E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SAI, SDIO, SPI, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	114
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384К х 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	169-UFBGA
Supplier Device Package	169-UFBGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f479agh6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	2.20.3	Regulator ON/OFF and internal reset ON/OFF availability							
2.21	Real-tin	ne clock (RTC), backup SRAM and backup registers							
2.22	Low-power modes								
2.23	V _{BAT} operation								
2.24	Timers and watchdogs								
	2.24.1	Advanced-control timers (TIM1, TIM8)							
	2.24.2	General-purpose timers (TIMx)							
	2.24.3	Basic timers TIM6 and TIM738							
	2.24.4	Independent watchdog							
	2.24.5	Window watchdog							
	2.24.6	SysTick timer							
2.25	Inter-inf	tegrated circuit interface (I ² C)							
2.26	Univers	al synchronous/asynchronous receiver transmitters (USART) 39							
2.27	Serial p	peripheral interface (SPI) 40							
2.28	Inter-integrated sound (I ² S) 41								
2.29	Serial Audio interface (SAI1) 41								
2.30	Audio PLL (PLLI2S) 41								
2.31	Audio and LCD PLL(PLLSAI) 41								
2.32	Secure	digital input/output interface (SDIO) 42							
2.33	Etherne	et MAC interface with dedicated DMA and IEEE 1588 support 42							
2.34	Control	ler area network (bxCAN) 42							
2.35	Univers	al serial bus on-the-go full-speed (OTG_FS)							
2.36	Univers	al serial bus on-the-go high-speed (OTG_HS)							
2.37	Digital o	camera interface (DCMI) 44							
2.38	Cryptoc	graphic accelerator							
2.39	Randor	n number generator (RNG)							
2.40	Genera	I-purpose input/outputs (GPIOs)							
2.41	Analog	-to-digital converters (ADCs)							
2.42	Temper	ature sensor							
2.43	Digital-t	to-analog converter (DAC) 46							
2.44	Serial w	vire JTAG debug port (SWJ-DP)							
2.45	Embed	ded Trace Macrocell™							
Pinou	uts and	pin description							

3

	2 - (1)	
Figure 45.	I ² S slave timing diagram (Philips protocol) ⁽¹⁾ 1 ²	46
Figure 46.	I ² S master timing diagram (Philips protocol) ⁽¹⁾	46
Figure 47.	SAI master timing waveforms 14	48
Figure 48.	SAI slave timing waveforms	48
Figure 49.	USB OTG full speed timings: definition of data signal rise and fall time	50
Figure 50.	ULPI timing diagram	51
Figure 51.	Ethernet SMI timing diagram	52
Figure 52.	Ethernet RMII timing diagram	53
Figure 53.	Ethernet MII timing diagram	54
Figure 54.	ADC accuracy characteristics	59
Figure 55.	Typical connection diagram using the ADC15	59
Figure 56.	Power supply and reference decoupling (V _{REF+} not connected to V _{DDA})	30
Figure 57.	Power supply and reference decoupling (V _{REF+} connected to V _{DDA})	30
Figure 58.	12-bit buffered/non-buffered DAC16	34
Figure 59.	Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms	35
Figure 60.	Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms	67
Figure 61.	Asynchronous multiplexed PSRAM/NOR read waveforms.	68
Figure 62.	Asynchronous multiplexed PSRAM/NOR write waveforms	70
Figure 63.	Synchronous multiplexed NOR/PSRAM read timings	72
Figure 64.	Synchronous multiplexed PSRAM write timings	74
Figure 65.	Synchronous non-multiplexed NOR/PSRAM read timings	76
Figure 66.	Synchronous non-multiplexed PSRAM write timings	77
Figure 67.	NAND controller waveforms for read access	78
Figure 68.	NAND controller waveforms for write access	79
Figure 69.	NAND controller waveforms for common memory read access	79
Figure 70.	NAND controller waveforms for common memory write access	80
Figure 71.	SDRAM read access waveforms (CL = 1)	81
Figure 72.	SDRAM write access waveforms	82
Figure 73.	Quad-SPI SDR timing diagram	84
Figure 74.	Quad-SPI DDR timing diagram.	85
Figure 75.	DCMI timing diagram	86
Figure 76.	LCD-TFT horizontal timing diagram	87
Figure 77.	LCD-TFT vertical timing diagram	88
Figure 78.	SDIO high-speed mode	88
Figure 79.	SD default mode.	89
Figure 80.	LQEP100 - 100-pin, 14 x 14 mm low-profile guad flat package outline	91
Figure 81	I QEP100 - 100-pin, 14 x 14 mm low-profile guad flat	
1.90.0001	recommended footprint	93
Figure 82	I QEP100 marking example (package top view)	93
Figure 83	I OEP144 - 144-pin 20 x 20 mm low-profile guad flat package outline	94
Figure 84	I OEP144 - 144-pin 20 x 20 mm low-profile quad flat package outline	
rigure o4.	recommended footprint 10	96
Figure 85	I OEP144 marking example (package top view)	36
Figure 86	WI CSP168 - 168-nin $4.801 \times 5.602 \text{ mm} 0.4 \text{ mm}$ nitch wafer level chin	50
rigure oo.	scale package outline 10	07
Ejaure 87	UEBCA160 160 pin 7 x 7 mm 0.50 mm pitch ultra fine pitch ball grid	51
i igule or.	array package outline	00
Figure 00	LIERCA160 marking example (nackage ten view)	79
Figure 20	$\Box OED176$ 24 x 24 mm 176 pin low profile guad flat package outline 20	JU ∩1
Figure 09.	Loren 170, 24 x 24 mm, 170-pin low-pione quad nat package outline	02 71
Figure 90.	LQFF 170 recommended toolphint	J3 ∩4
Figure 91.		J4
Figure 92.	0 = 0 $A = 1 = 0$ $A = 20 = 20 = 0$ $B = 10 = 0$ $A = 10 = 0$ $B =$	

