
Microchip Technology - T89C51CC02UA-TISIM Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor 80C51

Core Size 8-Bit

Speed 40MHz

Connectivity CANbus, UART/USART

Peripherals POR, PWM, WDT

Number of I/O 20

Program Memory Size 16KB (16K x 8)

Program Memory Type FLASH

EEPROM Size 2K x 8

RAM Size 512 x 8

Voltage - Supply (Vcc/Vdd) 3V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type External

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 28-SOIC (0.295", 7.50mm Width)

Supplier Device Package 28-SO

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/t89c51cc02ua-tisim

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/t89c51cc02ua-tisim-4427265
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

3

T89C51CC02

4126F–CAN–12/03

Pin Configurations

P3.4/T0
P3.3/INT1

P4.1/RxDC

 1

P3.7

P3.2/INT0

P1.5/AN5

P1.7/AN7
P1.6/AN6

P2.0

VAREF

VAVCC
VAGND

P1.0/AN0/T2
P1.1/AN1/T2EX
P1.2/AN2/ECI

 P1.3/AN3/CEX0
P1.4/AN4/CEX1

2
 3
 4

 5
6
7
8

 9
 10
 11
12

 28
27
26
25

24
23
22
21

20
 19
 18

17

RESET

VCC
VSS

P4.0/TxDC

P2.1

P3.6
P3.5/T1

P3.1/TxD 13

P3.0/RxD 14

16 XTAL1

15 XTAL2

SO28

P1.3/AN3/CEX0

P
1.

2/
A

N
2/

E
C

I

P
1.

1/
A

N
1/

T
2E

X
P

1.
0/

A
N

 0
/T

2
VA

R
E

F
VA

G
N

D

RESET

V
S

S
V

C
C

X
TA

L1

X
TA

L2

P3.7

P4.0/TxDC

P
4.

1/
R

xD
C

P2.1

P3.6

25
24
23
22
21
20
19

5
6
7
8
9
10
11

12 13 14 15 16 17 18

4 3 2

P2.0

P1.4/AN4/CEX1
P1.5/AN5
P1.6/AN6
P1.7/AN7

P
3.

0/
R

xD

P
3.

1/
T

xD

P
3.

2/
IN

T
0

P3.3/INT1
P3.4/T0
P3.5/T1

1 28 27 26

VA
V

C
C

PLCC-28

P3.1/TxD
P3.0/RxD

P4.1/RxDC

 1

P3.4/T0

XTAL2

P1.5/AN5

P1.7/AN7
P1.6/AN6

RESET

VAREF

VAVCC
VAGND

P1.0/AN0/T2
P1.1/AN1/T2EX
P1.2/AN2/ECI

 P1.3/AN3/CEX0

P1.4/AN4/CEX1

2

 3
 4

 5
6
7
8

 9
 10
 11
12

 24
23
22
21

20
19
18
17
16
 15
 14

13

VSS

XTAL1
VCC

P4.0/TxDC

P3.5/T1

P3.3/INT1
P3.2/INT0

SO24

8 T89C51CC02
4126F–CAN–12/03

Read-Modify-Write
Instructions

Some instructions read the latch data rather than the pin data. The latch based instruc-
tions read the data, modify the data and then rewrite the latch. These are called ’Read-
Modify-Write’ instructions. Below is a complete list of these special instructions (See
Table 1). When the destination operand is a Port or a Port bit, these instructions read
the latch rather than the pin:

It is not obvious that the last three instructions in this list are Read-Modify-Write instruc-
tions. These instructions read the port (all 8 bits), modify the specifically addressed bit
and write the new byte back to the latch. These Read-Modify-Write instructions are
directed to the latch rather than the pin in order to avoid possible misinterpretation of
voltage (and therefore, logic) levels at the pin. For example, a Port bit used to drive the
base of an external bipolar transistor cannot rise above the transistor’s base-emitter
junction voltage (a value lower than VIL). With a logic one written to the bit, attempts by
the CPU to read the Port at the pin are misinterpreted as logic zero. A read of the latch
rather than the pins returns the correct logic one value.

Quasi Bi-directional Port
Operation

Port 1, Port 3 and Port 4 have fixed internal pull-ups and are referred to as ’quasi-bidi-
rectional’ Ports. When configured as an input, the pin impedance appears as logic one
and sources current in response to an external logic zero condition. Resets write logic
one to all Port latches. If logical zero is subsequently written to a Port latch, it can be
returned to input conditions by a logic one written to the latch.
Note: Port latch values change near the end of Read-Modify-Write insruction cycles. Output

buffers (and therefore the pin state) are updated early in the instruction after Read-Mod-
ify-Write instruction cycle.

