

E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	C166SV2
Core Size	16/32-Bit
Speed	80MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	116
Program Memory Size	576KB (576K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	50K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 24x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-144-4
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/sak-xc2785x-72f80l-aa

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 General Device Information

The XC2785X series (16/32-Bit Single-Chip Microcontroller with 32-Bit Performance) is a part of the Infineon XC2000 Family of full-feature single-chip CMOS microcontrollers. These devices extend the functionality and performance of the C166 Family in terms of instructions (MAC unit), peripherals, and speed. They combine high CPU performance (up to 80 million instructions per second) with extended peripheral functionality and enhanced IO capabilities. Optimized peripherals can be adapted flexibly to meet the application requirements. These derivatives utilize clock generation via PLL and internal or external clock sources. On-chip memory modules include program Flash, program RAM, and data RAM.

Figure 2 XC2785X Logic Symbol

Pin	Symbol	Ctrl.	Туре	Function				
6	TRST	1	In/B	Test-System Reset Input For normal system operation, pin TRST should be held low. A high level at this pin at the rising edge of PORST activates the XC2785X's debug system. In this case, pin TRST must be driven low once to reset the debug system. An internal pull-down device will hold this pin low when nothing is driving it.				
7	P8.3	O0 / I	St/B	Bit 3 of Port 8, General Purpose Input/Output				
	CCU60_COU T60	01	St/B	CCU60 Channel 0 Output				
	CCU62_CC6 0	02	St/B	CCU62 Channel 0 Output				
	TDI_D	IH	St/B	JTAG Test Data Input If JTAG pos. D is selected during start-up, an internal pull-up device will hold this pin low when nothing is driving it.				
	CCU62_CC6 0INB	I	St/B	CCU62 Channel 0 Input				
8	P7.0	O0 / I	St/B	Bit 0 of Port 7, General Purpose Input/Output				
	T3OUT	01	St/B	GPT12E Timer T3 Toggle Latch Output				
	T6OUT	O2	St/B	GPT12E Timer T6 Toggle Latch Output				
	TDO_A	OH / IH	St/B	JTAG Test Data Output / DAP1 Input/Output If DAP pos. 0 or 2 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it.				
	ESR2_1	1	St/B	ESR2 Trigger Input 1				

Table 6 Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function			
45	P5.10	I	In/A	Bit 10 of Port 5, General Purpose Input			
	ADC0_CH10	I	In/A	Analog Input Channel 10 for ADC0			
	ADC1_CH10	I	In/A	Analog Input Channel 10 for ADC1			
	BRKIN_A	I	In/A	OCDS Break Signal Input			
	U2C1_DX0F	I	In/A	USIC2 Channel 1 Shift Data Input			
	CCU61_T13 HRA	I	In/A	External Run Control Input for T13 of CCU61			
46	P5.11	I	In/A	Bit 11 of Port 5, General Purpose Input			
	ADC0_CH11	I	In/A	Analog Input Channel 11 for ADC0			
	ADC1_CH11	I	In/A	Analog Input Channel 11 for ADC1			
47	P5.12	I	In/A	Bit 12 of Port 5, General Purpose Input			
	ADC0_CH12	I	In/A	Analog Input Channel 12 for ADC0			
48	P5.13	I	In/A	Bit 13 of Port 5, General Purpose Input			
	ADC0_CH13	I	In/A	Analog Input Channel 13 for ADC0			
	CCU63_T13 HRF	I	In/A	External Run Control Input for T13 of CCU63			
49	P5.14	I	In/A	Bit 14 of Port 5, General Purpose Input			
	ADC0_CH14	I	In/A	Analog Input Channel 14 for ADC0			
50	P5.15	I	In/A	Bit 15 of Port 5, General Purpose Input			
	ADC0_CH15	I	In/A	Analog Input Channel 15 for ADC0			
51	P2.12	O0 / I	St/B	Bit 12 of Port 2, General Purpose Input/Output			
	U0C0_SELO 4	01	St/B	USIC0 Channel 0 Select/Control 4 Output			
	U0C1_SELO 3	O2	St/B	USIC0 Channel 1 Select/Control 3 Output			
	READY	IH	St/B	External Bus Interface READY Input			