Peripherals	STM32F479Vx	STM32F479Zx	STM32F479Ax	STM32F479Ix	STM32F479Bx	STM32F479Nx			
Chrom-ART Accelerator™ (DMA2D)	Yes								
Cryptography	aphy Yes								
GPIOs	71	131	114	131	161	161			
12-bit ADC	3								
Number of channels	14	20		2	4				
12-bit DAC Number of channels	Yes 2								
Maximum CPU frequency			180	MHz					
Operating voltage			1.7 to	3.6V ⁽²⁾					
Operating temperatures	Ambient operating temperature: -40 to 85 °C / -40 to 105 °C Junction temperature: -40 to 105 °C / -40 to 125 °C								
Package	LQFP100	LQFP144	UFBGA169 WLCSP168	LQFP176 UFBGA176	LQFP208	TFBGA216			

 Table 2. STM32F479xx features and peripheral counts (continued)

1. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.

2. VDD/VDDA minimum value of 1.7 V is obtained when the internal reset is OFF (refer to Section 2.19.2).

1.1 Compatibility throughout the family

STM32F479xx devices are not compatible with other STM32F4xx devices.

Figure 1 and *Figure 2* show incompatible board designs, respectively, for LQFP176 and LQFP208 packages (highlighted pins).

The UFBGA176 and TFBGA216 ballouts are compatible with other STM32F4xx devices, only few IO port pins are substituted, as shown in *Figure 3* and *Figure 4*.

The LQFP100, LQFP144 and UFBGA169 packages are incompatible with other STM32F4xx devices.

Since the internal voltage scaling is not managed internally, the external voltage value must be aligned with the targeted maximum frequency. Refer to *Operating conditions*. The two 2.2 μ F ceramic capacitors should be replaced by two 100 nF decoupling capacitors. Refer to *Section 2.18*.

When the regulator is OFF, there is no more internal monitoring on V_{12} . An external power supply supervisor should be used to monitor the V_{12} of the logic power domain. PA0 pin should be used for this purpose, and act as power-on reset on V_{12} power domain.

In regulator OFF mode, the following features are no more supported:

- PA0 cannot be used as a GPIO pin since it allows to reset a part of the V₁₂ logic power domain which is not reset by the NRST pin.
- As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As a consequence, PA0 and NRST pins must be managed separately if the debug connection under reset or pre-reset is required.
- The over-drive and under-drive modes are not available.
- The Standby mode is not available.