Logical zero-to-one transitions in Port 1, Port 3 and Port 4 use an additional pull-up (p1)
to aid this logic transition See Figure 2. This increases switch speed. This extra pull-up
sources 100 times normal internal circuit current during 2 oscillator clock periods. The
internal pull-ups are field-effect transistors rather than linear resistors. Pull-ups consist
of three p-channel FET (pFET) devices. A pFET is on when the gate senses logic zero
and off when the gate senses logic one. pFET #1 is turned on for two oscillator periods
immediately after a zero-to-one transition in the Port latch. A logic one at the Port pin
turns on pFET #3 (a weak pull-up) through the inverter. This inverter and pFET pair form
a latch to drive logic one. pFET #2 is a very weak pull-up switched on whenever the

Table 1. Read/Modify/Write Instructions

Instruction Description Example

ANL Logical AND ANL P1, A

ORL Logical OR ORL P2, A

XRL Logical EX-OR XRL P3, A

JBC Jump if bit = 1 and clear bit JBC P1.1, LABEL

CPL Complement bit CPL P3.0

INC Increment INC P2

DEC Decrement DEC P2

DJNZ Decrement and jump if not zero DJNZ P3, LABEL

MOV Px.y, C Move carry bit to bit y of Port x MOV P1.5, C

CLR Px.y Clear bit y of Port x CLR P2.4

SET Px.y Set bit y of Port x SET P3.3

10 T89C51CC02
4126F–CAN–12/03

SFR Mapping Tables 3 through Table 11 show the Special Function Registers (SFRs) of the
T89C51CC02.

Table 2. C51 Core SFRs

Mnemonic Add Name 7 6 5 4 3 2 1 0

ACC E0h Accumulator

B F0h B Register

PSW D0h Program Status Word CY AC F0 RS1 RS0 OV F1 P

SP 81h Stack Pointer

DPL 82h
Data Pointer Low
byte

LSB of DPTR

DPH 83h
Data Pointer High
byte

MSB of DPTR

Table 3. I/O Port SFRs

Mnemonic Add Name 7 6 5 4 3 2 1 0

P1 90h Port 1

P2 A0h Port 2 (x2)

P3 B0h Port 3

P4 C0h Port 4 (x2)

Table 4. Timers SFRs

Mnemonic Add Name 7 6 5 4 3 2 1 0

TH0 8Ch
Timer/Counter 0 High
byte

TL0 8Ah
Timer/Counter 0 Low
byte

TH1 8Dh
Timer/Counter 1 High
byte

TL1 8Bh
Timer/Counter 1 Low
byte

TH2 CDh
Timer/Counter 2 High
byte

TL2 CCh
Timer/Counter 2 Low
byte

TCON 88h
Timer/Counter 0 and
1 control

TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

TMOD 89h
Timer/Counter 0 and
1 Modes

GATE1 C/T1# M11 M01 GATE0 C/T0# M10 M00

20 T89C51CC02
4126F–CAN–12/03

Power Management Two power reduction modes are implemented in the T89C51CC02: the Idle mode and
the Power-down mode. These modes are detailed in the following sections. In addition
to these power reduction modes, the clocks of the core and peripherals can be dynami-
cally divided by 2 using the X2 Mode detailed in Section “Clock”.

Reset Pin In order to start-up (cold reset) or to restart (warm reset) properly the microcontroller, a
high level has to be applied on the RST pin. A bad level leads to a wrong initialisation of
the internal registers like SFRs, PC, etc. and to unpredictable behavior of the microcon-
troller. A warm reset can be applied either directly on the RST pin or indirectly by an
internal reset source such as a watchdog, PCA, timer, etc.

At Power-up (cold reset) Two conditions are required before enabling a CPU start-up:

• VDD must reach the specified VDD range,

• The level on xtal1 input must be outside the specification (VIH, VIL).

If one of these two conditions are not met, the microcontroller does not start correctly
and can execute an instruction fetch from anywhere in the program space. An active
level applied on the RST pin must be maintained until both of the above conditions are
met. A reset is active when the level VIH1 is reached and when the pulse width covers
the period of time where VDD and the oscillator are not stabilized. Two parameters have
to be taken into account to determine the reset pulse width:

• VDD rise time (vddrst),

• Oscillator startup time (oscrst).

To determine the capacitor the highest value of these two parameters has to be chosen.
The reset circuitry is shown in Figure 5.

Figure 5. Reset Circuitry

Table 13 and Table 14 give some typical examples for three values of VDD rise times,
two values of oscillator start-up time and two pull-down resistor values.

Table 13. Minimum Reset Capacitor for a 50K Pull-down Resistor

oscrst/vddrst 1ms 10ms 100ms

5ms 820nF 1.2µF 12µF

20ms 2.7µF 3.9µF 12µF

0

VDD

Rrst

Crst

RST pin

Internal reset

Reset input circuitry

21

T89C51CC02

4126F–CAN–12/03

Table 14. Minimum Reset Capacitor for a 15k Pull-down Resistor

Note: These values assume VDD starts from 0v to the nominal value. If the time between two
on/off sequences is too fast, the power-supply decoupling capacitors may not be fully
discharged, leading to a bad reset sequence.

