

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

:-XFl

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	20
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-VQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/t89c51cc02ua-ratim

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Description

Part of the CANaryTM family of 8-bit microcontrollers dedicated to CAN network applications, the T89C51CC02 is a low-pin count 8-bit Flash microcontroller.

In X2 Mode a maximum external clock rate of 20 MHz reaches a 300 ns cycle time.

Besides the full CAN controller T89C51CC02 provides 16K Bytes of Flash memory including In-System Programming (ISP), 2K Bytes Boot Flash Memory, 2K Bytes EEPROM and 512 Bytes RAM.

Special attention is payed to the reduction of the electro-magnetic emission of T89C51CC02.

Block Diagram

2. 2-bit I/O Port.

Table 4. Timers SFRs (Continued)

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
T2CON	C8h	Timer/Counter 2 control	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2#	CP/RL2#
T2MOD	C9h	Timer/Counter 2 Mode							T2OE	DCEN
RCAP2H	CBh	Timer/Counter 2 Reload/Capture High byte								
RCAP2L	CAh	Timer/Counter 2 Reload/Capture Low byte								
WDTRST	A6h	WatchDog Timer Reset								
WDTPRG	A7h	WatchDog Timer Program						S2	S1	SO

Table 5. Serial I/O Port SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
SCON	98h	Serial Control	FE/SM0	SM1	SM2	REN	TB8	RB8	ТІ	RI
SBUF	99h	Serial Data Buffer								
SADEN	B9h	Slave Address Mask								
SADDR	A9h	Slave Address								

Table 6. PCA SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
CCON	D8h	PCA Timer/Counter Control	CF	CR		CCF4	CCF3	CCF2	CCF1	CCF0
CMOD	D9h	PCA Timer/Counter Mode	CIDL					CPS1	CPS0	ECF
CL	E9h	PCA Timer/Counter Low byte								
СН	F9h	PCA Timer/Counter High byte								
CCAPM0 CCAPM1	DAh DBh	PCA Timer/Counter Mode 0 PCA Timer/Counter Mode 1		ECOM0 ECOM1	CAPP0 CAPP1	CAPN0 CAPN1	MAT0 MAT1	TOG0 TOG1	PWM0 PWM1	ECCF0 ECCF1
CCAP0H CCAP1H	FAh FBh	PCA Compare Capture Module 0 H PCA Compare Capture Module 1 H	CCAP0H7 CCAP1H7	CCAP0H6 CCAP1H6	CCAP0H5 CCAP1H5	CCAP0H4 CCAP1H4	CCAP0H3 CCAP1H3	CCAP0H2 CCAP1H2	CCAP0H1 CCAP1H1	CCAP0H0 CCAP1H0

Register

Table 12.CKCON RegisterCKCON (S:8Fh)Clock Control Register

7	6	5	4	3	2	1	0		
CANX2	WDX2	PCAX2	SIX2	T2X2	T1X2	T0X2	X2		
Bit Number	Bit Mnemonic	Description							
7	CANX2	CAN Clock ⁽ Clear to sele Set to select	1) ct 6 clock per 12 clock perio	iods per peripl ods per periph	neral clock cy eral clock cyc	cle. le.			
6	WDX2	Watchdog C Clear to sele Set to select	t lock ⁽¹⁾ ct 6 clock per 12 clock perio	iods per peripl ods per periph	neral clock cy eral clock cyc	cle. le.			
5	PCAX2	Programma Clear to sele Set to select	ble Counter A ct 6 clock per 12 clock perio	Array Clock ⁽¹ iods per peripl ods per periph) neral clock cy eral clock cyc	cle. le.			
4	SIX2	Enhanced U Clear to sele Set to select	ART clock (I ct 6 clock per 12 clock perio	MODE 0 and 2 iods per peripl ods per periph	2) ⁽¹⁾ neral clock cy eral clock cyc	cle. le.			
3	T2X2	Timer 2 Cloc Clear to sele Set to select	c k ⁽¹⁾ ct 6 clock per 12 clock perio	iods per peripl ods per periph	neral clock cy eral clock cyc	cle. le.			
2	T1X2	Timer 1 Cloc Clear to sele Set to select	c k ⁽¹⁾ ct 6 clock per 12 clock perio	iods per peripl ods per periph	neral clock cy eral clock cyc	cle. le.			
1	T0X2	Timer 0 Cloc Clear to sele Set to select	Fimer 0 Clock ⁽¹⁾ Clear to select 6 clock periods per peripheral clock cycle. Set to select 12 clock periods per peripheral clock cycle.						
0	X2	CPU Clock Clear to sele the periphera Set to select individual pe	ct 12 clock pe Ils. 6 clock period ripherals 'X2'	eriods per mac ds per machin bits.	hine cycle (S e cycle (X2 M	TD mode) for ode) and to en	CPU and all		