Figure 10. Regulator OFF

The following conditions must be respected:

- V_{DD} should always be higher than V_{CAP_1} and V_{CAP_2} to avoid current injection between power domains.
- If the time for V_{CAP_1} and V_{CAP_2} to reach V₁₂ minimum value is faster than the time for V_{DD} to reach 1.7 V, then PA0 should be kept low to cover both conditions: until V_{CAP_1} and V_{CAP_2} reach V₁₂ minimum value and until V_{DD} reaches 1.7 V (see *Figure 11*).
- Otherwise, if the time for V_{CAP_1} and V_{CAP_2} to reach V₁₂ minimum value is slower than the time for V_{DD} to reach 1.7 V, then PA0 could be asserted low externally (see *Figure 12*).
- If V_{CAP_1} and V_{CAP_2} go below V₁₂ minimum value and V_{DD} is higher than 1.7 V, then a reset must be asserted on PA0 pin.

Note: The minimum value of V_{12} depends on the maximum frequency targeted in the application (see Operating conditions).

DocID028010 Rev 4

main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes.

2.24.5 Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

2.24.6 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard downcounter. It features:

- A 24-bit downcounter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source.

2.25 Inter-integrated circuit interface (I²C)

Up to three I²C bus interfaces can operate in multimaster and slave modes. They can support the standard (up to 100 KHz), and fast (up to 400 KHz) modes. They support the 7/10-bit addressing mode and the 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is embedded.

They can be served by DMA and they support SMBus 2.0/PMBus.

The devices also include programmable analog and digital noise filters (see Table 7).

Table 7. Comparison of I2C analog and digital filters

Filter	Analog	Digital
Pulse width of suppressed spikes	≥ 50 ns	Programmable length from 1 to 15 I2C peripheral clocks

2.26 Universal synchronous/asynchronous receiver transmitters (USART)

The devices embed four universal synchronous/asynchronous receiver transmitters (USART1, USART2, USART3 and USART6) and four universal asynchronous receiver transmitters (UART4, UART5, UART7, and UART8).

These six interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to communicate at speeds of up to 11.25 Mbit/s. The other available interfaces communicate at up to 5.62 bit/s.

As the offset of the temperature sensor varies from chip to chip due to process variation, the internal temperature sensor is mainly suitable for applications that detect temperature changes instead of absolute temperatures. If an accurate temperature reading is needed, then an external temperature sensor part should be used.

2.43 Digital-to-analog converter (DAC)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs.

This dual digital Interface supports the following features:

- two DAC converters: one for each output channel
- 8-bit or 10-bit monotonic output
- left or right data alignment in 12-bit mode
- synchronized update capability
- noise-wave generation
- triangular-wave generation
- dual DAC channel independent or simultaneous conversions
- DMA capability for each channel
- external triggers for conversion
- input voltage reference V_{REF+}

Eight DAC trigger inputs are used in the device. The DAC channels are triggered through the timer update outputs that are also connected to different DMA streams.

2.44 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

2.45 Embedded Trace Macrocell[™]

The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F47x through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors.

The Embedded Trace Macrocell operates with third party debugger software tools.

			Pin nu	umber	•					es			
LQFP100	LQFP144	UFBGA169	WLCSP168	UFBGA176	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin types	I/O structur	Notes	Alternate functions	Additional functions
96	136	B4	A9	B5	165	196	B5	PB7	I/O	FT	-	TIM4_CH2, I2C1_SDA, USART1_RX, FMC_NL, DCMI_VSYNC, EVENTOUT	-
97	137	A5	F8	D6	166	197	E6	BOOT0	Ι	В	-	-	VPP
98	138	D4	В9	A5	167	198	A7	PB8	I/O	FT	-	TIM4_CH3, TIM10_CH1, I2C1_SCL, CAN1_RX, ETH_MII_TXD3, SDIO_D4, DCMI_D6, LCD_B6, EVENTOUT	-
99	139	C4	E9	B4	168	199	B4	PB9	39 I/O FT - TIM4_CH4, TIM1 I2C1_SDA SPI2_NSS/I2S2 CAN1_TX, SDI0 DCMI_D7, LCE EVENTOU		TIM4_CH4, TIM11_CH1, I2C1_SDA, SPI2_NSS/I2S2_WS, CAN1_TX, SDIO_D5, DCMI_D7, LCD_B7, EVENTOUT	-	
NC (2)	140	A4	A10	A4	169	200	A6	PE0	I/O	FT	-	TIM4_ETR, UART8_Rx, FMC_NBL0, DCMI_D2, EVENTOUT	-
NC (2)	141	A3	C9	A3	170	201	A5	PE1	I/O	FT	-	UART8_Tx, FMC_NBL1, DCMI_D3, EVENTOUT	-
-	-	E3	B10	D5	-	202	F6	VSS	S	-	-	-	-
-	142	C3	D9	C6	171	203	E5	PDR_ON	S	-	-	-	-
100	143	D3	A11	C5	172	204	E7	VDD	S	-	-	-	-
-	-	В3	D10	D4	173	205	C3	Pl4	I/O	FT	-	TIM8_BKIN, FMC_NBL2, DCMI_D5, LCD_B4, EVENTOUT	-
-	-	A2	C10	C4	174	206	D3	PI5	I/O	FT	-	TIM8_CH1, FMC_NBL3, DCMI_VSYNC, LCD_B5, EVENTOUT	-
-	-	A1	B11	C3	175	207	D6	PI6	I/O	FT	-	TIM8_CH2, FMC_D28, DCMI_D6, LCD_B6, EVENTOUT	-
-	-	B1	A12	C2	176	208	D4	PI7	I/O	FT	-	TIM8_CH3, FMC_D29, DCMI_D7, LCD_B7, EVENTOUT	-