During a Normal
Operation (Warm Reset)

Reset pin must be maintained for at least 2 machine cycles (24 oscillator clock periods)
to apply a reset sequence during normal operation. The number of clock periods is
mode independent (X2 or X1).

Watchdog Reset A 1K resistor must be added in series with the capacitor to allow the use of watchdog
reset pulse output on the RST pin or when an external power-supply supervisor is used.
Figure 6 shows the reset circuitry when a capacitor is used.

Figure 6. Reset Circuitry for a Watchdog Configuration

Figure 7 shows the reset circuitry when an external reset circuit is used.

Figure 7. Reset Circuitry Example Using an External Reset Circuit

oscrst/vddrst 1ms 10ms 100ms

5ms 2.7µF 4.7µF 47µF

20ms 10µF 15µF 47µF

VDD

Rrst

Crst

1k RST pin

Internal reset

watchdog

To other on-board circuitry

Reset input circuitry

VDD

Rrst

1k RST pin

Internal reset

watchdog

To other on-board circuitry

Reset input circuitry

RST

External reset
circuit

25

T89C51CC02

4126F–CAN–12/03

Data Memory The T89C51CC02 provides data memory access in two different spaces:

The internal space mapped in three separate segments:

• The lower 128 Bytes RAM segment.

• The upper 128 Bytes RAM segment.

• The expanded 256 Bytes RAM segment (XRAM).

A fourth internal segment is available but dedicated to Special Function Registers,
SFRs, (addresses 80h to FFh) accessible by direct addressing mode.

Figure 9 shows the internal data memory spaces organization.

Figure 9. Internal memory - RAM

Internal Space

Lower 128 Bytes RAM The lower 128 Bytes of RAM (See Figure 10) are accessible from address 00h to 7Fh
using direct or indirect addressing modes. The lowest 32 Bytes are grouped into 4
banks of 8 registers (R0 to R7). Two bits RS0 and RS1 in PSW register (See Table 17)
select which bank is in use according to Table 16. This allows more efficient use of code
space, since register instructions are shorter than instructions that use direct address-
ing, and can be used for context switching in interrupt service routines.

Table 16. Register Bank Selection

The next 16 Bytes above the register banks form a block of bit-addressable memory
space. The C51 instruction set includes a wide selection of singlebit instructions, and
the 128 bits in this area can be directly addressed by these instructions. The bit
addresses in this area are 00h to 7Fh.

256 Bytes

Upper
128 Bytes

Internal RAM

Lower
128 Bytes

Internal RAM

Special
Function
Registers

80h 80h

00h

FFh FFh

00h

FFh

Direct Addressing

Addressing

7Fh
Internal XRAM

Direct or Indirect

Indirect Addressing

RS1 RS0 Description

0 0 Register bank 0 from 00h to 07h

0 1 Register bank 0 from 08h to 0Fh

1 0 Register bank 0 from 10h to 17h

1 1 Register bank 0 from 18h to 1Fh

50 T89C51CC02
4126F–CAN–12/03

Figure 22. UART Timing in Mode 1

Figure 23. UART Timing in Modes 2 and 3

Automatic Address
Recognition

The automatic address recognition feature is enabled when the multiprocessor commu-
nication feature is enabled (SM2 bit in SCON register is set).

Implemented in the hardware, automatic address recognition enhances the multiproces-
sor communication feature by allowing the serial port to examine the address of each
incoming command frame. Only when the serial port recognizes its own address will the
receiver set the RI bit in the SCON register to generate an interrupt. This ensures that
the CPU is not interrupted by command frames addressed to other devices.
If necessary, the user can enable the automatic address recognition feature in mode 1.
In this configuration, the stop bit takes the place of the ninth data bit. bit RI is set only
when the received command frame address matches the device’s address and is termi-
nated by a valid stop bit.

To support automatic address recognition, a device is identified by a given address and
a broadcast address.
Note: The multiprocessor communication and automatic address recognition features cannot

be enabled in mode 0 (i.e. setting SM2 bit in SCON register in mode 0 has no effect).