Note: 1. This control bit is validated when the CPU clock bit X2 is set; when X2 is low, this bit has no effect.

Reset Value = 0000 0000b

Program/Code Memory

The T89C51CC02 implement 16K Bytes of on-chip program/code memory.

The Flash memory increases EPROM and ROM functionality by in-circuit electrical erasure and programming. Thanks to the internal charge pump, the high voltage needed for programming or erasing Flash cells is generated on-chip using the standard V_{DD} voltage. Thus, the Flash memory can be programmed using only one voltage and allows In-System Programming (ISP). Hardware programming mode is also available using specific programming tool.

Figure 12. Program/Code Memory Organization

3FFFh	
	16K Bytes Internal Flash
0000h	

Flash Memory Architecture T89C51CC02 features two on-chip Flash memories:

- Flash memory FM0: containing 16K Bytes of program memory (user space) organized into 128 bytes pages,
- Flash memory FM1: 2K Bytes for boot loader and Application Programming Interfaces (API).

The FM0 can be program by both parallel programming and Serial ISP whereas FM1 supports only parallel programming by programmers. The ISP mode is detailed in the 'In-System Programming' section.

All Read/Write access operations on Flash memory by user application are managed by a set of API described in the 'In-System Programming' section.

Hardware Security (1 byte) — Extra Row (128 Bytes) — Column Latches (128 Bytes) —	$\begin{array}{c} \rightarrow \square \\ \rightarrow \square \\ \rightarrow \square \end{array}$
3FF	FFh
	16K Bytes
	Flash Memory User Space
	FM0
00	00h

2K Bytes Flash Memory Boot Space	FFFFh
FM1	F800h

FM1 mapped between F800h and FFFFh when bit ENBOOT is set in AUXR1 register

Figure 15. Flash and Extra row Programming Procedure

Hardware Security Byte

The following procedure is used to program the Hardware Security Byte space and is summarized in Figure 16:

- Set FPS and map Hardware byte (FCON = 0x0C)
- Save then disable the interrupts.
- Load DPTR at address 0000h.
- Load Accumulator register with the data to load.
- Execute the MOVX @DPTR, A instruction.
- Launch the programming by writing the data sequence 54h followed by A4h in FCON register. This step of the procedure must be executed from FM1. The end of the programming indicated by the FBusy flag cleared.
- Restore the interrupts

Reading the Flash Spaces

User	The following procedure is used to read the User space:
	 Read one byte in Accumulator by executing MOVC A,@A+DPTR with A+DPTR is the address of the code byte to read.
	Note: FCON must be cleared (00h) when not used.
Extra Row	The following procedure is used to read the Extra Row space and is summarized in Figure 17:
	 Map the Extra Row space by writing 02h in FCON register.
	 Read one byte in Accumulator by executing MOVC A,@A+DPTR with A= 0 & DPTR= FF80h to FFFFh.
	Clear FCON to unmap the Extra Row.
Hardware Security Byte	The following procedure is used to read the Hardware Security Byte and is sum- marized in Figure 17:
	 Map the Hardware Security space by writing 04h in FCON register.
	 Read the byte in Accumulator by executing MOVC A,@A+DPTR with A= 0 & DPTR= 0000h.
	Clear FCON to unmap the Hardware Security Byte.