Tabl	able 6 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
75	P0.0	O0 / I	St/B	Bit 0 of Port 0, General Purpose Input/Output			
	U1C0_DOUT	01	St/B	USIC1 Channel 0 Shift Data Output			
	CCU61_CC6 0	O3	St/B	CCU61 Channel 0 IOutput			
	A0	ОН	St/B	External Bus Interface Address Line 0			
	U1C0_DX0A	I	St/B	USIC1 Channel 0 Shift Data Input			
	CCU61_CC6 0INA	1	St/B	CCU61 Channel 0 Input			
_	ESR1_11	I	St/B	ESR1 Trigger Input 11			
76	P4.5	O0 / I	St/B	Bit 5 of Port 4, General Purpose Input/Output			
	CC2_CC29	O3 / I	St/B	CAPCOM2 CC29IO Capture Inp./Compare Out.			
	CCU61_CCP OS0A	I	St/B	CCU61 Position Input 0			
_	ESR2_10	I	St/B	ESR2 Trigger Input 10			
77	P4.6	O0 / I	St/B	Bit 6 of Port 4, General Purpose Input/Output			
	CC2_CC30	O3 / I	St/B	CAPCOM2 CC30IO Capture Inp./ Compare Out.			
	T4INA	I	St/B	GPT12E Timer T4 Count/Gate Input			
	CCU61_CCP OS1A	I	St/B	CCU61 Position Input 1			
78	P2.7	O0 / I	St/B	Bit 7 of Port 2, General Purpose Input/Output			
	U0C1_SELO 0	O1	St/B	USIC0 Channel 1 Select/Control 0 Output			
	U0C0_SELO 1	O2	St/B	USIC0 Channel 0 Select/Control 1 Output			
	CC2_CC20	O3 / I	St/B	CAPCOM2 CC20IO Capture Inp./ Compare Out.			
	A20	ОН	St/B	External Bus Interface Address Line 20			
	U0C1_DX2C	I	St/B	USIC0 Channel 1 Shift Control Input			
	RxDC1C	I	St/B	CAN Node 1 Receive Data Input			
	ESR2_7	I	St/B	ESR2 Trigger Input 7			

Table	Table 6 Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function				
123	P10.13	O0 / I	St/B	Bit 13 of Port 10, General Purpose Input/Output				
	U1C0_DOUT	01	St/B	USIC1 Channel 0 Shift Data Output				
	U1C0_SELO 3	O3	St/B	USIC1 Channel 0 Select/Control 3 Output				
	WR/WRL	ОН	St/B	External Bus Interface Write Strobe Output Active for each external write access, when \overline{WR} , active for ext. writes to the low byte, when \overline{WRL} .				
	U1C0_DX0D	I	St/B	USIC1 Channel 0 Shift Data Input				
124	P1.3	O0 / I	St/B	Bit 3 of Port 1, General Purpose Input/Output				
	CCU62_COU T63	01	St/B	CCU62 Channel 3 Output				
	U1C0_SELO 7	O2	St/B	USIC1 Channel 0 Select/Control 7 Output				
	U2C0_SELO 4	O3	St/B	USIC2 Channel 0 Select/Control 4 Output				
	A11	ОН	St/B	External Bus Interface Address Line 11				
	ESR2_4	I	St/B	ESR2 Trigger Input 4				
	CCU62_T12 HRB	I	St/B	External Run Control Input for T12 of CCU62				
125	P9.4	O0 / I	St/B	Bit 4 of Port 9, General Purpose Input/Output				
	CCU63_COU T61	01	St/B	CCU63 Channel 1 Output				
	U2C0_DOUT	02	St/B	USIC2 Channel 0 Shift Data Output				
	CCU62_COU T63	O3	St/B	CCU62 Channel 3 Output				

3.6 Interrupt System

The architecture of the XC2785X supports several mechanisms for fast and flexible response to service requests; these can be generated from various sources internal or external to the microcontroller. Any of these interrupt requests can be programmed to be serviced by the Interrupt Controller or by the Peripheral Event Controller (PEC).