Table 10. STM32F479xx pin and ball definitions (continued)

1. Function availability depends on the chosen device.

2. NC (not-connected) pins are not bonded. They must be configured by software to output push-pull and forced to "0" in the output data register to avoid extra current consumption in low power modes.

 PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited:
 The speed should not exceed 2 MHz with a maximum load of 30 pF.

- These I/Os must not be used as a current source (e.g. to drive an LED).

4. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC register description sections in the STM32F4xx reference manual, available from the STMicroelectronics website: www.st.com.

5. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).

_	Table 12. Alternate function																
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
Ρ	ort	SYS	TIM1/2	TIM3/4/ 5	TIM8/9/ 10/11	I2C1/2/3	SPI1/2/3 /4/5/6	SPI2/3/ SAI1	SPI2/3/ USART 1/2/3	USAR T6/ UART 4/5/7/ 8	CAN1/2/ TIM12/ 13/14/ QUAD SPI/LCD	QUAD SPI/OT G2_HS /OTG1 _FS	ЕТН	FMC/ SDIO/ OTG2_ FS	DCMI/ DSI HOST	LCD	SYS
	PA0	-	TIM2_CH1/ TIM2_ETR	TIM5_CH1	TIM8_ETR	-	-	-	USART2_ CTS	UART4_ TX	-	-	ETH_MII_CRS	-	-	-	EVENT OUT
	PA1	-	TIM2_CH2	TIM5_CH2	-	-	-	-	USART2_ RTS	UART4_ RX	QUADSPI_ BK1_IO3	-	ETH_MII_RX_ CLK/ETH_RMI I_REF_CLK	-	-	LCD_R2	EVENT OUT
	PA2	-	TIM2_CH3	TIM5_CH3	TIM9_CH1	-	-	-	USART2_T X	-	-	-	ETH_MDIO	-	-	LCD_R1	EVENT OUT
	PA3	-	TIM2_CH4	TIM5_CH4	TIM9_CH2	-	-	-	USART2_ RX	-	LCD_B2	OTG_HS _ULPI_D0	ETH_MII_COL	-	-	LCD_B5	EVENT OUT
	PA4	-	-	-	-	-	SPI1_NSS	SPI3_NSS/ I2S3_WS	USART2_ CK	-	-	-	-	OTG_HS_S OF	DCMI_HS YNC	LCD_VSY NC	EVENT OUT
	PA5	-	TIM2_CH1/ TIM2_ETR	-	TIM8_CH1 N	-	SPI1_SCK	-	-	-	-	OTG_HS _ULPI_C K	-	-	-	LCD_R4	EVENT OUT
	PA6	-	TIM1_BKIN	TIM3_CH1	TIM8_BKI N	-	SPI1_ MISO	-	-	-	TIM13_CH1	-	-	-	DCMI_PIX CLK	LCD_G2	EVENT OUT
Port A	PA7	-	TIM1_ CH1N	TIM3_CH2	TIM8_CH1 N	-	SPI1_ MOSI	-	-	-	TIM14_CH1	QUADSPI _CLK	ETH_MII_RX_ DV/ETH_RMII _CRS_DV	FMC_SDN WE	-	-	EVENT OUT
	PA8	MCO1	TIM1_CH1	-	-	I2C3_SCL	-	-	USART1_ CK	-	-	OTG_FS_ SOF	-	-	-	LCD_R6	EVENT OUT
	PA9	-	TIM1_CH2	-	-	I2C3_SMBA	SPI2_SCK/I 2S2_CK	-	USART1_T X	-	-	-	-	-	DCMI_D0	-	EVENT OUT
	PA10	-	TIM1_CH3	-	-	-	-	-	USART1_ RX	-	-	OTG_FS_ ID	-	-	DCMI_D1	-	EVENT OUT
	PA11	-	TIM1_CH4	-	-	-	-	-	USART1_ CTS	-	CAN1_RX	OTG_FS_ DM	-	-	-	LCD_R4	EVENT OUT
	PA12	-	TIM1_ETR	-	-	-	-	-	USART1_ RTS	-	CAN1_TX	OTG_FS_ DP	-	-	-	LCD_R5	EVENT OUT
	PA13	JTMS- SWDIO	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PA14	JTCK- SWCLK	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PA15	JTDI	TIM2_CH1/ TIM2_ETR	-	-	-	SPI1_NSS	SPI3_NSS/ I2S3_WS	-	-	-	-	-	-	-	-	EVENT 'OUT

