

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFL

Product Status	Obsolete
Core Processor	C166SV2
Core Size	16/32-Bit
Speed	80MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	116
Program Memory Size	832KB (832K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	50K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 24x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-144-4
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc2785x104f80laakxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Summary of Features

16/32-Bit Single-Chip Microcontroller with 32-Bit Performance

XC2785X (XC2000 Family)

1 Summary of Features

For a quick overview and easy reference, the features of the XC2785X are summarized here.

- High-performance CPU with five-stage pipeline and MPU
 - 12.5 ns instruction cycle at 80 MHz CPU clock (single-cycle execution)
 - One-cycle 32-bit addition and subtraction with 40-bit result
 - One-cycle multiplication (16 × 16 bit)
 - Background division (32 / 16 bit) in 21 cycles
 - One-cycle multiply-and-accumulate (MAC) instructions
 - Enhanced Boolean bit manipulation facilities
 - Zero-cycle jump execution
 - Additional instructions to support HLL and operating systems
 - Register-based design with multiple variable register banks
 - Fast context switching support with two additional local register banks
 - 16 Mbytes total linear address space for code and data
 - 1024 Bytes on-chip special function register area (C166 Family compatible)
 - Integrated Memory Protection Unit (MPU)
- · Interrupt system with 16 priority levels for up to 96 sources
 - Selectable external inputs for interrupt generation and wake-up
 - Fastest sample-rate 12.5 ns
- Eight-channel interrupt-driven single-cycle data transfer with Peripheral Event Controller (PEC), 24-bit pointers cover total address space
- Clock generation from internal or external clock sources, using on-chip PLL or prescaler
- Hardware CRC-Checker with Programmable Polynomial to Supervise On-Chip Memory Areas
- On-chip memory modules
 - 8 Kbytes on-chip stand-by RAM (SBRAM)
 - 2 Kbytes on-chip dual-port RAM (DPRAM)
 - Up to 16 Kbytes on-chip data SRAM (DSRAM)
 - Up to 32 Kbytes on-chip program/data SRAM (PSRAM)
 - Up to 832 Kbytes on-chip program memory (Flash memory)
 - Memory content protection through Error Correction Code (ECC)
- On-Chip Peripheral Modules
 - Multi-functional general purpose timer unit with 5 timers
 - 16-channel general purpose capture/compare unit (CAPCOM2)
 - Up to 4 capture/compare units for flexible PWM signal generation (CCU6x)

Summary of Features

1.3 Definition of Feature Variants

The XC2785X types are offered with several Flash memory sizes. **Table 3** describes the location of the available memory areas for each Flash memory size.

Table 3 Flash Memo	ry Allocation
--------------------	---------------

Total Flash Size	Flash Area A ¹⁾	Flash Area B	Flash Area C
832 Kbytes	C0'0000 _H C0'EFFF _H	C1'0000 _H CC'FFFF _H	n.a.
576 Kbytes	C0'0000 _H C0'EFFF _H	C1'0000 _H C7'FFFF _H	CC'0000 _H CC'FFFF _H

1) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0'F000_H to C0'FFFF_H).

Table 4 Flash Memory Module Allocation (in Kbytes)

Total Flash Size	Flash 0 ¹⁾	Flash 1	Flash 2	Flash 3
832 Kbytes	256	256	256	64
576 Kbytes	256	256		64

1) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0'F000_H to C0'FFFF_H).

The XC2785X types are offered with different interface options. **Table 5** lists the available channels for each option.

Table 5 Interface Channel Association

Total Number	Available Channels
16 ADC0 channels	CH0 CH15
8 ADC1 channels	CH0 CH7 (overlay: CH8 CH11)
2 CAN nodes	CAN0, CAN1 64 message objects
6 serial channels	U0C0, U0C1, U1C0, U1C1, U2C0, U2C1

Summary of Features

The XC2785X types are offered with several SRAM memory sizes. **Figure 1** shows the allocation rules for PSRAM and DSRAM. Note that the rules differ:

- · PSRAM allocation starts from the lower address
- DSRAM allocation starts from the higher address

For example 8 Kbytes of PSRAM will be allocated at E0'0000h-E0'1FFFh and 8 Kbytes of DSRAM will be at 00'C000h-00'DFFFh.

