

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I²C, IrDA, LINbus, SAI, SDIO, SPI, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	131
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP
Supplier Device Package	176-LQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f479iit6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1.2 LQFP208 package

Figure 2. Incompatible board design for LQFP208 package

1. Pins from 118 to 128 and pin 137 are not compatible

2 Functional overview

2.1 **ARM[®] Cortex[®]-M4 with FPU and embedded Flash and SRAM**

The ARM[®] Cortex[®]-M4 with FPU processor is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.

The ARM[®] Cortex[®]-M4 with FPU core is a 32-bit RISC processor that features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.

The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution.

Its single precision FPU (floating point unit) speeds up software development by using metalanguage development tools, while avoiding saturation.

The STM32F47x line is compatible with all ARM tools and software.

Figure 5 shows the general block diagram of the STM32F47x line.

Note: Cortex[®]-M4 with FPU core is binary compatible with the Cortex[®]-M3 core.

2.2 Adaptive real-time memory accelerator (ART Accelerator[™])

The ART Accelerator[™] is a memory accelerator optimized for STM32 industry-standard ARM[®] Cortex[®]-M4 with FPU processors. It balances the inherent performance advantage of the ARM[®] Cortex[®]-M4 with FPU over Flash memory technologies, which normally require the processor to wait for the Flash memory at higher frequencies.

To release the processor full 225 DMIPS performance at this frequency, the accelerator implements an instruction prefetch queue and branch cache, which increases program execution speed from the 128-bit Flash memory. Based on CoreMark[®] benchmark, the performance achieved thanks to the ART Accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 180 MHz.

2.3 Memory protection unit

The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.

The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

			Pin nu	umber						es			
LQFP100	LQFP144	UFBGA169	WLCSP168	UFBGA176	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin types	I/O structur	Notes	Alternate functions	Additional functions
-	-	L3	K8	J4	46	49	J3	PH5	I/O	FT	-	I2C2_SDA, SPI5_NSS, FMC_SDNWE, EVENTOUT	-
22	32	K3	N10	R2	47	50	R2	PA3	I/O	FT	(5)	TIM2_CH4, TIM5_CH4, TIM9_CH2, USART2_RX, LCD_B2, OTG_HS_ULPI_D0, ETH_MII_COL, LCD_B5, EVENTOUT	ADC123_IN3
23	33	J1	N11	-	-	51	K6	VSS	S	-	-	-	-
-	-	-	-	L4	48	-	L5	BYPASS_REG	I	FT	-	-	-
24	34	J4	P12	K4	49	52	K5	VDD	S	-	-	-	-
25	35	N2	M9	N4	50	53	N4	PA4	I/O	TTa	-	SPI1_NSS, SPI3_NSS/I2S3_WS, USART2_CK, OTG_HS_SOF, DCMI_HSYNC, LCD_VSYNC, EVENTOUT	ADC12_IN4, DAC_OUT1
26	36	М3	L8	P4	51	54	P4	PA5	I/O	ТТа	-	TIM2_CH1/TIM2_ETR, TIM8_CH1N, SPI1_SCK, OTG_HS_ULPI_CK, LCD_R4, EVENTOUT	ADC12_IN5, DAC_OUT2
27	37	N3	P11	P3	52	55	P3	PA6	I/O	FT	(5)	TIM1_BKIN, TIM3_CH1, TIM8_BKIN, SPI1_MISO, TIM13_CH1, DCMI_PIXCLK, LCD_G2, EVENTOUT	ADC12_IN6
28	38	K4	J8	R3	53	56	R3	PA7	I/O	FT	(5)	TIM1_CH1N, TIM3_CH2, TIM8_CH1N, SPI1_MOSI, TIM14_CH1, QUADSPI_CLK, ETH_MII_RX_DV/ETH_RMI I_CRS_DV, FMC_SDNWE, EVENTOUT	ADC12_IN7
NC (2)	39	-	-	N5	54	57	N5	PC4	I/O	FT	(5)	ETH_MII_RXD0/ETH_RMII _RXD0, FMC_SDNE0, EVENTOUT	ADC12_IN14
NC (2)	40	-	-	P5	55	58	P5	PC5	I/O	FT	(5)	ETH_MII_RXD1/ETH_RMII _RXD1, FMC_SDCKE0, EVENTOUT	ADC12_IN15
-	-	-	-	-	-	59	L7	VDD	S	-	-	-	-
-	-	-	-	-	-	60	L6	VSS	S	-	-	-	-
29	41	N4	P10	R5	56	61	R5	PB0	I/O	FT	(5)	TIM1_CH2N, TIM3_CH3, TIM8_CH2N, LCD_R3, OTG_HS_ULPI_D1, ETH_MII_RXD2, LCD_G1, EVENTOUT	ADC12_IN8