Given Address Each device has an individual address that is specified in the SADDR register; the
SADEN register is a mask byte that contains don’t-care bits (defined by zeros) to form
the device’s given address. The don’t-care bits provide the flexibility to address one or
more slaves at a time. The following example illustrates how a given address is formed.
To address a device by its individual address, the SADEN mask byte must be 1111
1111b.
For example:

SADDR0101 0110b
SADEN1111 1100b

Given0101 01XXb

Data Byte

RI
SMOD0 = x

Stop
bit

Start
bit

RXD D7D6D5D4D3D2D1D0

FE
SMOD0 = 1

RI
SMOD0 = 0

Data Byte Ninth
bit

Stop
bit

Start
bit

RXD D8D7D6D5D4D3D2D1D0

RI
SMOD0 = 1

FE
SMOD0 = 1

55

T89C51CC02

4126F–CAN–12/03

Timers/Counters The T89C51CC02 implements two general-purpose, 16-bit Timers/Counters. Such are
identified as Timer 0 and Timer 1, and can be independently configured to operate in a
variety of modes as a Timer or an event Counter. When operating as a Timer, the
Timer/Counter runs for a programmed length of time, then issues an interrupt request.
When operating as a Counter, the Timer/Counter counts negative transitions on an
external pin. After a preset number of counts, the Counter issues an interrupt request.
The various operating modes of each Timer/Counter are described in the following
sections.

Timer/Counter
Operations

A basic operation is Timer registers THx and TLx (x = 0, 1) connected in cascade to
form a 16-bit Timer. Setting the run control bit (TRx) in TCON register (See Figure 37)
turns the Timer on by allowing the selected input to increment TLx. When TLx overflows
it increments THx; when THx overflows it sets the Timer overflow flag (TFx) in TCON
register. Setting the TRx does not clear the THx and TLx Timer registers. Timer regis-
ters can be accessed to obtain the current count or to enter preset values. They can be
read at any time but TRx bit must be cleared to preset their values, otherwise the behav-
ior of the Timer/Counter is unpredictable.

The C/Tx# control bit selects Timer operation or Counter operation by selecting the
divided-down peripheral clock or external pin Tx as the source for the counted signal.
TRx bit must be cleared when changing the mode of operation, otherwise the behavior
of the Timer/Counter is unpredictable.
For Timer operation (C/Tx# = 0), the Timer register counts the divided-down peripheral
clock. The Timer register is incremented once every peripheral cycle (6 peripheral clock
periods). The Timer clock rate is fPER/6, i.e. fOSC/12 in standard mode or fOSC/6 in X2
Mode.

For Counter operation (C/Tx# = 1), the Timer register counts the negative transitions on
the Tx external input pin. The external input is sampled every peripheral cycles. When
the sample is high in one cycle and low in the next one, the Counter is incremented.
Since it takes 2 cycles (12 peripheral clock periods) to recognize a negative transition,
the maximum count rate is fPER/12, i.e. fOSC/24 in standard mode or fOSC/12 in X2 Mode.
There are no restrictions on the duty cycle of the external input signal, but to ensure that
a given level is sampled at least once before it changes, it should be held for at least
one full peripheral cycle.

Timer 0 Timer 0 functions as either a Timer or event Counter in four modes of operation.
Figure 24 through Figure 27 show the logical configuration of each mode.

Timer 0 is controlled by the four lower bits of TMOD register (See Figure 38) and bits 0,
1, 4 and 5 of TCON register (See Figure 37). TMOD register selects the method of
Timer gating (GATE0), Timer or Counter operation (T/C0#) and mode of operation (M10
and M00). TCON register provides Timer 0 control functions: overflow flag (TF0), run
control bit (TR0), interrupt flag (IE0) and interrupt type control bit (IT0).
For normal Timer operation (GATE0 = 0), setting TR0 allows TL0 to be incremented by
the selected input. Setting GATE0 and TR0 allows external pin INT0# to control Timer
operation.

Timer 0 overflow (count rolls over from all 1s to all 0s) sets TF0 flag generating an inter-
rupt request.

It is important to stop Timer/Counter before changing mode.

58 T89C51CC02
4126F–CAN–12/03

• For normal Timer operation (GATE1= 0), setting TR1 allows TL1 to be incremented
by the selected input. Setting GATE1 and TR1 allows external pin INT1# to control
Timer operation.

• Timer 1 overflow (count rolls over from all 1s to all 0s) sets the TF1 flag generating
an interrupt request.

• When Timer 0 is in mode 3, it uses Timer 1’s overflow flag (TF1) and run control bit
(TR1). For this situation, use Timer 1 only for applications that do not require an
interrupt (such as a Baud Rate Generator for the Serial Port) and switch Timer 1 in
and out of mode 3 to turn it off and on.

• It is important to stop Timer/Counter before changing mode.

Mode 0 (13-bit Timer) Mode 0 configures Timer 1 as a 13-bit Timer, which is set up as an 8-bit Timer (TH1 reg-
ister) with a modulo-32 prescaler implemented with the lower 5 bits of the TL1 register
(See Figure 24). The upper 3 bits of TL1 register are ignored. Prescaler overflow incre-
ments TH1 register.

Mode 1 (16-bit Timer) Mode 1 configures Timer 1 as a 16-bit Timer with TH1 and TL1 registers connected in
cascade (See Figure 25). The selected input increments TL1 register.