DocID028010 Rev 4

5

73/217

STM32F479xx

Pinouts and pin description

82/217

DocID028010 Rev 4

577

	Table 12. Alternate function (continued)																
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
Ρ	ort	SYS	TIM1/2	TIM3/4/ 5	TIM8/9/ 10/11	I2C1/2/3	SPI1/2/3 /4/5/6	SPI2/3/ SAI1	SPI2/3/ USART 1/2/3	USAR T6/ UART 4/5/7/ 8	CAN1/2/ TIM12/ 13/14/ QUAD SPI/LCD	QUAD SPI/OT G2_HS /OTG1 _FS	ETH	FMC/ SDIO/ OTG2_ FS	DCMI/ DSI HOST	LCD	SYS
	PJ0	-	-	-	-	-	-	-	-	-	LCD_R7	-	-	-	-	LCD_R1	EVENT OUT
	PJ1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_R2	EVENT OUT
	PJ2	-	-	-	-	-	-	-	-	-	-	-	-	-	DSIHOST _TE	LCD_R3	EVENT OUT
	PJ3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_R4	EVENT OUT
Port	PJ4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_R5	EVENT OUT
J	PJ5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_R6	EVENT OUT
	PJ12	-	-	-	-	-	-	-	-	-	LCD_G3	-	-	-	-	LCD_B0	EVENT OUT
	PJ13	-	-	-	-	-	-	-	-	-	LCD_G4	-	-	-	-	LCD_B1	EVENT OUT
	PJ14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B2	EVENT OUT
	PJ15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B3	EVENT OUT
	PK3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B4	EVENT OUT
	PK4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B5	EVENT OUT
Port K	PK5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B6	EVENT OUT
	PK6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B7	EVENT OUT
	PK7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_DE	EVENT OUT

STM32F479xx

Pinouts and pin description

Bus	Boundary address	Peripheral
-	0xE00F FFFF - 0xFFFF FFFF	Reserved
Cortex [®] -M4	0xE000 0000 - 0xE00F FFFF	Cortex [®] -M4 internal peripherals
	0xD000 0000 - 0xDFFF FFFF	FMC bank 6
	0xC000 0000 - 0xCFFF FFFF	FMC bank 5
	0xA000 1000 - 0xA0001FFF	Quad-SPI control register
	0xA000 2000 - 0xBFFF FFFF	Reserved
AHB3	0xA000 0000- 0xA000 0FFF	FMC control register
	0x9000 0000 - 0x9FFF FFFF	Quad-SPI bank
	0x8000 0000 - 0x8FFF FFFF	FMC bank 3
	0x7000 0000 - 0x7FFF FFFF	FMC bank 2 (reserved)
	0x6000 0000 - 0x6FFF FFFF	FMC bank 1
-	0x5006 0C00- 0x5FFF FFFF	Reserved
	0x5006 0800 - 0x5006 0BFF	RNG
	0x5006 0400 - 0x5006 07FF	HASH
	0x5006 0000 - 0x5006 03FF	CRYP
AHB2	0x5005 0400 - 0x5005 FFFF	Reserved
	0x5005 0000 - 0x5005 03FF	DCMI
	0x5004 0000- 0x5004 FFFF	Reserved
	0x5000 0000 - 0x5003 FFFF	USB OTG FS