Table 10. STM32F479xx pin and ball definitions (continued)

			Pin nu	umber	,					es			
LQFP100	LQFP144	UFBGA169	WLCSP168	UFBGA176	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin types	I/O structur	Notes	Alternate functions	Additional functions
30	42	K5	N9	R4	57	62	R4	PB1	I/O	FT	(5)	TIM1_CH3N, TIM3_CH4, TIM8_CH3N, LCD_R6, OTG_HS_ULPI_D2, ETH_MII_RXD3, LCD_G0, EVENTOUT	ADC12_IN9
31	43	L5	P9	M6	58	63	M5	PB2- BOOT1(PB2)	I/O	FT	-	EVENTOUT	-
-	-	-	-	-	-	64	G4	PI15	I/O	FT	-	LCD_G2, LCD_R0, EVENTOUT	-
-	-	-	-	-	-	65	R6	PJ0	I/O	FT	-	LCD_R7, LCD_R1, EVENTOUT	-
-	-	-	-	-	-	66	R7	PJ1	I/O	FT	-	LCD_R2, EVENTOUT	-
-	-	-	-	-	-	67	P7	PJ2	I/O	FT	-	DSIHOST_TE, LCD_R3, EVENTOUT	-
-	-	-	-	-	-	68	N8	PJ3	I/O	FT	-	LCD_R4, EVENTOUT	-
-	-	-	-	-	-	69	M9	PJ4	I/O	FT	-	LCD_R5, EVENTOUT	-
-	44	M5	K7	R6	59	70	P8	PF11	I/O	FT	-	SPI5_MOSI, FMC_SDNRAS, DCMI_D12, EVENTOUT	-
-	45	N5	M8	P6	60	71	M6	PF12	I/O	FT	-	FMC_A6, EVENTOUT	-
-	-	J6	N8	M8	61	72	K7	VSS	S	-	-	-	-
-	46	K6	P8	N8	62	73	L8	VDD	S	1	-	-	-
-	47	M4	J7	N6	63	74	N6	PF13	I/O	FT	-	FMC_A7, EVENTOUT	-
-	48	H5	L7	R7	64	75	P6	PF14	I/O	FT	-	FMC_A8, EVENTOUT	-
-	49	M6	H8	P7	65	76	M8	PF15	I/O	FT	-	FMC_A9, EVENTOUT	-
-	50	N6	J6	N7	66	77	N7	PG0	I/O	FT	-	FMC_A10, EVENTOUT	-
-	51	M7	P7	M7	67	78	M7	PG1	I/O	FT	-	FMC_A11, EVENTOUT	-
32	52	N7	N7	R8	68	79	R8	PE7	I/O	FT	-	TIM1_ETR, UART7_Rx, QUADSPI_BK2_IO0, FMC_D4, EVENTOUT	-
33	53	G6	M7	P8	69	80	N9	PE8	I/O	FT	-	TIM1_CH1N, UART7_Tx, QUADSPI_BK2_IO1, FMC_D5, EVENTOUT	-
34	54	H6	K6	P9	70	81	P9	PE9	I/O	FT	-	TIM1_CH1, QUADSPI_BK2_IO2, FMC_D6, EVENTOUT	-
-	55	J7	-	M9	71	82	K8	VSS	S	-	-	-	-
-	56	L6	-	N9	72	83	L9	VDD	S	-	-	-	-
35	57	H7	P6	R9	73	84	R9	PE10	I/O	FT	-	TIM1_CH2N, QUADSPI_BK2_IO3, FMC_D7, EVENTOUT	-

Table 10. STM32F479xx pin and ball definitions (continued)