Table 36. PCON RegisterPCON (S:87h)Power Control Register

7	6	5	4	3	2	1	0			
SMOD1	SMOD0	-	POF	GF1	GF0	PD	IDL			
Bit Number	Bit Mnemonic	Description	Description							
7	SMOD1	Serial port N Set to select	lode bit 1 double baud	rate in mode ?	1, 2 or 3.					
6	SMOD0	Serial port M Clear to sele Set to select	lode bit 0 ct SM0 bit in FE bit in SC0	SCON registe DN register.	r.					
5	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.				
4	POF	Power-off F Clear to reco Set by hardw software.	a g gnize next re rare when V _{Cr}	set type. _C rises from 0 t	o its nominal v	voltage. Can a	also be set by			
3	GF1	General pur Cleared by u Set by user f	pose Flag ser for gener or general pu	al purpose usa rpose usage.	age.					
2	GF0	General pur Cleared by u Set by user f	General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage.							
1	PD	Power-down Cleared by h Set to enter	Power-down Mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.							
0	IDL	Idle Mode b Clear by hard Set to enter i	it dware when i dle mode.	nterrupt or res	et occurs.					

Reset Value = 00X1 0000b Not bit addressable

I.

Table 58. CANTEC RegisterCANTEC (S:9Ch Read Only) – CAN Transmit Error Counter

7	(6	5	4	3	2	1	0
TEC7	TE	C6	TEC5	TEC4	TEC3	TEC2	TEC1	TEC0
Bit Numb	er	Bit	Mnemonic	Description				
7 - 0			TEC7:0	Transmit Err See Figure 3	or Counter			

Reset Value = 00h

Table 59. CANREC RegisterCANREC (S:9Dh Read Only) – CAN Reception Error Counter

7		6	5	4	3	2	1	0
REC7	RE	C6	REC5	REC4	REC3	REC2	REC1	REC0
Bit Numb	er	Bit	Mnemonic	Description				
7 - 0			REC7:0	Reception E See Figure 3	rror Counter 8			

Reset Value = 00h

T89C51CC02

Table 76. CANIDT3 Register for V2.0 Part BCANIDT3 for V2.0 Part B (S:BEh)CAN Identifier Tag Registers 3

7		6	5	4	3	2	1	0
IDT 12	ID	Г 11	IDT 10	IDT 9	IDT 8	IDT 7	IDT 6	IDT 5
Bit Numb	ber	Bit	Mnemonic	Description				
7 - 0			IDT12:5	IDentifier Ta See Figure 3	g Value 9.			

No default value after reset.

Table 77. CANIDT4 Register for V2.0 Part BCANIDT4 for V2.0 Part B (S:BFh)CAN Identifier Tag Registers 4

7	6	6	5	4	3	2	1	0		
IDT 4	ID.	Т 3	IDT 2	IDT 1 IDT 0 RTRTAG		RB1TAG	RB0TAG			
Bit Number		Bit	Vnemonic	Description						
7 - 3			IDT4:0	IDentifier Tag Value See Figure 39.						
2		F	RTRTAG	Remote Trar	smission Re	equest Tag Va	lue			
1		RB1TAG		Reserved bit 1 tag value.						
0		F	RB0TAG	Reserved bit 0 tag value.						

No default value after reset.

Table 90. CANSTMPH RegisterCANSTMPH (S:AFh Read Only)CAN Stamp Timer High

	7		6	5	4	3	2	1	0
l	TIMSTMP 15	TIMS 1	STMP 4	TIMSTMP 13	TIMSTMP 12	TIMSTMP 11	TIMSTMP 10	TIMSTMP 9	TIMSTMP 8
ĺ	Bit Number		Bit	Mnemonic	Description				
ſ	7 - 0		TIM	ISTMP15:8	High byte of See Figure 4	Time Stamp			

No default value after reset

Table 91. CANSTMPL RegisterCANSTMPL (S:AEh Read Only)CAN Stamp Timer Low

7	6		5	4	3	2	1	0	
TIMSTMP 7	TIMSTMP 7 TIMSTMP 6 TIMSTMP		TIMSTMP 5	TIMSTMP 4	TIMSTMP 3	TIMSTMP 2	TIMSTMP 1	TIMSTMP 0	
Bit Numb	ber	Bit Mnemonic		Description					
7 - 0		TIN	ISTMP7:0	Low byte of See Figure 4	Time Stamp 0.				

No default value after reset

Table 92. CANTTCH RegisterCANTTCH (S:A5h Read Only)CAN TTC Timer High

7	6	5	4	3	2	1	0
TIMTTC 15	TIMTTC 14	TIMTTC 13	TIMTTC 12	TIMTTC 11	TIMTTC 10	TIMTTC 9	TIMTTC 8

Bit Number	Bit Mnemonic	Description
7 - 0	TIMTTC15:8	High byte of TTC Timer See Figure 40.