Mode 2 (8-bit Timer with Auto-
Reload)

Mode 2 configures Timer 1 as an 8-bit Timer (TL1 register) with automatic reload from
TH1 register on overflow (See Figure 26). TL1 overflow sets TF1 flag in TCON register
and reloads TL1 with the contents of TH1, which is preset by software. The reload
leaves TH1 unchanged.

Mode 3 (Halt) Placing Timer 1 in mode 3 causes it to halt and hold its count. This can be used to halt
Timer 1 when TR1 run control bit is not available i.e. when Timer 0 is in mode 3.

Interrupt Each Timer handles one interrupt source that is the timer overflow flag TF0 or TF1. This
flag is set every time an overflow occurs. Flags are cleared when vectoring to the Timer
interrupt routine. Interrupts are enabled by setting ETx bit in IEN0 register. This assumes
interrupts are globally enabled by setting EA bit in IEN0 register.

Figure 28. Timer Interrupt System

TF0
TCON.5

ET0
IEN0.1

Timer 0
Interrupt Request

TF1
TCON.7

ET1
IEN0.3

Timer 1
Interrupt Request

59

T89C51CC02

4126F–CAN–12/03

Registers Table 37. TCON Register
TCON (S:88h)
Timer/Counter Control Register

Reset Value = 0000 0000b

7 6 5 4 3 2 1 0

TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

Bit
Number

Bit
Mnemonic Description

7 TF1
Timer 1 Overflow Flag
Cleared by hardware when processor vectors to interrupt routine.
Set by hardware on Timer/Counter overflow, when Timer 1 register overflows.

6 TR1
Timer 1 Run Control bit
Clear to turn off Timer/Counter 1.
Set to turn on Timer/Counter 1.

5 TF0
Timer 0 Overflow Flag
Cleared by hardware when processor vectors to interrupt routine.
Set by hardware on Timer/Counter overflow, when Timer 0 register overflows.

4 TR0
Timer 0 Run Control bit
Clear to turn off Timer/Counter 0.
Set to turn on Timer/Counter 0.

3 IE1
Interrupt 1 Edge Flag
Cleared by hardware when interrupt is processed if edge-triggered (See IT1).
Set by hardware when external interrupt is detected on INT1# pin.

2 IT1
Interrupt 1 Type Control bit
Clear to select low level active (level triggered) for external interrupt 1 (INT1#).
Set to select falling edge active (edge triggered) for external interrupt 1.

1 IE0
Interrupt 0 Edge Flag
Cleared by hardware when interrupt is processed if edge-triggered (See IT0).
Set by hardware when external interrupt is detected on INT0# pin.

0 IT0
Interrupt 0 Type Control bit
Clear to select low level active (level triggered) for external interrupt 0 (INT0#).
Set to select falling edge active (edge triggered) for external interrupt 0.

68 T89C51CC02
4126F–CAN–12/03

Watchdog Programming The three lower bits (S0, S1, S2) located into WDTPRG register permit to program the
WDT duration.

Table 49. Machine Cycle Count

To compute WD Timeout, the following formula is applied:

Note: Svalue represents the decimal value of (S2 S1 S0)

Find Hereafter computed Timeout values for fOSCXTAL = 12 MHz in X1 mode
Table 50. Timeout Computation

S2 S1 S0 Machine Cycle Count

0 0 0 214 - 1

0 0 1 215 - 1

0 1 0 216 - 1

0 1 1 217 - 1

1 0 0 218 - 1

1 0 1 219 - 1

1 1 0 220 - 1

1 1 1 221 - 1

S2 S1 S0 fOSC=12 MHz fOSC=16MHz fOSC=20 MHz

0 0 0 16.38 ms 12.28 ms 9.82 ms

0 0 1 32.77 ms 24.57 ms 19.66 ms

0 1 0 65.54 ms 49.14 ms 39.32 ms

0 1 1 131.07 ms 98.28 ms 78.64 ms

1 0 0 262.14 ms 196.56 ms 157.28 ms

1 0 1 524.29 ms 393.12 ms 314.56 ms

1 1 0 1.05 s 786.24 ms 629.12 ms

1 1 1 2.10 s 1.57 s 1.25 ms

FTime Out
F
wd

12 2
14

2
Svalue×() 1–()×

---=–

71

T89C51CC02

4126F–CAN–12/03

CAN Controller The CAN Controller provides all the features required to implement the serial communi-
cation protocol CAN as defined by BOSCH GmbH. The CAN specification as referred to
by ISO/11898 (2.0A & 2.0B) for high speed and ISO/11519-2 for low speed. The CAN
Controller is able to handle all types of frames (Data, Remote, Error and Overload) and
achieves a bitrate of 1-Mbit/s at 8 MHz1 Crystal frequency in X2 Mode.

Note: 1. At BRP = 1 sampling point will be fixed.