Figure 1 SRAM Allocation

Tabl	Table 6 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
45	P5.10	I	In/A	Bit 10 of Port 5, General Purpose Input			
	ADC0_CH10	I	In/A	Analog Input Channel 10 for ADC0			
	ADC1_CH10	I	In/A	Analog Input Channel 10 for ADC1			
	BRKIN_A	I	In/A	OCDS Break Signal Input			
	U2C1_DX0F	I	In/A	USIC2 Channel 1 Shift Data Input			
	CCU61_T13 HRA	I	In/A	External Run Control Input for T13 of CCU61			
46	P5.11	I	In/A	Bit 11 of Port 5, General Purpose Input			
	ADC0_CH11	I	In/A	Analog Input Channel 11 for ADC0			
	ADC1_CH11	I	In/A	Analog Input Channel 11 for ADC1			
47	P5.12	I	In/A	Bit 12 of Port 5, General Purpose Input			
	ADC0_CH12	I	In/A	Analog Input Channel 12 for ADC0			
48	P5.13	I	In/A	Bit 13 of Port 5, General Purpose Input			
	ADC0_CH13	I	In/A	Analog Input Channel 13 for ADC0			
	CCU63_T13 HRF	I	In/A	External Run Control Input for T13 of CCU63			
49	P5.14	I	In/A	Bit 14 of Port 5, General Purpose Input			
	ADC0_CH14	I	In/A	Analog Input Channel 14 for ADC0			
50	P5.15	I	In/A	Bit 15 of Port 5, General Purpose Input			
	ADC0_CH15	I	In/A	Analog Input Channel 15 for ADC0			
51	P2.12	O0 / I	St/B	Bit 12 of Port 2, General Purpose Input/Output			
	U0C0_SELO 4	01	St/B	USIC0 Channel 0 Select/Control 4 Output			
	U0C1_SELO 3	O2	St/B	USIC0 Channel 1 Select/Control 3 Output			
	READY	IH	St/B	External Bus Interface READY Input			

Tabl	able 6 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
75	P0.0	O0 / I	St/B	Bit 0 of Port 0, General Purpose Input/Output			
	U1C0_DOUT	01	St/B	USIC1 Channel 0 Shift Data Output			
	CCU61_CC6 0	O3	St/B	CCU61 Channel 0 IOutput			
	A0	ОН	St/B	External Bus Interface Address Line 0			
	U1C0_DX0A	I	St/B	USIC1 Channel 0 Shift Data Input			
	CCU61_CC6 0INA	1	St/B	CCU61 Channel 0 Input			
_	ESR1_11	I	St/B	ESR1 Trigger Input 11			
76	P4.5	O0 / I	St/B	Bit 5 of Port 4, General Purpose Input/Output			
	CC2_CC29	O3 / I	St/B	CAPCOM2 CC29IO Capture Inp./Compare Out.			
	CCU61_CCP OS0A	I	St/B	CCU61 Position Input 0			
_	ESR2_10	I	St/B	ESR2 Trigger Input 10			
77	P4.6	O0 / I	St/B	Bit 6 of Port 4, General Purpose Input/Output			
	CC2_CC30	O3 / I	St/B	CAPCOM2 CC30IO Capture Inp./ Compare Out.			
	T4INA	I	St/B	GPT12E Timer T4 Count/Gate Input			
	CCU61_CCP OS1A	I	St/B	CCU61 Position Input 1			
78	P2.7	O0 / I	St/B	Bit 7 of Port 2, General Purpose Input/Output			
	U0C1_SELO 0	O1	St/B	USIC0 Channel 1 Select/Control 0 Output			
	U0C0_SELO 1	O2	St/B	USIC0 Channel 0 Select/Control 1 Output			
	CC2_CC20	O3 / I	St/B	CAPCOM2 CC20IO Capture Inp./ Compare Out.			
	A20	ОН	St/B	External Bus Interface Address Line 20			
	U0C1_DX2C	I	St/B	USIC0 Channel 1 Shift Control Input			
	RxDC1C	I	St/B	CAN Node 1 Receive Data Input			
	ESR2_7	I	St/B	ESR2 Trigger Input 7			