Table 13	. STM32F479xx	register	boundary	addresses ⁽¹⁾
----------	---------------	----------	----------	--------------------------

the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DD} \times f_{SW} \times C$$

where

 I_{SW} is the current sunk by a switching I/O to charge/discharge the capacitive load V_{DD} is the MCU supply voltage

 f_{SW} is the I/O switching frequency

C is the total capacitance seen by the I/O pin: C = C_{INT} + C_{EXT}

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

Symbol	Parameter	Conditions	I/O toggling frequency (fsw)	Тур	Unit
	I/O switching Current		2 MHz	0.0	
			8 MHz	0.2	
			25 MHz	0.6	
		V _{DD} = 3.3 V C= C _{INT} ⁽²⁾	50 MHz	1.1	mA
			60 MHz	1.3	
			84 MHz	1.8	
			90 MHz	1.9	
'DDIO			2 MHz	0.1	
			8 MHz	0.4	
		V _{DD} = 3.3 V	25 MHz	1.23	
		C _{EXT} = 0 pF	50 MHz	2.43	
		$C = C_{INT} + C_{EXT} + C_S$	60 MHz	2.93	
			84 MHz	3.86	
			90 MHz	4.07	

Table 32. Switching output I/O	current consumption ⁽¹⁾
--------------------------------	------------------------------------

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application, executing EEMBC[?] code, is running. This emission test is compliant with SAE IEC61967-2 standard which specifies the test board and the pin loading.

Symbol	Paramotor	Conditions	Monitored	Max vs. [Unit	
	Farameter		frequency band	8/168 MHz	8/180 MHz	
		$V_{DD} = 3.3 \text{ V}, T_A = 25 ^{\circ}\text{C}, \text{TFBGA216}$ package, conforming to SAE J1752/3 EEMBC, ART ON, all peripheral clocks enabled, clock dithering disabled.Peak level $V_{DD} = 3.3 \text{ V}, T_A = 25 ^{\circ}\text{C}, \text{TFBGA216}$ package, conforming to SAE J1752/3 EEMBC, ART ON, all peripheral clocks enabled, clock dithering enabled	0.1 to 30 MHz	2	2	
			30 to 130 MHz	4	1	dBµV
			130 MHz to 1GHz	10	10	
S	Poak lovel		SAE EMI Level	3	3	-
SEMI	reak level		0.1 to 30 MHz	5	-10	
			30 to 130 MHz	3	-15	dBµV
			130 MHz to 1GHz	8	0	
			SAE EMI level	2	2	-

5.3.18 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the ANSI/ESDA/JEDEC JS-001 and ANSI/ESD S5.3.1 standards.

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	T _A = +25 °C conforming to ANSI/ESDA/JEDEC JS-001		2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	T _A = +25 °C conforming to ANSI/ESD S5.3.1, LQFP176, LQFP208, UFBGA169, UFBGA176, TFBGA216 and WLCSP148 packages	C3	250	v

Table 55. ESD absolute maximum ratings

1. Guaranteed based on test during characterization.

Static latchup

Two complementary static tests are required on six parts to assess the latchup performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latchup standard.

Table 56. Electrical sensitivities⁽¹⁾

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +105 \text{ °C conforming to JESD78A}$	II level A

1. MSV on PA4 and PA5 is 5 V, versus 5.4 V on all IOs.

5.3.19 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of – 5 μ A/+0 μ A range), or other functional failure (for example reset, oscillator frequency deviation).

Negative induced leakage current is caused by negative injection and positive induced leakage current by positive injection.

The test results are given in Table 57.