CAN Controller
Description

The CAN controller accesses are made through SFR.
Several operations are possible by SFR:

• arithmetic and logic operations, transfers and program control (SFR is accessible by
direct addressing).

• 4 independent message objects are implemented, a pagination system manages
their accesses.

Any message object can be programmed in a reception buffer block (even non-consec-
utive buffers). For the reception of defined messages one or several receiver message
objects can be masked without participating in the buffer feature. An IT is generated
when the buffer is full. The frames following the buffer-full interrupt will not be taken into
account until at least one of the buffer message objects is re-enabled in reception.
Higher priority of a message object for reception or transmission is given to the lower
message object number.

The programmable 16-bit Timer (CANTIMER) is used to stamp each received and sent
message in the CANSTMP register. This timer starts counting as soon as the CAN con-
troller is enabled by the ENA bit in the CANGCON register.

The Time Trigger Communication (TTC) protocol is supported by the T89C51CC02.

Figure 32. CAN Controller Block Diagram

bit
Stuffing /Destuffing

Cyclic
Redundancy Check

Receive Transmit

Error
Counter
Rec/Tec

bit
Timing
Logic

Page
Register DPR(Mailbox + Registers) Priority

Encoder

µC-Core Interface

Core
Control

Interface
Bus

TxDC
RxDC

75

T89C51CC02

4126F–CAN–12/03

Figure 35. CAN Controller Interrupt Structure

To enable a transmission interrupt:

• Enable General CAN IT in the interrupt system register

• Enable interrupt by message object, EICHi

• Enable transmission interrupt, ENTX

To enable a reception interrupt:

• Enable General CAN IT in the interrupt system register

• Enable interrupt by message object, EICHi

• Enable reception interrupt, ENRX

To enable an interrupt on message object error:

• Enable General CAN IT in the interrupt system register

• Enable interrupt by message object, EICHi

• Enable interrupt on error, ENERCH

To enable an interrupt on general error:

• Enable General CAN IT in the interrupt system register

• Enable interrupt on error, ENERG

SIT i

i=0

i=4

OVRIT

ENRX
CANGIE.5

ENTX
CANGIE.4

ENERCH
CANGIE.3

ENBUF
CANGIE.2

ECAN
IEN1.0

RXOK i
CANSTCH.5

TXOK i
CANSTCH.6

BERR i
CANSTCH.4

SERR i
CANSTCH.3

FERR i
CANSTCH.1

CERR i
CANSTCH.2

AERR i
CANSTCH.0

EICH i
CANIE

OVRTIM
CANGIT.5

OVRBUF
CANGIT.4

FERG
CANGIT.1

AERG
CANGIT.0

SERG
CANGIT.3

CERG
CANGIT.2

ENERG
CANGIE.1

ETIM
IEN1.2

SIT i
CANSIT

CANIT
CANGIT.7

CANIT

83

T89C51CC02

4126F–CAN–12/03

// Enable the CAN macro

 CANGCON = 02h

2. Configure message object 3 in reception to receive only standard (11bit
identifier) message 100h

// Select the message object 3

 CANPAGE = 30h

// Enable the interrupt on this message object

 CANIE = 08h

// Clear the status and control register

 CANSTCH = 00h

 CANCONCH= 00h

// Init the acceptance filter to accept only message 100h in standard mode

 CANIDT1 = 20h

 CANIDT2 = 00h

 CANIDT3 = 00h

 CANIDT4 = 00h

 CANIDM1 = FFh

 CANIDM2 = FFh

 CANIDM3 = FFh

 CANIDM4 = FFh

// Enable channel in reception

 CANCONCH = 88h // enable reception

Note: to enable the CAN interrupt in reception:

EA = 1

ECAN = 1

CANGIE = 20h

3. Send a message on the message object 0

// Select the message object 0

 CANPAGE = 00h

// Enable the interrupt on this message object

 CANIE = 01h

// Clear the Status register

 CANSTCH = 00h;

// load the identifier to send (ex: 555h)

 CANIDT1 = AAh;

 CANIDT2 = A0h;