Where in a standard interrupt service the current program execution is suspended and a branch to the interrupt vector table is performed, just one cycle is 'stolen' from the current CPU activity to perform a PEC service. A PEC service implies a single byte or word data transfer between any two memory locations with an additional increment of either the PEC source pointer, the destination pointer, or both. An individual PEC transfer counter is implicitly decremented for each PEC service except when performing in the continuous transfer mode. When this counter reaches zero, a standard interrupt is performed to the corresponding source-related vector location. PEC services are particularly well suited to supporting the transmission or reception of blocks of data. The XC2785X has eight PEC channels, each whith fast interrupt-driven data transfer capabilities.

With a minimum interrupt response time of 7/11¹⁾ CPU clocks, the XC2785X can react quickly to the occurrence of non-deterministic events.

Interrupt Nodes and Source Selection

The interrupt system provides 96 physical nodes with separate control register containing an interrupt request flag, an interrupt enable flag and an interrupt priority bit field. Most interrupt sources are assigned to a dedicated node. A particular subset of interrupt sources shares a set of nodes. The source selection can be programmed using the interrupt source selection (ISSR) registers.

External Request Unit (ERU)

A dedicated External Request Unit (ERU) is provided to route and preprocess selected on-chip peripheral and external interrupt requests. The ERU features 4 programmable input channels with event trigger logic (ETL) a routing matrix and 4 output gating units (OGU). The ETL features rising edge, falling edge, or both edges event detection. The OGU combines the detected interrupt events and provides filtering capabilities depending on a programmable pattern match or miss.

Trap Processing

The XC2785X provides efficient mechanisms to identify and process exceptions or error conditions that arise during run-time, the so-called 'Hardware Traps'. A hardware trap causes an immediate system reaction similar to a standard interrupt service (branching

¹⁾ Depending if the jump cache is used or not.

Compare Modes	Function
Mode 2	Interrupt-only compare mode; Only one compare interrupt per timer period is generated
Mode 3	Pin set '1' on match; pin reset '0' on compare timer overflow; Only one compare event per timer period is generated
Double Register Mode	Two registers operate on one pin; Pin toggles on each compare match; Several compare events per timer period are possible
Single Event Mode	Generates single edges or pulses; Can be used with any compare mode

Table 9 Compare Modes (cont'd)

3.10 General Purpose Timer (GPT12E) Unit

The GPT12E unit is a very flexible multifunctional timer/counter structure which can be used for many different timing tasks such as event timing and counting, pulse width and duty cycle measurements, pulse generation, or pulse multiplication.

The GPT12E unit incorporates five 16-bit timers organized in two separate modules, GPT1 and GPT2. Each timer in each module may either operate independently in a number of different modes or be concatenated with another timer of the same module.

Each of the three timers T2, T3, T4 of **module GPT1** can be configured individually for one of four basic modes of operation: Timer, Gated Timer, Counter, and Incremental Interface Mode. In Timer Mode, the input clock for a timer is derived from the system clock and divided by a programmable prescaler. Counter Mode allows timer clocking in reference to external events.

Pulse width or duty cycle measurement is supported in Gated Timer Mode, where the operation of a timer is controlled by the 'gate' level on an external input pin. For these purposes each timer has one associated port pin (TxIN) which serves as a gate or clock input. The maximum resolution of the timers in module GPT1 is 4 system clock cycles.

The counting direction (up/down) for each timer can be programmed by software or altered dynamically by an external signal on a port pin (TxEUD), e.g. to facilitate position tracking.