Table	Fable 6 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
95	P10.3	O0 / I	St/B	Bit 3 of Port 10, General Purpose Input/Output			
	CCU60_COU T60	02	St/B	CCU60 Channel 0 Output			
	AD3	OH / IH	St/B	External Bus Interface Address/Data Line 3			
	U0C0_DX2A	I	St/B	USIC0 Channel 0 Shift Control Input			
	U0C1_DX2A	I	St/B	USIC0 Channel 1 Shift Control Input			
96	P0.5	O0 / I	St/B	Bit 5 of Port 0, General Purpose Input/Output			
	U1C1_SCLK OUT	01	St/B	USIC1 Channel 1 Shift Clock Output			
	U1C0_SELO 2	02	St/B	USIC1 Channel 0 Select/Control 2 Output			
	CCU61_COU T62	O3	St/B	CCU61 Channel 2 Output			
	A5	OH	St/B	External Bus Interface Address Line 5			
	U1C1_DX1A	I	St/B	USIC1 Channel 1 Shift Clock Input			
	U1C0_DX1C	I	St/B	USIC1 Channel 0 Shift Clock Input			
97	P3.3	O0 / I	St/B	Bit 3 of Port 3, General Purpose Input/Output			
	U2C0_SELO 0	01	St/B	USIC2 Channel 0 Select/Control 0 Output			
	U2C1_SELO 1	02	St/B	USIC2 Channel 1 Select/Control 1 Output			
	U2C0_DX2A	I	St/B	USIC2 Channel 0 Shift Control Input			
98	P10.4	O0 / I	St/B	Bit 4 of Port 10, General Purpose Input/Output			
	U0C0_SELO 3	01	St/B	USIC0 Channel 0 Select/Control 3 Output			
	CCU60_COU T61	02	St/B	CCU60 Channel 1 Output			
	AD4	OH / IH	St/B	External Bus Interface Address/Data Line 4			
	U0C0_DX2B	I	St/B	USIC0 Channel 0 Shift Control Input			
	U0C1_DX2B	I	St/B	USIC0 Channel 1 Shift Control Input			
	ESR1_9	I	St/B	ESR1 Trigger Input 9			

Pin	Symbol	Ctrl.	Туре	Function		
138	PORST	1	In/B	Power On Reset Input A low level at this pin resets the XC2785X completely. A spike filter suppresses input pulses <10 ns. Input pulses >100 ns safely pass the filter. The minimum duration for a safe recognition should be 120 ns. An internal pull-up device will hold this pin high when nothing is driving it.		
139	ESR1	O0 / I	St/B	External Service Request 1 After power-up, an internal weak pull-up device holds this pin high when nothing is driving it.		
	RxDC0E	I	St/B	CAN Node 0 Receive Data Input		
	U1C0_DX0F	I	St/B	USIC1 Channel 0 Shift Data Input		
	U1C0_DX2C	I	St/B	USIC1 Channel 0 Shift Control Input		
	U1C1_DX0C	I	St/B	USIC1 Channel 1 Shift Data Input		
	U1C1_DX2B	I	St/B	USIC1 Channel 1 Shift Control Input		
	U2C1_DX2C	I	St/B	USIC2 Channel 1 Shift Control Input		
140	ESR2	O0 / I	St/B	External Service Request 2 After power-up, an internal weak pull-up device holds this pin high when nothing is driving it.		
	RxDC1E	I	St/B	CAN Node 1 Receive Data Input		
	CCU60_CTR APC	1	St/B	CCU60 Emergency Trap Input		
	CCU61_CTR APC	1	St/B	CCU61 Emergency Trap Input		
	CCU62_CTR APC	1	St/B	CCU62 Emergency Trap Input		
	CCU63_CTR APC	I	St/B	CCU63 Emergency Trap Input		
	U1C1_DX0D	I	St/B	USIC1 Channel 1 Shift Data Input		
	U1C1_DX2C	I	St/B	USIC1 Channel 1 Shift Control Input		
	U2C1_DX0E	I	St/B	USIC2 Channel 1 Shift Data Input		
	U2C1_DX2B	I	St/B	USIC2 Channel 1 Shift Control Input		

Table 6 Pin Definitions and Functions (cont'd)

4 Electrical Parameters

The operating range for the XC2785X is defined by its electrical parameters. For proper operation the specified limits must be respected when integrating the device in its target environment.