// load data to send

 CANMSG = 00h

 CANMSG = 01h

 CANMSG = 02h

 CANMSG = 03h

 CANMSG = 04h

 CANMSG = 05h

 CANMSG = 06h

 CANMSG = 07h

// configure the control register

 CANCONCH = 18h

4. Interrupt routine

// Save the current CANPAGE

85

T89C51CC02

4126F–CAN–12/03

CAN SFRs
Table 54. SFR Mapping

0/8(1) 1/9 2/A 3/B 4/C 5/D 6/E 7/F

F8h
IPL1

xxxx x000
CH

0000 0000
CCAP0H

0000 0000
CCAP1H

0000 0000
FFh

F0h
B

0000 0000
ADCLK

xxx0 0000
ADCON

x000 0000
ADDL

0000 0000
ADDH

0000 0000
ADCF

0000 0000
IPH1

xxxx x000
F7h

E8h
IEN1

xxxx x000
CL

0000 0000
CCAP0L

0000 0000
CCAP1L

0000 0000
EFh

E0h
ACC

0000 0000
E7h

D8h
CCON

0000 0000
CMOD

0xxx x000
CCAPM0
x000 0000

CCAPM1
x000 0000

DFh

D0h
PSW

0000 0000
FCON

0000 0000
EECON

xxxx xx00
D7h

C8h
T2CON

0000 0000
T2MOD

xxxx xx00
RCAP2L

0000 0000
RCAP2H

0000 0000
TL2

0000 0000
TH2

0000 0000
CANEN

xxxx 0000
CFh

C0h
P4

xxxx xx11
CANGIE

1100 0000
CANIE

1111 0000
CANIDM1
xxxx xxxx

CANIDM2
xxxx xxxx

CANIDM3
xxxx xxxx

CANIDM4
xxxx xxxx

C7h

B8h
IPL0

x000 0000
SADEN

0000 0000
CANSIT

xxxx 0000
CANIDT1
xxxx xxxx

CANIDT2
xxxx xxxx

CANIDT3
xxxx xxxx

CANIDT4
xxxx xxxx

BFh

B0h
P3

1111 1111
CANPAGE
1100 0000

CANSTCH
xxxx xxxx

CANCONCH

xxxx xxxx
CANBT1
xxxx xxxx

CANBT2
xxxx xxxx

CANBT3
xxxx xxxx

IPH0
x000 0000

B7h

A8h
IEN0

0000 0000
SADDR

0000 0000
CANGSTA
1010 0000

CANGCON
0000 0000

CANTIML
0000 0000

CANTIMH
0000 0000

CANSTMPL
xxxx xxxx

CANSTMPH
xxxx xxxx

AFh

A0h
P2

xxxx xx11
CANTCON
0000 0000

AUXR1(2)

xxxx 00x0
CANMSG
xxxx xxxx

CANTTCL
0000 0000

CANTTCH
0000 0000

WDTRST
1111 1111

WDTPRG
xxxx x000

A7h

98h
SCON

0000 0000
SBUF

0000 0000
CANGIT

0x00 0000
CANTEC

0000 0000
CANREC

0000 0000
9Fh

90h
P1

1111 1111
97h

88h
TCON

0000 0000
TMOD

0000 0000
TL0

0000 0000
TL1

0000 0000
TH0

0000 0000
TH1

0000 0000
CKCON

0000 0000
8Fh

80h
SP

0000 0111
DPL

0000 0000
DPH

0000 0000
PCON

00x1 0000
87h

0/8(1) 1/9 2/A 3/B 4/C 5/D 6/E 7/F

92 T89C51CC02
4126F–CAN–12/03

Table 63. CANIE Register
CANIE (S:C3h) – CAN Enable Interrupt message object Registers 2

Reset Value = xxxx 0000b

Table 64. CANBT1 Register
CANBT1 (S:B4h) – CAN bit Timing Registers 1

Note: 1. The CAN controller bit timing registers must be accessed only if the CAN controller is
disabled with the ENA bit of the CANGCON register set to 0.
See Figure 37.

No default value after reset.

7 6 5 4 3 2 1 0

- - - - IECH 3 IECH 2 IECH 1 IECH 0

Bit Number Bit Mnemonic Description

7 - 4 -
Reserved
The values read from these bits are indeterminate. Do not set these
bits.

3 - 0 IECH3:0

Enable Interrupt by Message Object
0 - disable IT.
1 - enable IT.
IECH3:0 = 0b 0000 1100 -> Enable IT’s of message objects 3 & 2.

7 6 5 4 3 2 1 0

- BRP 5 BRP 4 BRP 3 BRP 2 BRP 1 BRP 0 -

Bit Number Bit Mnemonic Description

7 -
Reserved
The value read from this bit is indeterminate. Do not set this bit.

6 - 1 BRP5:0

Baud Rate Prescaler
The period of the CAN controller system clock Tscl is
programmable and determines the individual bit timing.(1)

0 -
Reserved
The value read from this bit is indeterminate. Do not set this bit.

Tscl =
BRP[5..0] + 1

FCAN

97

T89C51CC02

4126F–CAN–12/03

Table 70. CANIDT1 Register for V2.0 part A
CANIDT1 for V2.0 part A (S:BCh) – CAN Identifier Tag Registers 1

No default value after reset.

Table 71. CANIDT2 Register for V2.0 part A
CANIDT2 for V2.0 part A (S:BDh) – CAN Identifier Tag Registers 2

No default value after reset.

Table 72. CANIDT3 Register for V2.0 part A
CANIDT3 for V2.0 part A (S:BEh) –CAN Identifier Tag Registers 3

No default value after reset.