Symbol	Parameter	Min	Тур	Max	Unit		
-	f _{HCLK} value to guarantee prope USB HS interface	30	-	-			
F _{START_8BIT}	Frequency (first transition)	8-bit ±10%	54	60	66	MHz	
F _{STEADY}	Frequency (steady state) ±500	ppm	59.97	60	60.03		
D _{START_8BIT}	Duty cycle (first transition) 8-bit ±10%		40	50	60	0/.	
D _{STEADY}	Duty cycle (steady state) ±500	49.975	50	50.025	/0		
t _{STEADY}	Time to reach the steady state duty cycle after the first transiti	-	-	1.4	ms		
t _{START_DEV}	Clock startup time after the	Peripheral	-	-	5.6	me	
t _{START_HOST}	de-assertion of SuspendM	Host	-	-	-	ms	
t _{PREP}	PHY preparation time after the of the input clock	-	_	-	μs		

Table	71.	USB	нs	clock	timina	parameter	's ⁽¹⁾
labic		000		CIOCK	unning	parameter	3

1. Guaranteed by design.

Symbol	Parameter	Min	Тур	Мах	Unit	Comments
	DAC DC VDDA current	-	280	380	μA	With no load, middle code (0x800) on the inputs
I _{DDA} ⁽⁴⁾	consumption in quiescent mode ⁽³⁾	-	475	625	μA	With no load, worst code (0xF1C) at V _{REF+} = 3.6 V in terms of DC consumption on the inputs
DNL ⁽⁴⁾	Differential non linearity Difference between two	-	-	±0.5	LSB	Given for the DAC in 10-bit configuration.
	consecutive code-1LSB)	-	-	±2	LSB	Given for the DAC in 12-bit configuration.
	Integral non linearity	-	-	±1	LSB	Given for the DAC in 10-bit configuration.
INL ⁽⁴⁾	(difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023)	-	-	±4	LSB	Given for the DAC in 12-bit configuration.
	Offset error	-	-	±10	mV	Given for the DAC in 12-bit configuration
Offset ⁽⁴⁾	(difference between measured value at Code	-	-	±3	LSB	Given for the DAC in 10-bit at V _{REF+} = 3.6 V
	(0x800) and the ideal value = V _{REF+} /2)	-	-	±12	LSB	Given for the DAC in 12-bit at V _{REF+} = 3.6 V
Gain error ⁽⁴⁾	Gain error	-	-	±0.5	%	Given for the DAC in 12-bit configuration
tsettling ⁽⁴⁾	Settling time (full scale: for a 10-bit input code transition between the lowest and the highest input codes when DAC_OUT reaches final value ±4LSB	-	3	6	μs	$C_{LOAD} \le 50 \text{ pF},$ $R_{LOAD} \ge 5 \text{ k}\Omega$
THD ⁽⁴⁾	Total Harmonic Distortion Buffer ON	-	-	-	dB	$C_{LOAD} \le 50 \text{ pF},$ $R_{LOAD} \ge 5 \text{ k}\Omega$
Update rate ⁽²⁾	Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB)	-	-	1	MS/s	$C_{LOAD} \le 50 \text{ pF},$ $R_{LOAD} \ge 5 \text{ k}\Omega$
t _{WAKEUP} ⁽⁴⁾	Wakeup time from off state (Setting the ENx bit in the DAC Control register)	-	6.5	10	μs	$C_{LOAD} \le 50$ pF, $R_{LOAD} \ge 5$ k Ω input code between lowest and highest possible ones.
PSRR+ ⁽²⁾	Power supply rejection ratio (to V _{DDA}) (static DC measurement)	-	-67	-40	dB	No R _{LOAD} , C _{LOAD} = 50 pF

Table 87. DAC characteristics (continued)

1. V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 2.19.2).

2. Guaranteed by design.

3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic consumption occurs.

4. Guaranteed based on test during characterization.

Table 98. Sy	ynchronous non-mult	iplexed NOR/PSRAM	read timings ⁽¹⁾
--------------	---------------------	-------------------	-----------------------------

Symbol	Parameter	Min	Мах	Unit
t _{w(CLK)}	FMC_CLK period	2T _{HCLK} – 1	-	
t _(CLKL-NExL)	FMC_CLK low to FMC_NEx low (x=02)	-	0.5	
t _{d(CLKH-NExH)}	FMC_CLK high to FMC_NEx high (x= 02)	T _{HCLK}	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	0	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	0	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	0	
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	T _{HCLK} – 0.5	-	ns
t _{d(CLKL-NOEL)}	FMC_CLK low to FMC_NOE low	-	T _{HCLK} +2	
t _{d(CLKH-NOEH)}	FMC_CLK high to FMC_NOE high	T _{HCLK} – 0.5	-	
t _{su(DV-CLKH)}	FMC_D[15:0] valid data before FMC_CLK high	5	-	
t _{h(CLKH-DV)}	FMC_D[15:0] valid data after FMC_CLK high	0	-	
t _(NWAIT-CLKH)	FMC_NWAIT valid before FMC_CLK high	4	-	
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	0	-	