4.1 General Parameters

These parameters are valid for all subsequent descriptions, unless otherwise noted.

4.1.1 Absolut Maximum Rating Conditions

Stresses above the values listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for an extended time may affect device reliability.

During absolute maximum rating overload conditions ($V_{\rm IN} > V_{\rm DDP}$ or $V_{\rm IN} < V_{\rm SS}$) the voltage on $V_{\rm DDP}$ pins with respect to ground ($V_{\rm SS}$) must not exceed the values defined by the absolute maximum ratings.

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Output current on a pin when high value is driven	I _{OH} SR	-30	-	-	mA	
Output current on a pin when low value is driven	I _{OL} SR	-	-	30	mA	
Overload current	I _{OV} SR	-10	-	10	mA	1)
Absolute sum of overload currents	$\Sigma I_{\rm OV} $ SR	-	-	100	mA	1)
Junction Temperature	$T_{\sf J}{\sf SR}$	-40	-	150	°C	
Storage Temperature	$T_{\rm ST}{ m SR}$	-65	_	150	°C	
Digital supply voltage for IO pads and voltage regulators	$V_{\rm DDPA}, \\ V_{\rm DDPB} \\ {\rm SR}$	-0.5	-	6.0	V	
Voltage on any pin with respect to ground (Vss)	$V_{\rm IN}$ SR	-0.5	-	V _{DDP} + 0.5	V	$V_{\rm IN} \leq V_{\rm DDP(max)}$

Table 12 Absolute Maximum Rating Parameters

 Overload condition occurs if the input voltage V_{IN} is out of the absolute maximum rating range. In this case the current must be limited to the listed values by design measures.

4.1.3 Pad Timing Definition

If not otherwise noted, all timing parameters are tested and are valid for the corresponding output pins operating in strong driver, fast edge mode. See also "Pad Properties" on Page 113.

4.1.4 Parameter Interpretation

The parameters listed in the following include both the characteristics of the XC2785X and its demands on the system. To aid in correctly interpreting the parameters when evaluating them for a design, they are marked accordingly in the column "Symbol":

CC (Controller Characteristics):

The logic of the XC2785X provides signals with the specified characteristics.

SR (System Requirement):

The external system must provide signals with the specified characteristics to the XC2785X.

4.2.3 Power Consumption

The power consumed by the XC2785X depends on several factors such as supply voltage, operating frequency, active circuits, and operating temperature. The power consumption specified here consists of two components:

- The switching current $I_{\rm S}$ depends on the device activity
- The leakage current I_{LK} depends on the device temperature

To determine the actual power consumption, always both components, switching current $I_{\rm S}$ and leakage current $I_{\rm LK}$ must be added:

 $I_{\text{DDP}} = I_{\text{S}} + I_{\text{LK}}.$

Note: The power consumption values are not subject to production test. They are verified by design/characterization.

To determine the total power consumption for dimensioning the external power supply, also the pad driver currents must be considered.

The given power consumption parameters and their values refer to specific operating conditions:

Active mode:

Regular operation, i.e. peripherals are active, code execution out of Flash.

Stopover mode:

Crystal oscillator and PLL stopped, Flash switched off, clock in domain DMP_1 stopped.

Note: The maximum values cover the complete specified operating range of all manufactured devices.

The typical values refer to average devices under typical conditions, such as nominal supply voltage, room temperature, application-oriented activity.

After a power reset, the decoupling capacitors for $V_{\rm DDIM}$ and $V_{\rm DDI1}$ are charged with the maximum possible current.

For additional information, please refer to Section 5.2, Thermal Considerations.

Note: Operating Conditions apply.

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Power supply current (active) with all peripherals active and EVVRs on	I _{SACT} CC	-	$10 + 0.6 x f_{SYS}^{1)}$	10 + 1.0 x $f_{SYS}^{1)}$	mA	2)3)
Power supply current in stopover mode, EVVRs on	$I_{\rm SSO}$ CC	-	0.7	2.0	mA	

Table 16 Switching Power Consumption

1) $f_{\rm SYS}$ in MHz.