			Pin nu	umber						es.			
LQFP100	LQFP144	UFBGA169	WLCSP168	UFBGA176	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin types	I/O structur	Notes	Alternate functions	Additional functions
-	-	J9	M4	-	-	100	P15	PH10	I/O	FT	-	TIM5_CH1, FMC_D18, DCMI_D1, LCD_R4, EVENTOUT	-
-	-	K9	N3	-	-	101	N15	PH11	I/O	FT	-	TIM5_CH2, FMC_D19, DCMI_D2, LCD_R5, EVENTOUT	-
-	-	H10	P2	-	-	102	M15	PH12	I/O	FT	-	TIM5_CH3, FMC_D20, DCMI_D3, LCD_R6, EVENTOUT	-
-	-	-	H7	-	-	-	K10	VSS	S	-	-	-	-
-	66	-	-	-	-	103	K11	VDD	S	-	-	-	-
46	67	N10	H5	P12	85	104	L13	PB12	I/O	FT	-	TIM1_BKIN, I2C2_SMBA, SPI2_NSS/I2S2_WS, USART3_CK, CAN2_RX, OTG_HS_ULPI_D5, ETH_MII_TXD0/ETH_RMII _TXD0, OTG_HS_ID, EVENTOUT	-
47	68	N11	К4	P13	86	105	K14	PB13	I/O	FT	-	TIM1_CH1N, SPI2_SCK/I2S2_CK, USART3_CTS, CAN2_TX, OTG_HS_ULPI_D6, ETH_MII_TXD1/ETH_RMII _TXD1, EVENTOUT	OTG_HS_ VBUS
48	69	N12	P1	R14	87	106	R14	PB14	I/O	FT	-	TIM1_CH2N, TIM8_CH2N, SPI2_MISO, I2S2ext_SD, USART3_RTS, TIM12_CH1, OTG_HS_DM, EVENTOUT	-
49	70	N13	N2	R15	88	107	R15	PB15	I/O	FT	-	RTC_REFIN, TIM1_CH3N, TIM8_CH3N, SPI2_MOSI/I2S2_SD, TIM12_CH2, OTG_HS_DP, EVENTOUT	-
50	71	L10	L4	P15	89	108	L15	PD8	I/O	FT	-	USART3_TX, FMC_D13, EVENTOUT	-
51	72	M10	N1	P14	90	109	L14	PD9	I/O	FT	-	USART3_RX, FMC_D14, EVENTOUT	-
52	73	L11	М3	N15	91	110	K15	PD10	I/O	FT	-	USART3_CK, FMC_D15, LCD_B3, EVENTOUT	-
-	74	M11	J4	N14	92	111	N10	PD11	I/O	FT	-	USART3_CTS, QUADSPI_BK1_IO0, FMC_A16/FMC_CLE, EVENTOUT	-

Table 10. STM32F479xx pin and ball definitions (continued)

			Pin n	umber	,					sə.			
LQFP100	LQFP144	UFBGA169	WLCSP168	UFBGA176	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin types	I/O structur	Notes	Alternate functions	Additional functions
77	110	D10	C2	G13	131	150	F11	VDD	S	-	-	-	-
-	-	D9	B1	-	-	151	E12	PH13	I/O	FT	-	TIM8_CH1N, CAN1_TX, FMC_D21, LCD_G2, EVENTOUT	-
-	-	C13	D3	-	-	152	E13	PH14	I/O	FT	-	TIM8_CH2N, FMC_D22, DCMI_D4, LCD_G3, EVENTOUT	-
-	-	C12	E4	-	-	153	D13	PH15	I/O	FT	-	TIM8_CH3N, FMC_D23, DCMI_D11, LCD_G4, EVENTOUT	-
-	-	B13	E5	E14	132	154	E14	PI0	I/O	FT	-	TIM5_CH4, SPI2_NSS/I2S2_WS ⁽⁷⁾ , FMC_D24, DCMI_D13, LCD_G5, EVENTOUT	-
-	-	C11	C3	D14	133	155	D14	PI1	I/O	FT	-	SPI2_SCK/I2S2_CK ⁽⁷⁾ , FMC_D25, DCMI_D8, LCD_G6, EVENTOUT	-
-	-	B12	A1	-	NC (2)	156	C14	PI2	I/O	FT	-	TIM8_CH4, SPI2_MISO, I2S2ext_SD, FMC_D26, DCMI_D9, LCD_G7, EVENTOUT	-
-	-	B10	B2	C13	134	157	C13	PI3	I/O	FT	-	TIM8_ETR, SPI2_MOSI/I2S2_SD, FMC_D27, DCMI_D10, EVENTOUT	-
78	-	-	-	D9	135	-	F9	VSS	S	-	-	-	-
-	-	-	B5	C9	136	158	E10	VDD	S	-	-	-	-
79	111	A10	D4	A14	137	159	A14	PA14(JTCK- SWCLK)	I/O	FT	-	JTCK-SWCLK, EVENTOUT	-
80	112	B11	A2	A13	138	160	A13	PA15(JTDI)	I/O	FT	-	JTDI, TIM2_CH1/TIM2_ETR, SPI1_NSS, SPI3_NSS/I2S3_WS, EVENTOUT	-
81	113	C10	D5	B14	139	161	B14	PC10	I/O	FT	-	SPI3_SCK/I2S3_CK, USART3_TX, UART4_TX, QUADSPI_BK1_IO1, SDIO_D2, DCMI_D8, LCD_R2, EVENTOUT	-
82	114	В9	В3	B13	140	162	B13	PC11	I/O	FT	-	I2S3ext_SD, SPI3_MISO, USART3_RX, UART4_RX, QUADSPI_BK2_NCS, SDIO_D3, DCMI_D4, EVENTOUT	-