In Incremental Interface Mode the GPT1 timers can be directly connected to the incremental position sensor signals A and B through their respective inputs TxIN and TxEUD. Direction and counting signals are internally derived from these two input signals, so that the contents of the respective timer Tx corresponds to the sensor position. The third position sensor signal TOP0 can be connected to an interrupt input.

Timer T3 has an output toggle latch (T3OTL) which changes its state on each timer overflow/underflow. The state of this latch may be output on pin T3OUT e.g. for time out monitoring of external hardware components. It may also be used internally to clock timers T2 and T4 for measuring long time periods with high resolution.

In addition to the basic operating modes, T2 and T4 may be configured as reload or capture register for timer T3. A timer used as capture or reload register is stopped. The contents of timer T3 is captured into T2 or T4 in response to a signal at the associated input pin (TxIN). Timer T3 is reloaded with the contents of T2 or T4, triggered either by an external signal or a selectable state transition of its toggle latch T3OTL. When both T2 and T4 are configured to alternately reload T3 on opposite state transitions of T3OTL with the low and high times of a PWM signal, this signal can be continuously generated without software intervention.

3.18 Parallel Ports

The XC2785X provides up to 119 I/O lines which are organized into 11 input/output ports and 2 input ports. All port lines are bit-addressable, and all input/output lines can be individually (bit-wise) configured via port control registers. This configuration selects the direction (input/output), push/pull or open-drain operation, activation of pull devices, and edge characteristics (shape) and driver characteristics (output current) of the port drivers. The I/O ports are true bidirectional ports which are switched to high impedance state when configured as inputs. During the internal reset, all port pins are configured as inputs without pull devices active.

All port lines have alternate input or output functions associated with them. These alternate functions can be programmed to be assigned to various port pins to support the best utilization for a given application. For this reason, certain functions appear several times in **Table 10**.

All port lines that are not used for alternate functions may be used as general purpose I/O lines.

Port	Width	I/O	Connected Modules
P0	8	I/O	EBC (A7A0), CCU6, USIC, CAN
P1	8	I/O	EBC (A15A8), CCU6, USIC
P2	14	I/O	EBC (READY, <u>BHE</u> , A23A16, AD15AD13, D15D13), CAN, CC2, GPT12E, USIC, DAP/JTAG
P3	8	I/O	CAN, USIC
P4	8	I/O	EBC (CS3CS0), CC2, CAN, GPT12E, USIC
P5	16	I	Analog Inputs, CCU6, DAP/JTAG, GPT12E, CAN
P6	4	I/O	ADC, CAN, GPT12E
P7	5	I/O	CAN, GPT12E, SCU, DAP/JTAG, CCU6, ADC, USIC
P8	7	I/O	CCU6, DAP/JTAG, USIC
P9	8	I/O	CCU6, DAP/JTAG, CAN
P10	16	I/O	EBC (ALE, RD, WR, AD12AD0, D12D0), CCU6, USIC, DAP/JTAG, CAN
P11	6	I/O	CCU6, USIC, CAN
P15	8	Ι	Analog Inputs, GPT12E

Table 10 Summary of the XC2785X's Ports

Pullup/Pulldown Device Behavior

Most pins of the XC2785X feature pullup or pulldown devices. For some special pins these are fixed; for the port pins they can be selected by the application.

The specified current values indicate how to load the respective pin depending on the intended signal level. **Figure 13** shows the current paths.

The shaded resistors shown in the figure may be required to compensate system pull currents that do not match the given limit values.

Figure 13 Pullup/Pulldown Current Definition

XC2785X XC2000 Family / Base Line

Electrical Parameters

Figure 14Supply Current in Active Mode as a Function of FrequencyNote: Operating Conditions apply.