4.4 System Parameters

The following parameters specify several aspects which are important when integrating the XC2785X into an application system.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Short-term deviation of internal clock source frequency ¹⁾	∆f _{INT} CC	-1	-	1	%	⊿ <i>T</i> _J ≤ 10 °C
Internal clock source frequency	$f_{\sf INT}{\sf CC}$	4.8	5.0	5.2	MHz	
Wakeup clock source	$f_{\rm WU}{ m CC}$	400	-	700	kHz	FREQSEL= 00
frequency ²⁾		210	-	390	kHz	FREQSEL= 01
		140	-	260	kHz	FREQSEL= 10
		110	-	200	kHz	FREQSEL= 11
Startup time from power- on with code execution from Flash	t _{SPO} CC	1.8	2.2	2.7	ms	$f_{\rm WU}$ = 500 kHz
Startup time from stopover mode with code execution from PSRAM	t _{SSO} CC	11 / f _{WU} ³⁾	-	12 / f _{WU} ³⁾	μS	
Core voltage (PVC) supervision level	V _{PVC} CC	V _{LV} - 0.03	V _{LV}	V _{LV} + 0.07 ₄₎	V	5)
Supply watchdog (SWD) supervision level	V _{SWD} CC	V _{LV} - 0.10 ⁶⁾	$V_{\rm LV}$	V _{LV} + 0.15	V	Lower voltage range ⁵⁾
		V _{LV} - 0.15	V_{LV}	V _{LV} + 0.15	V	Upper voltage range ⁵⁾

Table 20Various System Parameters

 The short-term frequency deviation refers to a timeframe of a few hours and is measured relative to the current frequency at the beginning of the respective timeframe. This parameter is useful to determine a time span for re-triggering a LIN synchronization.

 This parameter is tested for the fastest and the slowest selection. The medium selections are not subject to production test - verified by design/characterization

Direct Drive

When direct drive operation is selected (SYSCON0.CLKSEL = 11_B), the system clock is derived directly from the input clock signal CLKIN1:

 $f_{SYS} = f_{IN}$.

The frequency of f_{SYS} is the same as the frequency of f_{IN} . In this case the high and low times of f_{SYS} are determined by the duty cycle of the input clock f_{IN} .

Selecting Bypass Operation from the XTAL1¹⁾ input and using a divider factor of 1 results in a similar configuration.

Prescaler Operation

When prescaler operation is selected (SYSCON0.CLKSEL = 10_B , PLLCON0.VCOBY = 1_B), the system clock is derived either from the crystal oscillator (input clock signal XTAL1) or from the internal clock source through the output prescaler K1 (= K1DIV+1):

 $f_{\text{SYS}} = f_{\text{OSC}} / \text{K1}.$

If a divider factor of 1 is selected, the frequency of $f_{\rm SYS}$ equals the frequency of $f_{\rm OSC}$. In this case the high and low times of $f_{\rm SYS}$ are determined by the duty cycle of the input clock $f_{\rm OSC}$ (external or internal).

The lowest system clock frequency results from selecting the maximum value for the divider factor K1:

 $f_{\rm SYS} = f_{\rm OSC} / 1024.$

4.6.2.1 Phase Locked Loop (PLL)

When PLL operation is selected (SYSCON0.CLKSEL = 10_B , PLLCON0.VCOBY = 0_B), the on-chip phase locked loop is enabled and provides the system clock. The PLL multiplies the input frequency by the factor **F** ($f_{SYS} = f_{IN} \times F$).

F is calculated from the input divider P (= PDIV+1), the multiplication factor N (= NDIV+1), and the output divider K2 (= K2DIV+1):

 $(F = N / (P \times K2)).$

The input clock can be derived either from an external source at XTAL1 or from the onchip clock source.

The PLL circuit synchronizes the system clock to the input clock. This synchronization is performed smoothly so that the system clock frequency does not change abruptly.

Adjustment to the input clock continuously changes the frequency of f_{SYS} so that it is locked to f_{IN} . The slight variation causes a jitter of f_{SYS} which in turn affects the duration of individual TCSs.

¹⁾ Voltages on XTAL1 must comply to the core supply voltage V_{DDIM} .

The timing in the AC Characteristics refers to TCSs. Timing must be calculated using the minimum TCS possible under the given circumstances.