Reset Value = 0000 0000b

Table 93. CANTTCL RegisterCANTTCL (S:A4h Read Only)CAN TTC Timer Low

7	(6	5	4	3	2	1	0
TIMTTC 7	TIMTTC 7 TIMTT		TIMTTC 5	TIMTTC 4	TIMTTC 3	TIMTTC 2	TIMTTC 1	TIMTTC 0
Bit Numb	er	Bit	Vinemonic	Description				
7 - 0		TI	MTTC7:0	Low Byte of See Figure 4	TTC Timer 0.			

Reset Value = 0000 0000b

Table 95. CCON Register

CCON (S:D8h) PCA Counter Control Register

7	6	5	4	3	2	1	0		
CF	CR	-	-	-	-	CCF1	CCF0		
Bit Numb	ber B	Bit Mnemonic	Description						
7		CF	PCA Timer/Counter Overflow flag Set by hardware when the PCA Timer/Counter rolls over. This generates a PCA interrupt request if the ECF bit in CMOD register is set. Must be cleared by software.						
6 CR PCA Timer/Counter Run Control bit Clear to turn the PCA Timer/Counter off. Set to turn the PCA Timer/Counter on.									
5-2		-	Reserved The value rebits.	ad from these	bist are indet	erminate. Do i	not set these		
1		CCF1	PCA Module 1 Compare/Capture Flag Set by hardware when a match or capture occurs. This generates a PCA interrupt request if the ECCF 1 bit in CCAPM 1 register is set. Must be cleared by software.						
0		CCF0	PCA Module 0 Compare/Capture Flag Set by hardware when a match or capture occurs. This generates a PCA interrupt request if the ECCF 0 bit in CCAPM 0 register is set. Must be cleared by software.						

Reset Value = 00xx xx00b

Figure 48. ADC Description

Figure 49 shows the timing diagram of a complete conversion. For simplicity, the figure depicts the waveforms in idealized form and do not provide precise timing information. For ADC characteristics and timing parameters refer to the section "AC Characteristics" of this datasheet.

Figure 49. Timing Diagram

Note: Tsetup min, see the AC Parameter for A/D conversion.

Tconv = 11 clock ADC = 1sample and hold + 10-bit conversion

The user must ensure that Tsetup time between setting ADEN and the start of the first conversion.

ADC Converter Operation

A start of single A/D conversion is triggered by setting bit ADSST (ADCON.3).

After completion of the A/D conversion, the ADSST bit is cleared by hardware.

The end-of-conversion flag ADEOC (ADCON.4) is set when the value of conversion is available in ADDH and ADDL, it must be cleared by software. If the bit EADC (IEN1.1) is set, an interrupt occur when flag ADEOC is set (See Figure 51). Clear this flag for rearming the interrupt.

Note: Always leave Tsetup time before starting a conversion unless ADEN is permanently high. In this case one should wait Tsetup only before the first conversion

T89C51CC02

Interrupt System

Introduction

The CAN Controller has a total of 10 interrupt vectors: two external interrupts ($\overline{INT0}$ and $\overline{INT1}$), three timer interrupts (timers 0, 1 and 2), a serial port interrupt, a PCA, a CAN interrupt, a timer overrun interrupt and an ADC. These interrupts are shown below.

Table 111. IPH0 Register IPH0 (B7h) Interrupt High Priority Register

7	6	5	4	3	2	1	0
-	РРСН	PT2H	PSH	PT1H	PX1H	РТ0Н	PX0H
Bit Number	Bit Mnemonic	Description					
7	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.	
6	РРСН	PCA Interru PPCH PPC 0 0 1 0 1 1	pt Priority Le <u>Priority level</u> Lowest Highest priori	ty	nificant bit		
5	PT2H	Timer 2 Ove PT2H PT2 0 0 0 1 1 0 1 1	<pre>#rflow Interrup Priority Leve Lowest Highest</pre>	pt High Prior <u>I</u>	ity bit		
4	PSH	Serial Port I PSH PS 0 0 0 1 1 0 1 1	High Priority Priority Leve Lowest Highest	bit <u>el</u>			
3	PT1H	Timer 1 Ove PT1H PT1 0 0 0 1 1 0 1 1	erflow Interru Priority Leve Lowest Highest	pt High Prior <u>1</u>	ity bit		
2	PX1H	External Internation PX1H PX1 0 0 0 1 1 0 1 1	errupt 1 High Priority Leve Lowest Highest	Priority bit <u>el</u>			
1	РТОН	Timer 0 Ove PT0H PT0 0 0 0 1 1 0 1	Priority Leve Lowest	pt High Prior <u>el</u>	ity bit		
0	РХОН	External Internation PX0H PX0 0 0 0 1 1 0 1 1	errupt 0 High <u>Priority Leve</u> Lowest Highest	Priority bit 1			