Table 21	Coding of bit fields LEVxV in Register SWDCON0 (cont'd)	
----------	--	---------	--

Code	Default Voltage Level	Notes ¹⁾
1001 _B	4.5 V	LEV2V: no request
1010 _B	4.6 V	
1011 _B	4.7 V	
1100 _B	4.8 V	
1101 _B	4.9 V	
1110 _B	5.0 V	
1111 _B	5.5 V	

1) The indicated default levels are selected automatically after a power reset.

Table 22 Coding of Bitfields LEVxV in Registers PVCyCONz

Code	Default Voltage Level	Notes ¹⁾
000 _B	0.95 V	
001 _B	1.05 V	
010 _B	1.15 V	
011 _B	1.25 V	
100 _B	1.35 V	LEV1V: reset request
101 _B	1.45 V	LEV2V: interrupt request ²⁾
110 _B	1.55 V	
111 _B	1.65 V	

1) The indicated default levels are selected automatically after a power reset.

2) Due to variations of the tolerance of both the Embedded Voltage Regulators (EVR) and the PVC levels, this interrupt can be triggered inadvertently, even though the core voltage is within the normal range. It is, therefore, recommended not to use the this warning level.

4.5 Flash Memory Parameters

The XC2785X is delivered with all Flash sectors erased and with no protection installed. The data retention time of the XC2785X's Flash memory (i.e. the time after which stored data can still be retrieved) depends on the number of times the Flash memory has been erased and programmed.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Parallel Flash module program/erase limit	$N_{\rm PP}{ m SR}$	-	-	4 ¹⁾		$N_{FL_RD} \le 1,$ $f_{SYS} \le 80 \; MHz$
depending on Flash read activity		-	-	1 ²⁾		$N_{\rm FL_RD}$ > 1
Flash erase endurance for security pages	$N_{\rm SEC}{ m SR}$	10	-	-	cycle s	$t_{RET} \ge 20$ years
Flash wait states ³⁾	N _{WSFLAS} _H SR	1	-	-		$f_{SYS} \le 8 \text{ MHz}$
		2	_	_		$f_{\rm SYS} \le$ 13 MHz
		3	-	-		$f_{\rm SYS} \le$ 17 MHz
		4	-	-		$f_{\rm SYS}$ > 17 MHz
Erase time per sector/page	t _{ER} CC	-	7 ⁴⁾	8.0	ms	
Programming time per page	t _{PR} CC	-	34)	3.5	ms	
Data retention time	t _{RET} CC	20	-	-	year s	$N_{\rm Er} \le 1\ 000$ cycles
Drain disturb limit	$N_{\rm DD}~{ m SR}$	32	-	-	cycle s	

Table 23 Flash Parameters

4.6 AC Parameters

These parameters describe the dynamic behavior of the XC2785X.

4.6.1 Testing Waveforms

These values are used for characterization and production testing (except pin XTAL1).

Figure 17 Input Output Waveforms

Figure 20 Approximated Accumulated PLL Jitter

Note: The specified PLL jitter values are valid if the capacitive load per pin does not exceed $C_L = 20 \text{ pF}$.

The maximum peak-to-peak noise on the pad supply voltage (measured between V_{DDPB} pin 100 and V_{SS} pin 1) is limited to a peak-to-peak voltage of V_{PP} = 50 mV. This can be achieved by appropriate blocking of the supply voltage as close as possible to the supply pins and using PCB supply and ground planes.

4.6.5 External Bus Timing

The following parameters specify the behavior of the XC2785X bus interface.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

Bus Interface Performance Limits

The output frequency at the bus interface pins is limited by the performance of the output drivers. The fast clock driver (used for CLKOUT) can drive 80-MHz signals, the standard drivers can drive 40-MHz signals

Therefore, the speed of the EBC must be limited, either by limiting the system frequency to $f_{SYS} \le 80$ MHz or by adding waitstates so that signal transitions have a minimum distance of 12.5 ns.

For a description of the bus protocol and the programming of its variable timing parameters, please refer to the User's Manual.