The actual minimum value for TCS depends on the jitter of the PLL. Because the PLL is constantly adjusting its output frequency to correspond to the input frequency (from crystal or oscillator), the accumulated jitter is limited. This means that the relative deviation for periods of more than one TCS is lower than for a single TCS (see formulas and Figure 20).

This is especially important for bus cycles using waitstates and for the operation of timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter is negligible.

The value of the accumulated PLL jitter depends on the number of consecutive VCO output cycles within the respective timeframe. The VCO output clock is divided by the output prescaler K2 to generate the system clock signal f_{SYS} . The number of VCO cycles is K2 × **T**, where **T** is the number of consecutive f_{SYS} cycles (TCS).

The maximum accumulated jitter (long-term jitter) D_{Tmax} is defined by:

 D_{Tmax} [ns] = ±(220 / (K2 × f_{SYS}) + 4.3)

This maximum value is applicable, if either the number of clock cycles T > (f_{SYS} / 1.2) or the prescaler value K2 > 17.

In all other cases for a timeframe of $\mathbf{T} \times TCS$ the accumulated jitter D_T is determined by:

 D_{T} [ns] = $D_{Tmax} \times [(1 - 0.058 \times K2) \times (T - 1) / (0.83 \times f_{SYS} - 1) + 0.058 \times K2]$

 f_{SYS} in [MHz] in all formulas.

Example, for a period of 3 TCSs @ 33 MHz and K2 = 4:

 D_{max} = $\pm(220$ / (4 \times 33) + 4.3) = 5.97 ns (Not applicable directly in this case!)

 $D_3 = 5.97 \times [(1 - 0.058 \times 4) \times (3 - 1) / (0.83 \times 33 - 1) + 0.058 \times 4]$

= 5.97 × [0.768 × 2 / 26.39 + 0.232]

Example, for a period of 3 TCSs @ 33 MHz and K2 = 2:

 $D_{max} = \pm(220 / (2 \times 33) + 4.3) = 7.63$ ns (Not applicable directly in this case!)

 $\begin{array}{l} \mathsf{D}_3 = 7.63 \times [(1 - 0.058 \times 2) \times (3 - 1) \ / \ (0.83 \times 33 - 1) + 0.058 \times 2] \\ = 7.63 \times [0.884 \times 2 \ / \ 26.39 + 0.116] \end{array}$

4.6.3 External Clock Input Parameters

These parameters specify the external clock generation for the XC2785X. The clock can be generated in two ways:

- By connecting a crystal or ceramic resonator to pins XTAL1/XTAL2
- By supplying an external clock signal
 - This clock signal can be supplied either to pin XTAL1 (core voltage domain) or to pin CLKIN1 (IO voltage domain)

If connected to CLKIN1, the input signal must reach the defined input levels $V_{\rm IL}$ and $V_{\rm IH}$. If connected to XTAL1, a minimum amplitude $V_{\rm AX1}$ (peak-to-peak voltage) is sufficient for the operation of the on-chip oscillator.

Note: The given clock timing parameters $(t_1 \dots t_4)$ are only valid for an external clock input signal.

Note: Operating Conditions apply.

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Oscillator frequency	$f_{\rm OSC}{ m SR}$	4	-	40	MHz	Input = clock signal
		4	_	16	MHz	Input = crystal or ceramic resonator
XTAL1 input current absolute value	I _{IL} CC	-	-	20	μA	
Input clock high time	t ₁ SR	6	-	-	ns	
Input clock low time	$t_2 \mathrm{SR}$	6	-	-	ns	
Input clock rise time	t ₃ SR	-	-	8	ns	
Input clock fall time	t ₄ SR	-	-	8	ns	
Input voltage amplitude on XTAL1 ¹⁾	V _{AX1} SR	$0.3 ext{ x}$ $V_{ ext{DDIM}}$	-	-	V	4 to 16 MHz
		$0.4 ext{ x}$ $V_{ ext{DDIM}}$	-	-	V	16 to 25 MHz
		$0.5 ext{ x}$ $V_{ ext{DDIM}}$	-	-	V	25 to 40 MHz
Input voltage range limits for signal on XTAL1	$V_{\rm IX1}$ SR	-1.7 + V _{DDIM}	-	1.7	V	2)

Table 25 External Clock Input Characteristics

XC2785X XC2000 Family / Base Line

Electrical Parameters

XC2785X XC2000 Family / Base Line

Electrical Parameters

Figure 25 READY Timing

Note: If the READY input is sampled inactive at the indicated sampling point ("Not Rdy") a READY-controlled waitstate is inserted (tpRDY),

sampling the READY input active at the indicated sampling point ("Ready") terminates the currently running bus cycle.

