enabled as producers, the lower index message object (0 to 13) is supplied first. Must be cleared by software. This flag can generate an interrupt.						
5	5 RXOK		Receive OK The commun In the case of index messag software. This flag can	ication enable f two or more r ge object (0 to generate an ii	ed by receptio nessage obje 13) is update nterrupt.	n is completed ect reception h ed first. Must b	d. its, the lower e cleared by			
4	4		BERR	bit Error (only in transmission) The bit value monitored is different from the bit value sent. Exceptions: the monitored recessive bit sent as a dominant bit during the arbitration field and the acknowledge slot detecting a dominant I during the sending of an error frame. Must be cleared by softwa This flag can generate an interrupt.						
3			SERR	Stuff Error Detection of r Must be clear This flag can	more than five red by softwar generate an i	consecutive e. nterrupt.	bits with the sa	ame polarity.		
2	2 CERR CERR CERR CERR CERC CERR CERC						l received field, a CRC			
1			FERR	Form Error The form error results from one or more violations of the fixed form in the following bit fields: CRC delimiter acknowledgment delimiter end_of_frame Must be cleared by software. This flag can generate an interrupt.						
0			AERR	Acknowledg No detection cleared by so This flag can	ment Error of the domina oftware. generate an in	nt bit in the a nterrupt.	cknowledge sl	ot. Must be		

Note: See Figure 35.

No default value after reset.

Table 73. CANIDT1 for V2.0 part A

CANIDT4 for V2.0 part A (S:BFh) CAN Identifier Tag Registers 4

7	6	i	5	4	3	2	1	0	
-			-	-	-	RTRTAG	-	RB0TAG	
Bit Numb	ber	Bit I	Vnemonic	Description					
7 - 3			-	Reserved The values read from these bits are indeterminate. Do not set these bits.					
2		F	RTRTAG	Remote trans	smission requ	est tag value.			
1			-	Reserved The values read from this bit are indeterminate. Do not set these bit.					
0		F	RB0TAG	Reserved bit 0 tag value.					

No default value after reset.

Table 74.CANIDT2Register for V2.0 part ACANIDT1 for V2.0 Part B (S:BCh)CAN Identifier Tag Registers 1

7	(6	5	4	3	2	1	0	
IDT 28	IDT 27		IDT 26	IDT 25	IDT 24	IDT 23	IDT 22	IDT 21	
Bit Numb	Bit Number Bit Mnemonic		Mnemonic	Description					
7 - 0	7 - 0 IDT28:21		IDentifier Tag Value See Figure 39.						

No default value after reset.

Table 75. CANIDT2 Register for V2.0 Part BCANIDT2 for V2.0 Part B (S:BDh)CAN Identifier Tag Registers 2

7		6	5	4	3	2	1	0	
IDT 20	IDT 19		IDT 18	IDT 17	IDT 16	IDT 15	IDT 14	IDT 13	
Bit Numb	Bit Number Bit Mnemonic		Mnemonic	Description					
7 - 0		I	DT20:13	IDentifier Ta See Figure 3	g Value 9.				

No default value after reset.

Table 87. CANTCON RegisterCANTCON (S:A1h)CAN Timer ClockControl

7	6	5	4	3	2	1	0
TPRESC 7	TPRESC	6 TPRESC 5	TPRESC 4	TPRESC 3	TPRESC 2	TPRESC 1	TPRESC 0
Bit Numb	er E	it Mnemonic	Description		1		
7 - 0		TPRESC7:0	Timer Preso This register range = 0 to See Figure 4	aler of CAN T is a prescaler 255. 0.	Timer for the main t	imer upper co	ounter

Reset Value = 00h

Table 88. CANTIMH RegisterCANTIMH (S:ADh Read Only)CAN Timer High

7	(6	5	4	3	2	1	0
CANGTIM 15	CAN 1	GTIM 4	CANGTIM 13	CANGTIM 12	CANGTIM 11	CANGTIM 10	CANGTIM 9	CANGTIM 8
Bit Number Bit Mnemonic		Description						
7 - 0 CANGTIM15:8		High byte of Message Timer See Figure 40.						

Reset Value = $0000\ 0000b$

Table 89.CANTIML RegisterCANTIML (S:ACh Read Only)CAN Timer Low

7	e	6	5	4	3	2	1	0
CANGTIM 7	CANGTIM 6		CANGTIM 5	CANGTIM 4	CANGTIM 3	CANGTIM 2	CANGTIM 1	CANGTIM 0
Bit Number Bit Mnemonic		Description						

Table 90. CANSTMPH RegisterCANSTMPH (S:AFh Read Only)CAN Stamp Timer High

	7	(6	5	4	3	2	1	0
	TIMSTMP 15	TIMS 1	STMP 4	TIMSTMP 13	TIMSTMP 12	TIMSTMP 11	TIMSTMP 10	TIMSTMP 9	TIMSTMP 8
ĺ	Bit Number Bit Mnemonic		Description						
	7 - 0 TIMSTMP15:8		High byte of See Figure 4	Time Stamp 0.					