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
CLKOUT Cycle Time ¹⁾	t ₅ CC	-	$1/f_{\rm SYS}$	-	ns	
CLKOUT high time	t ₆ CC	2	-	-		
CLKOUT low time	t ₇ CC	2	-	-		
CLKOUT rise time	t ₈ CC	-	-	3	ns	
CLKOUT fall time	t ₉ CC	-	-	3		

Table 28 EBC Parameters

 The CLKOUT cycle time is influenced by PLL jitter. For longer periods the relative deviation decreases (see PLL deviation formula).

Table 30 EBC External Bus Timing for Upper Voltage Range

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.	-	Test Condition
$\frac{\text{Output valid delay for }\overline{\text{RD}},}{\text{WR}(\text{L/H})}$	<i>t</i> ₁₀ CC	-	7	13	ns	
Output valid delay for BHE, ALE	<i>t</i> ₁₁ CC	-	7	14	ns	
Address output valid delay for A23 A0	<i>t</i> ₁₂ CC	-	8	14	ns	
Address output valid delay for AD15 AD0 (MUX mode)	<i>t</i> ₁₃ CC	-	8	15	ns	
Output valid delay for CS	t ₁₄ CC	-	7	13	ns	
Data output valid delay for AD15 AD0 (write data, MUX mode)	<i>t</i> ₁₅ CC	-	8	15	ns	
Data output valid delay for D15 D0 (write data, DEMUX mode)	<i>t</i> ₁₆ CC	-	8	15	ns	
Output hold time for \overline{RD} , WR(L/H)	<i>t</i> ₂₀ CC	-2	6	8	ns	
Output hold time for \overline{BHE} , ALE	<i>t</i> ₂₁ CC	-2	6	10	ns	
Address output hold time for AD15 AD0	<i>t</i> ₂₃ CC	-3	6	8	ns	
Output hold time for CS	t ₂₄ CC	-3	6	11	ns	
Data output hold time for D15 D0 and AD15 AD0	<i>t</i> ₂₅ CC	-3	6	8	ns	
Input setup time for READY, D15 D0, AD15 AD0	t ₃₀ SR	25	15	-	ns	
Input hold time READY, D15 D0, AD15 AD0 ¹⁾	<i>t</i> ₃₁ SR	0	-7	-	ns	

 Read data are latched with the same internal clock edge that triggers the address change and the rising edge of RD. Address changes before the end of RD have no impact on (demultiplexed) read cycles. Read data can change after the rising edge of RD.

Parameter	Symbol	Values			Unit	Note /				
		Min.	Тур.	Max.		Test Condition				
DAP0 clock period	<i>t</i> ₁₁ SR	25 ¹⁾	-	-	ns					
DAP0 high time	t ₁₂ SR	8	-	-	ns					
DAP0 low time	t ₁₃ SR	8	-	-	ns					
DAP0 clock rise time	t ₁₄ SR	-	-	4	ns					
DAP0 clock fall time	t ₁₅ SR	-	-	4	ns					
DAP1 setup to DAP0 rising edge	<i>t</i> ₁₆ SR	6	-	-	ns	pad_type= stan dard				
DAP1 hold after DAP0 rising edge	<i>t</i> ₁₇ SR	6	-	-	ns	pad_type= stan dard				
DAP1 valid per DAP0 clock period ²⁾	<i>t</i> ₁₉ CC	12	17	-	ns	pad_type= stan dard				

Table 39 DAP Interface Timing for Lower Voltage Range

1) The debug interface cannot operate faster than the overall system, therefore $t_{11} \ge t_{SYS}$.

2) The Host has to find a suitable sampling point by analyzing the sync telegram response.

Figure 29 Test Clock Timing (DAP0)

Package and Reliability

Package Outlines

Figure 34 PG-LQFP-144-13 (Plastic Green Thin Quad Flat Package)

All dimensions in mm.

You can find complete information about Infineon packages, packing and marking in our Infineon Internet Page "Packages": http://www.infineon.com/packages

www.infineon.com

Published by Infineon Technologies AG