Table 10. STM32F479xx pin and ball definitions (continued)

5.1.7 Current consumption measurement

Figure 25. Current consumption measurement scheme

5.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 14*, *Table 15*, and *Table 16* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Мах	Unit
$V_{DD} - V_{SS}$	External main supply voltage (including V _{DDA} , V _{DD} , V _{DDUSB} , V _{DDDSI} and V _{BAT}) ⁽¹⁾	- 0.3	4.0	
	Input voltage on FT pins ⁽²⁾	V _{SS} – 0.3	V _{DD} +4.0	
Max	Input voltage on TTa pins	V _{SS} – 0.3	4.0	V
۷IN	Input voltage on any other pin	V _{SS} – 0.3	4.0	
	Input voltage on BOOT pin	V _{SS}	9.0	
$ \Delta V_{DDx} $	Variations between different V_{DD} power pins	-	50	m\/
V _{SSX} -V _{SS}	Variations between all the different ground $pins^{(3)}$	-	50	IIIV
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Sectio	n 5.3.18	

Table 14.	Voltage	characteristics
-----------	---------	-----------------

 All main power (V_{DD}, V_{DDA}, V_{DDUSB}, V_{DDDSI}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

V_{IN} maximum value must always be respected. Refer to *Table 15* for the values of the maximum allowed injected current.

3. Including V_{REF-} pin

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load).
- All peripherals are disabled except if it is explicitly mentioned.
- The Flash memory access time is adjusted both to f_{HCLK} frequency and V_{DD} range (see *Table 18: Limitations depending on the operating power supply range*).
- When the regulator is OFF, the V₁₂ is provided externally, as described in *Table 17: General operating conditions*.
- The voltage scaling and over-drive mode are adjusted to f_{HCLK} frequency as follows:
 - Scale 3 for $f_{HCLK} \le 120$ MHz
 - Scale 2 for 120 MHz < $f_{HCLK} \le 144$ MHz
 - Scale 1 for 144 MHz < $f_{HCLK} \le$ 180 MHz. The over-drive is only ON at 180 MHz.
- The system clock is HCLK, f_{PCLK1} = f_{HCLK}/4, and f_{PCLK2} = f_{HCLK}/2.
- External clock frequency is 25 MHz and PLL is ON when f_{HCLK} is higher than 25 MHz.
- The typical current consumption values are obtained for 1.7 V \leq V_{DD} \leq 3.6 V voltage range and for ambient temperature T_A= 25 °C unless otherwise specified.
- The maximum values are obtained for 1.7 V \leq V_{DD} \leq 3.6 V voltage range and a maximum ambient temperature (T_A), unless otherwise specified.
- For the voltage range 1.7 V \leq V_{DD} \leq 2.1 V the maximum frequency is 168 MHz.