7 6 5 4 3 2 1 0

IDT 10 IDT 9 IDT 8 IDT 7 IDT 6 IDT 5 IDT 4 IDT 3

Bit Number Bit Mnemonic Description

7 - 0 IDT10:3
IDentifier Tag Value
See Figure 39.

7 6 5 4 3 2 1 0

IDT 2 IDT 1 IDT 0 - - - - -

Bit Number Bit Mnemonic Description

7 - 5 IDT2:0
IDentifier Tag Value
See Figure 39.

4-0 -
Reserved
The values read from these bits are indeterminate. Do not set these
bits.

7 6 5 4 3 2 1 0

- - - - - - - -

Bit Number Bit Mnemonic Description

7 - 0 -
Reserved
The values read from these bits are indeterminate. Do not set these
bits.

106 T89C51CC02
4126F–CAN–12/03

Programmable
Counter Array (PCA)

The PCA provides more timing capabilities with less CPU intervention than the standard
timer/counters. Its advantages include reduced software overhead and improved accu-
racy. The PCA consists of a dedicated timer/counter which serves as the time base for
an array of two compare/capture modules. Its clock input can be programmed to count
any of the following signals:

• PCA clock frequency/6 (See “clock” section)

• PCA clock frequency/2

• Timer 0 overflow

• External input on ECI (P1.2)

Each compare/capture modules can be programmed in any one of the following modes:

• Rising and/or falling edge capture,

• Software timer

• High-speed output

• Pulse width modulator

When the compare/capture modules are programmed in capture mode, software timer,
or high speed output mode, an interrupt can be generated when the module executes its
function. Both modules and the PCA timer overflow share one interrupt vector.

The PCA timer/counter and compare/capture modules share Port 1 for external I/Os.
These pins are listed below. If the pin is not used for the PCA, it can still be used for
standard I/O.

PCA Timer The PCA timer is a common time base for both modules (See Figure 9). The timer count
source is determined from the CPS1 and CPS0 bits in the CMOD SFR (See Table 8)
and can be programmed to run at:

• 1/6 the PCA clock frequency.

• 1/2 the PCA clock frequency.

• The Timer 0 overflow.

• The input on the ECI pin (P1.2).

PCA Component External I/O Pin

16-bit Counter P1.2/ECI

16-bit Module 0 P1.3/CEX0

16-bit Module 1 P1.4/CEX1

114 T89C51CC02
4126F–CAN–12/03

Table 95. CCON Register

CCON (S:D8h)
PCA Counter Control Register

Reset Value = 00xx xx00b

7 6 5 4 3 2 1 0

CF CR - - - - CCF1 CCF0

Bit Number Bit Mnemonic Description

7 CF

PCA Timer/Counter Overflow flag
Set by hardware when the PCA Timer/Counter rolls over. This
generates a PCA interrupt request if the ECF bit in CMOD register
is set.
Must be cleared by software.

6 CR
PCA Timer/Counter Run Control bit
Clear to turn the PCA Timer/Counter off.
Set to turn the PCA Timer/Counter on.

5-2 -
Reserved
The value read from these bist are indeterminate. Do not set these
bits.

1 CCF1

PCA Module 1 Compare/Capture Flag
Set by hardware when a match or capture occurs. This generates a
PCA interrupt request if the ECCF 1 bit in CCAPM 1 register is set.
Must be cleared by software.

0 CCF0

PCA Module 0 Compare/Capture Flag
Set by hardware when a match or capture occurs. This generates a
PCA interrupt request if the ECCF 0 bit in CCAPM 0 register is set.
Must be cleared by software.

121

T89C51CC02

4126F–CAN–12/03

Figure 51. ADC interrupt structure

Routine Examples 1. Configure P1.2 and P1.3 in ADC channels

// configure channel P1.2 and P1.3 for ADC

 ADCF = 0Ch

// Enable the ADC

 ADCON = 20h

2. Start a standard conversion

// The variable ’channel’ contains the channel to convert

// The variable ’value_converted’ is an unsigned int

// Clear the field SCH[2:0]

 ADCON &= F8h

// Select channel

 ADCON |= channel

// Start conversion in standard mode

 ADCON |= 08h

// Wait flag End of conversion

 while((ADCON & 01h)!= 01h)

// Clear the End of conversion flag

 ADCON &= EFh

// read the value

 value_converted = (ADDH << 2)+(ADDL)

3. Start a precision conversion (need interrupt ADC)

// The variable ’channel’ contains the channel to convert

// Enable ADC

 EADC = 1

// clear the field SCH[2:0]

 ADCON &= F8h

// Select the channel

 ADCON |= channel

// Start conversion in precision mode

 ADCON |= 48h

Note: To enable the ADC interrupt: EA = 1

ADEOC
ADCON.2

EADC
IEN1.1

ADCI