1. Based on test during characterization.

Symbol	Parameter	Min	Мах	Unit
t _{W(SDCLK)}	FMC_SDCLK period	2T _{HCLK} – 0.5	2T _{HCLK} +0.5	
t _{su(SDCLKH_Data)}	Data input setup time	2.5	-	
t _{h(SDCLKH_Data)}	Data input hold time	0	-	
t _{d(SDCLKL_Add)}	Address valid time	-	1	
t _{d(SDCLKL_SDNE)}	Chip select valid time	-	1	ne
t _{h(SDCLKL_SDNE)}	Chip select hold time	1	-	113
t _{d(SDCLKL_SDNRAS}	SDNRAS valid time	-	1	
t _{h(SDCLKL_SDNRAS)}	SDNRAS hold time	1	-	
t _d (SDCLKL_SDNCAS)	SDNCAS valid time	-	1	
t _{h(SDCLKL_SDNCAS)}	SDNCAS hold time	1	-	

Table 103. LPSDR SDRAM read timings⁽¹⁾

1. Guaranteed based on test during characterization.

DocID028010 Rev 4

Symbol	Parameter	Test conditions	Min	Тур	Мах	Unit
Fak		$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V},$ $\text{C}_{\text{L}} = 20 \text{ pF}$	-	-	80	
1/t _(CK)	Quad-SPI clock frequency	1.71 V ≤ V _{DD} ≤ 3.6 V, C _L = 15 pF	-	-	70	MHz
t _{w(CKH)}	Quad-SPI clock high time	-	t _(CK) /2-1	-	t _(CK) /2	
t _{w(CKL)}	Quad-SPI clock low time	-	t _(CK) /2	-	t _(CK) /2+1	
t _{sr(IN)}	Data input act un timo	$2.7~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 3.6~\textrm{V}$	2	-	-	
t _{sf(IN)}	Data input set-up time	1.71 V ≤ V _{DD} ≤ 3.6 V	0.5	-	-	
t _{hr(IN)}	Data input hold time	$2.7~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 3.6~\textrm{V}$	3	-	-	
t _{hf(IN)}	Data input noid time	$1.71~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 3.6~\textrm{V}$	4.5	-	-	ns
		DHHC=0	-	8	10.5	
t _{vr(OUT)} t _{vf(OUT)}	Data output valid time	DHHC=1 Pres=1,2	-	T _{hclk} /2+2	T _{hclk} /2+2.5	
		DHHC=0	7	-	-	
t _{h(OUT)} t _{f(OUT)}	Data output hold time	DHHC=1 Pres=1,2	T _{hclk} /2+0.5	-	-	

Table 107. Quad-SPI characteristics in DDR mode⁽¹⁾

1. Guaranteed based on test during characterization.

5.3.31 Camera interface (DCMI) timing specifications

Unless otherwise specified, the parameters given in *Table 108* for DCMI are derived from tests performed under the ambient temperature, f_{HCLK} frequency and V_{DD} supply voltage summarized in *Table 17*, with the following configuration:

- DCMI_PIXCLK polarity: falling
- DCMI_VSYNC and DCMI_HSYNC polarity: high
- Data formats: 14 bits
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5 V_{DD}

DocID028010 Rev 4

7 Part numbering

Table 123. Ordering inform	nation scheme			
Example:	STM32 F	479 V I	Т	6 xxx
Device family				
STM32 = ARM-based 32-bit microcontroller				
Product type				
F = general-purpose				
Device subfamily				
479= STM32F479xx, USB OTG FS/HS, camera interface, Ethernet, LCD-TFT, DSIHost, cryptographic acceleration, Quad-SPI, Chrom-ART graphical accelerator.				
Pin count				
V = 100 pins				
Z = 144 pins				
A = 168 and 169 pins				
I = 176 pins				
B = 208 pins				
N = 216 pins				
Flash memory size				
G = 1024 Kbytes of Flash memory				
I = 2048 Kbytes of Flash memory				
Package				
T = LQFP				
H = BGA				
Y = WLCSP				
Temperature range				
6 = Industrial temperature range, –40 to 85 °C.				
7 = Industrial temperature range, –40 to 105 °C.				
Options				

xxx = programmed parts

TR = tape and reel

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