Figure 28. Typical V_{BAT} current consumption (RTC ON / backup SRAM ON and LSE in High drive mode)

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 58: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption (see *Table 33*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses

DocID028010 Rev 4

			l _{DD} (Typ) ⁽¹⁾		Unit	
P	eripneral	Scale 1	Scale 2	Scale 3	Unit	
	GPIOA	3.16	3.00	2.58		
	GPIOB	2.67	2.62	2.25		
	GPIOC	2.42	2.31	2.10		
	GPIOD	2.22	2.10	1.79		
	GPIOE	2.60	2.48	2.23		
	GPIOF	2.39	2.27	2.08		
	GPIOG	2.27	2.13	1.98		
	GPIOH	2.34	2.20	2.02		
	GPIOI	2.52	2.37	2.17		
AHB1	GPIOJ	2.16	2.03	1.86		
(up to 180 MHz)	GPIOK	2.20	2.06	1.89	µA/MHz	
100 111 12)	OTG_HS+ULPI	36.49	33.89	29.90		
	CRC	0.62	0.55	0.50		
	BKPSRAM	0.83	0.74	0.63		
	DMA1 ⁽²⁾	3.3 x N + 6.8	3 x N + 6.3	2.7 x N + 5.5		
	DMA2 ⁽²⁾	3.4 x N + 5.7	3.1 x N + 5.3	2.8 x N + 4.6		
	DMA2D	33.33	30.66	26.98		
	ETH_MAC ETH_MAC_TX ETH_MAC_RX ETH_MAC_PTP	22.30	20.69	18.19		
	USB_OTG_FS	34.33	31.96	28.35		
AHB2	DVCMI	3.61	3.35	2.98		
(up to	RNG	1.94	1.82	1.61	µA/MHz	
180 MHz)	CRYP	2.42	2.24	2.00		
	HASH	4.14	3.80	3.35		
AHB3	QUADSPI	16.83	15.57	13.83		
(up to 180 MHz)	FMC	MC 17.22		14.00	μΑλινιτίΖ	
В	us matrix ⁽³⁾	12.17	11.19	9.97	µA/MHz	

Table 33. Peripheral current consumption

5.3.9 External clock source characteristics

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard I/O. The external clock signal has to respect the *Table 58*. However, the recommended clock input waveform is shown in *Figure 29*.

The characteristics given in *Table 35* result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 17*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	External user clock source frequency ⁽¹⁾		1	-	50	MHz
V _{HSEH}	OSC_IN input pin high level voltage		$0.7V_{DD}$	-	V_{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage	_	V_{SS}	-	$0.3V_{\text{DD}}$	v
t _{w(HSE)} t _{w(HSE)}	OSC_IN high or low time ⁽¹⁾		5	-	-	ns
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time ⁽¹⁾		-	-	10	19
C _{in(HSE)}	OSC_IN input capacitance ⁽¹⁾	-	-	5	-	pF
DuCy _(HSE)	Duty cycle	_	45	-	55	%
١	OSC_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA

Table 35. High-speed external user clock characteristics

1. Guaranteed by design.

Low-speed external user clock generated from an external source

In bypass mode the LSE oscillator is switched off and the input pin is a standard I/O. The external clock signal has to respect the *Table 58: I/O static characteristics*. However, the recommended clock input waveform is shown in *Figure 30*.

The characteristics given in *Table 36* result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 17*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{LSE_ext}	User External clock source frequency ⁽¹⁾		-	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage		$0.7V_{DD}$	-	V_{DD}	V
V _{LSEL}	OSC32_IN input pin low level voltage		V_{SS}	-	0.3V _{DD}	v
t _{w(LSE)} t _{f(LSE)}	OSC32_IN high or low time ⁽¹⁾	-	450	-	-	20
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time ⁽¹⁾		-	-	50	115

Table 36. Low-speed external user clock characteristics

5.3.12 PLL spread spectrum clock generation (SSCG) characteristics

The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic interferences (see *Table 54*). It is available only on the main PLL.

Symbol	Parameter	Min	Тур	Max ⁽¹⁾	Unit
f _{Mod}	Modulation frequency	-	-	10	KHz
md	Peak modulation depth	0.25	-	2	%
MODEPER * INCSTEP	-	-	-	2 ¹⁵ – 1	-

Table 44. SSCG parameters constraint

1. Guaranteed by design.

Equation 1

The frequency modulation period (MODEPER) is given by the equation below:

```
MODEPER = round[f_{PLL IN} / (4 \times f_{Mod})]
```

 $f_{\text{PLL}\ \text{IN}}$ and f_{Mod} must be expressed in Hz.