No default value after reset

Table 91. CANSTMPL RegisterCANSTMPL (S:AEh Read Only)CAN Stamp Timer Low

7	6	5	5	4	3	2	1	0
TIMSTMP 7	TIMST	MP 6	TIMSTMP 5	TIMSTMP 4	TIMSTMP 3	TIMSTMP 2	TIMSTMP 1	TIMSTMP 0
Bit Numb	er	Bit	Inemonic	Description				
7 - 0 TIMSTMP7:0		Low byte of See Figure 4	Time Stamp .0.					

No default value after reset

Table 92. CANTTCH RegisterCANTTCH (S:A5h Read Only)CAN TTC Timer High

7	6	5	4	3	2	1	0
TIMTTC 15	TIMTTC 14	TIMTTC 13	TIMTTC 12	TIMTTC 11	TIMTTC 10	TIMTTC 9	TIMTTC 8

Bit Number	Bit Mnemonic	Description
7 - 0	TIMTTC15:8	High byte of TTC Timer See Figure 40.

Reset Value = 0000 0000b

Table 93. CANTTCL RegisterCANTTCL (S:A4h Read Only)CAN TTC Timer Low

7	(6	5	4	3	2	1	0
TIMTTC 7	ТІМТ	TC 6	TIMTTC 5	TIMTTC 4	TIMTTC 3	TIMTTC 2	TIMTTC 1	TIMTTC 0
Bit Numb	er	Bit I	Vinemonic	Description				
7 - 0 TIMTTC7:		MTTC7:0	Low Byte of See Figure 4	TTC Timer 0.				

Figure 42. PCA Timer/Counter

The CMOD register includes three additional bits associated with the PCA.

- The CIDL bit which allows the PCA to stop during idle mode.
- The ECF bit which when set causes an interrupt and the PCA overflow flag CF in CCON register to be set when the PCA timer overflows.

The CCON register contains the run control bit for the PCA and the flags for the PCA timer and each module.

- The CR bit must be set to run the PCA. The PCA is shut off by clearing this bit.
- The CF bit is set when the PCA counter overflows and an interrupt will be generated if the ECF bit in CMOD register is set. The CF bit can only be cleared by software.
- The CCF0:1 bits are the flags for the modules (CCF0 for module0...) and are set by hardware when either a match or a capture occurs. These flags also can be cleared by software.

PCA Modules

Each one of the two compare/capture modules has six possible functions. It can perform:

- 16-bit Capture, positive-edge triggered
- 16-bit Capture, negative-edge triggered
- 16-bit Capture, both positive and negative-edge triggered
- 16-bit Software Timer
- 16-bit High Speed Output
- 8-bit Pulse Width Modulator.

Each module in the PCA has a special function register associated with it (CCAPM0 for module 0 ...). The CCAPM0:1 registers contain the bits that control the mode that each module will operate in.

- The ECCF bit enables the CCF flag in the CCON register to generate an interrupt when a match or compare occurs in the associated module.
- The PWM bit enables the pulse width modulation mode.
- The TOG bit when set causes the CEX output associated with the module to toggle when there is a match between the PCA counter and the module's capture/compare register.
- The match bit MAT when set will cause the CCFn bit in the CCON register to be set when there is a match between the PCA counter and the module's capture/compare register.
- The two bits CAPN and CAPP in CCAPMn register determine the edge that a capture input will be active on. The CAPN bit enables the negative edge, and the CAPP bit enables the positive edge. If both bits are set both edges will be enabled.
- The bit ECOM in CCAPM register when set enables the comparator function.

L

Table 96. CCAPnH Registers

CCAP0H (S:FAh) CCAP1H (S:FBh) PCA High Byte Compare/Capture Module n Register (n=0..1)

7	6		5	4	3	2	1	0
CCAPnH 7	CCAP	nH 6	CCAPnH 5	CCAPnH 4	CCAPnH 3	CCAPnH 2	CCAPnH 1	CCAPnH 0
Bit Numb	Bit Number Bit		Vnemonic	Description				

	7:0	CCAPnH 7:0	High byte of EWC-PCA comparison or capture values
--	-----	------------	---

Reset Value = 0000 0000b

Table 97. CCAPnL Registers

CCAP0L (S:EAh) CCAP1L (S:EBh) PCA Low Byte Compare/Capture Module n Register (n=0..1)

7	6	5	4	3	2	1	0
CCAPnL 7	CCAPnL 6	CCAPnL 5	CCAPnL 4	CCAPnL 3	CCAPnL 2	CCAPnL 1	CCAPnL 0

Bit Number	Bit Mnemonic	Description
7:0	CCAPnL 7:0	Low byte of EWC-PCA comparison or capture values

Table 98. CCAPMn Registers

CCAPM0 (S:DAh) CCAPM1 (S:DBh) PCA Compare/Capture Module n Mode registers (n=0..1)