Reset Value = X000 0000b

Maximum I_{OL} per 8-bit port: Ports 1, 2 and 3: 15 mA Maximum total I_{OL} for all output pins: 71 mA If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

- 4. Power-down I_{CC} is measured with all output pins disconnected; XTAL2 NC.; RST = V_{SS} (See Figure 57.).
- Idle I_{CC} is measured with all output pins disconnected; XTAL1 driven with T_{CLCH}, T_{CHCL} = 5 ns, V_{IL} = V_{SS} + 0.5V, V_{IH} = V_{CC} 0.5V; XTAL2 N.C; RST = V_{SS} (See Figure 56.).
- Operating I_{CC} is measured with all output pins disconnected; XTAL1 driven with T_{CLCH}, T_{CHCL} = 5 ns (See Figure 58.), V_{IL} = V_{SS} + 0.5V, V_{IH} = V_{CC} 0.5V; XTAL2 N.C.; RST = V_{CC}. I_{CC} would be slightly higher if a crystal oscillator used (See Figure 55.).

All other pins are disconnected.

All other pins are disconnected

All other pins are disconnected.

DC Parameters for A/D Converter

Table 114. DC Parameters for AD Converter in Precision Conversion

Symbol	Parameter	Min	Typ ⁽¹⁾	Max	Unit	Test Conditions
AVin	Analog input voltage	Vss- 0.2		Max Vref + 0.6	V	
VaVcc	Analog supply voltage	Vref	Vcc	Vcc + 10%	V	
Rref ⁽²⁾	Resistance between Varef and Vss	12	16	24	KΩ	
Varef	Reference voltage	2.40		3.00	V	
Cai	Analog input Capacitance		60		pF	During sampling
Rai	Analog input Resistor			400	Ω	During sampling
INL	Integral non linearity		1	2	lsb	
DNL	Differential non linearity		0.5	1	lsb	
OE	Offset error	-2		2	lsb	

Notes: 1. Typicals are based on a limited number of samples and are not guaranteed.

2. With ADC enabled.

For timing purposes as port pin is no longer floating when a 100 mV change from load voltage occurs and begins to float when a 100 mV change from the loaded V_{OH}/V_{OL} level occurs. $I_{OL}/I_{OH} \ge \pm 20 \text{mA}$.

Clock Waveforms

Valid in normal clock mode. In X2 Mode XTAL2 must be changed to XTAL2/2.

Flash Memory

Table 119. Memory AC Timing

 V_{cc} = 3.0V to 5.5V, T_A = -40°C to +85°C

Symbol	Parameter	Min	Тур	Max	Unit
T _{BHBL}	Flash Internal Busy (Programming) Time		13	17	ms
N _{FCY}	Number of Flash Erase/Write Cycles			100 000	cycles
T _{FDR}	Flash Data Retention Time			10	years

Figure 59. Flash Memory - Internal Busy Waveforms

A/D Converter

Table 120. AC Parameters for A/D Conversion

Symbol	Parameter	Min	Тур	Max	Unit
T _{SETUP}		4			μs
ADC Clock Frequency			700		KHz

T89C51CC02

SOIC24

	MM		I NCH	
A	2.35	2.65	. 093	. 104
A1	0.10	0.30	. 004	. 012
В	0.35	0.49	. 014	.019
С	0.23	0.32	.009	. 013
D	15.20	15.60	. 599	. 61 4
E	7.40	7.60	. 291	. 299
e	1.27	BZC	.050	BSC
н	10.00	10.65	. 394	. 419
h	0.25	0.75	. 010	. 029
L	0.40	1.27	. 016	. 050
N	24		24	
۵	0°		8°	