Note the different sampling points for synchronous and asynchronous READY. This example uses one mandatory waitstate (see tpE) before the READY input value is used.

Table 35 USIC SSC Master Mode Timing for Lower Voltage Range (cont'd)

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.	1	Test Condition
Receive data input setup time to SCLKOUT receive edge	t ₄ SR	40	-	-	ns	
Data input DX0 hold time from SCLKOUT receive edge	t ₅ SR	-5	-	-	ns	

1) $t_{SYS} = 1 / f_{SYS}$

Table 36 USIC SSC Slave Mode Timing for Upper Voltage Range

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.	1	Test Condition
Select input DX2 setup to first clock input DX1 transmit edge ¹⁾	<i>t</i> ₁₀ SR	7	-	-	ns	
Select input DX2 hold after last clock input DX1 receive edge ¹⁾	<i>t</i> ₁₁ SR	7	-	-	ns	
Receive data input setup time to shift clock receive edge ¹⁾	<i>t</i> ₁₂ SR	7	-	-	ns	
Data input DX0 hold time from clock input DX1 receive edge ¹⁾	<i>t</i> ₁₃ SR	5	-	-	ns	
Data output DOUT valid time	<i>t</i> ₁₄ CC	7	_	33	ns	

1) These input timings are valid for asynchronous input signal handling of slave select input, shift clock input, and receive data input (bits DXnCR.DSEN = 0).

Figure 30 DAP Timing Host to Device

Figure 31 DAP Timing Device to Host

Note: The transmission timing is determined by the receiving debugger by evaluating the sync-request synchronization pattern telegram.

Package and Reliability

5 Package and Reliability

The XC2000 Family devices use the package type PG-LQFP (Plastic Green - Low Profile Quad Flat Package). The following specifications must be regarded to ensure proper integration of the XC2785X in its target environment.

5.1 Packaging

These parameters specify the packaging rather than the silicon.

Parameter	Symbol	Lin	nit Values	Unit	Notes
		Min.	Max.		
Exposed Pad Dimension	$E x \times E y$	-	6.5 imes 6.5	mm	-
Power Dissipation	P _{DISS}	-	1.0	W	-
Thermal resistance	$R_{\Theta JA}$	-	43	K/W	No thermal via ¹⁾
Junction-Ambient			34	K/W	4-layer, no pad ²⁾
			21	K/W	4-layer, pad ³⁾

 Table 42
 Package Parameters (PG-LQFP-144-13)

1) Device mounted on a 2-layer JEDEC board (according to JESD 51-3) or a 4-layer board without thermal vias; exposed pad not soldered.

 Device mounted on a 4-layer JEDEC board (according to JESD 51-7) with thermal vias; exposed pad not soldered.

 Device mounted on a 4-layer JEDEC board (according to JESD 51-7) with thermal vias; exposed pad soldered to the board.

Note: To improve the EMC behavior, it is recommended to connect the exposed pad to the board ground, independent of the thermal requirements. Board layout examples are given in an application note.

Package Compatibility Considerations

The XC2785X is a member of the XC2000 Family of microcontrollers. It is also compatible to a certain extent with members of similar families or subfamilies.

Each package is optimized for the device it houses. Therefore, there may be slight differences between packages of the same pin-count but for different device types. In particular, the size of the Exposed Pad (if present) may vary.

If different device types are considered or planned for an application, it must be ensured that the board layout fits all packages under consideration.

Package and Reliability

Package Outlines

Figure 34 PG-LQFP-144-13 (Plastic Green Thin Quad Flat Package)

All dimensions in mm.

You can find complete information about Infineon packages, packing and marking in our Infineon Internet Page "Packages": http://www.infineon.com/packages