7	6		5	4	3	2	1	0			
-	ECO	Mn	CAPPn	CAPNn	MATn	TOGn	PWMn	ECCFn			
Bit Number		Bit Mnemonic		Description							
7			-	Reserved The Value read from this bit is indeterminate. Do not set this bit.							
6			ECOMn	Enable Compare Mode Module x bit Clear to disable the Compare function. Set to enable the Compare function. The Compare function is used to implement the software Tim high-speed output, the Pulse Width Modulator (PWM) and the Watchdog Timer (WDT).							
5			CAPPn	Capture Mode (Positive) Module x bit Clear to disable the Capture function triggered by a positiv on CEXx pin. Set to enable the Capture function triggered by a positive CEXx pin							
4			CAPNn	Capture Mode (Negative) Module x bit Clear to disable the Capture function triggered by a negative edg on CEXx pin. Set to enable the Capture function triggered by a negative edge CEXx pin.							
3			MATn	Match Module x bit Set when a match of the PCA Counter with the Compare/Capture register sets CCFx bit in CCON register, flagging an interrupt.							
2			TOGn	Toggle Module x bit The toggle mode is configured by setting ECOMx, MATx and bits. Set when a match of the PCA Counter with the Compare/Caregister toggles the CEXx pin.			Tx and TOGx				
1	Pulse Width Modulation Module x Mode bit 1 PWMn Set to configure the module x as an 8-bit Pulse Width Mo with output waveform on CEXx pin.				Modulator						
0 ECCFn			Enable CCFx Interrupt bit Clear to disable CCFx bit in CCON register to generate an interrupt request. Set to enable CCFx bit in CCON register to generate an interrupt request.								

Reset Value = X000 0000b

Table 104.ADCLK RegisterADCLK (S:F2h)ADC Clock Prescaler

7	6	5	4	3	2	1	0		
-	-	-	PRS 4	PRS 3	PRS 2	PRS 1	PRS 0		
Bit Number	Bit Mnemonic	Description							
7 - 5	-	Reserved The value rea	Reserved The value read from these bits are indeterminate. Do not set these bits.						
4-0	PRS4:0	Clock Prescaler Fadc = Fcpuclock/(4*PRS)) in X1 mode Fadc=Fcpuclock/(2*PRS) in X2 mode							

Reset Value = XXX0 0000b

Table 105. ADDH RegisterADDH (S:F5h Read Only)ADC Data High Byte Register

7	6	5	4	3	2	1	0
ADAT 9	ADAT 8	ADAT 7	ADAT 6	ADAT 5	ADAT 4	ADAT 3	ADAT 2
Bit	Bit						
Number	Mnemonic	Description					
7 - 0	ADAT9:2	ADC result bits 9-2					

Reset Value = 00h

Table 106. ADDL RegisterADDL (S:F4h Read Only)ADC Data Low Byte Register

7	6	5	4	3	2	1	0
-	-	-	-	-	-	ADAT 1	ADAT 0
Bit Number	Bit Mnemonic	Description					
7 - 2	-	Reserved The value rea	ad from these	bits are indet	erminate. Do	not set these t	oits.
1-0	ADAT1:0	ADC result bits 1-0					

Reset Value = 00h

Figure 54. IEN1 Register IEN1 (S:E8h) Interrupt Enable Register

7	6	5	4	3	2	1	0				
-	-	-	-		ETIM	EADC	ECAN				
Bit Number	Bit Mnemonic	Description	Description								
7	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.								
6	-	Reserved The value rea	teserved The value read from this bit is indeterminate. Do not set this bit.								
5	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.								
4	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.								
з	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.								
2	ETIM	Timer overred Clear to disa Set to enable	TImer overrun Interrupt Enable bit Clear to disable the timer overrun interrupt. Set to enable the timer overrun interrupt.								
1	EADC	ADC Interrupt Enable bit Clear to disable the ADC interrupt. Set to enable the ADC interrupt.									
0	ECAN	CAN Interrupt Enable bit Clear to disable the CAN interrupt. Set to enable the CAN interrupt.									

Reset Value = xxxx x000b bit addressable

Table 109.IPL0 RegisterIPL0 (S:B8h)Interrupt Enable Register

7	6	5	4	3	2	1	0			
-	PPC	PT2	PS	PT1	PX1	PT0	PX0			
Bit Number	Bit Mnemonic	Description	Description							
7	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.				
6	PPC	PCA Interru Refer to PPC	pt Priority bi CH for priority	t level						
5	PT2	Timer 2 Ove Refer to PT2	Timer 2 Overflow Interrupt Priority bit Refer to PT2H for priority level.							
4	PS	Serial Port F Refer to PSH	Serial Port Priority bit Refer to PSH for priority level.							
3	PT1	Timer 1 Ove Refer to PT1	Fimer 1 Overflow Interrupt Priority bit Refer to PT1H for priority level.							
2	PX1	External Internation Refer to PX1	External Interrupt 1 Priority bit Refer to PX1H for priority level.							
1	PT0	Timer 0 Ove Refer to PT0	Timer 0 Overflow Interrupt Priority bit Refer to PT0H for priority level.							
0	PX0	External Internation Refer to PX0	External Interrupt 0 Priority bit Refer to PX0H for priority level.							

Reset Value = X000 0000b bit addressable