As an example:

If $f_{PLL_IN} = 1$ MHz, and $f_{MOD} = 1$ kHz, the modulation depth (MODEPER) is given by equation 1:

MODEPER = round
$$[10^{6}/(4 \times 10^{3})] = 250$$

Equation 2

Equation 2 allows to calculate the increment step (INCSTEP):

INCSTEP = round[(
$$(2^{15} - 1) \times md \times PLLN)/(100 \times 5 \times MODEPER)$$
]

 $f_{VCO OUT}$ must be expressed in MHz.

With a modulation depth (md) = ± 2 % (4 % peak to peak), and PLLN = 240 (in MHz):

INCSTEP = round[$((2^{15}-1) \times 2 \times 240)/(100 \times 5 \times 250)$] = 126md(quantitazed)%

An amplitude quantization error may be generated because the linear modulation profile is obtained by taking the quantized values (rounded to the nearest integer) of MODPER and INCSTEP. As a result, the achieved modulation depth is quantized. The percentage quantized modulation depth is given by the following formula:

$$md_{quantized}$$
% = (MODEPER × INCSTEP × 100 × 5)/ ((2¹⁵ - 1) × PLLN)

As a result:

 $md_{guantized} \% = (250 \times 126 \times 100 \times 5)/((2^{15} - 1) \times 240) = 2.002\%$ (peak)

Figure 42. SPI timing diagram - slave mode and CPHA = 0

Figure 49. USB OTG full speed timings: definition of data signal rise and fall time

Table 69. USB OTG full speed electrical characteristics⁽¹⁾

Driver characteristics							
Symbol	Parameter	Conditions	Min	Мах	Unit		
t _r	Rise time ⁽²⁾	C _L = 50 pF	4	20	ne		
t _f	Fall time ⁽²⁾	C _L = 50 pF	4	20	115		
t _{rfm}	Rise/ fall time matching	t _r /t _f	90	110	%		
V _{CRS}	Output signal crossover voltage	-	1.3	2.0	V		
Z _{DRV}	Output driver impedance ⁽³⁾	Driving high or low	28	44	Ω		

1. Guaranteed by design.

2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0).

3. No external termination series resistors are required on DP (D+) and DM (D-) pins since the matching impedance is included in the embedded driver.

USB high speed (HS) characteristics

Unless otherwise specified, the parameters given in *Table 72* for ULPI are derived from tests performed under the ambient temperature, f_{HCLK} frequency summarized in *Table 71* and V_{DD} supply voltage conditions summarized in *Table 70*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11, unless otherwise specified
- Capacitive load C = 20 pF / 15 pF, unless otherwise specified
- Measurement points are done at CMOS levels: 0.5 V_{DD}.

Refer to Section 5.3.20 for more details on the input/output characteristics.

Table 70.	USB HS	DC electrical	characteristics
-----------	---------------	----------------------	-----------------

Symbol Parameter		Min. ⁽¹⁾	Max. ⁽¹⁾	Unit	
Input level	V _{DD}	USB OTG HS operating voltage	1.7	3.6	V

1. All the voltages are measured from the local ground potential.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
t _{SC}	Control in (ULPI_DIR, ULPI_NXT) setup time	-	2.0	-	-	
t _{HC}	Control in (ULPI_DIR, ULPI_NXT) hold time	-	1.5	-	-	
t _{SD}	Data in setup time	-	1.0	-	-	
t _{HD}	Data in hold time	-	1.0	-	-	
t _{DC} /t _{DD}		2.7 V < V _{DD} < 3.6 V, C _L = 20 pF	-	7.5	9.0	ns
	Data/control output delay	$2.7 V < V_{DD} < 3.6 V,$ $C_{L} = 15 \text{ pF and}$ $-40 < T < 125^{\circ}C$	-	7.5	12.0	
		$1.7 V < V_{DD} < 3.6 V,$ $C_{L} = 15 \text{ pF and}$ $-40 < T < 90^{\circ}C$	-	7.5	11.5	

Table 72. Dynamic characteristics: USB ULPI⁽¹⁾

1. Guaranteed based on test during characterization.

Ethernet characteristics

Unless otherwise specified, the parameters given in *Table 73*, *Table 74* and *Table 75* for SMI, RMII and MII are derived from tests performed under the ambient temperature, f_{HCLK} frequency and V_{DD} supply voltage conditions summarized in *Table 17*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5 V_{DD}.

Refer to Section 5.3.20 for more details on the input/output characteristics.

Table 73 gives the list of Ethernet MAC signals for the SMI (station management interface) and *Figure 51* shows the corresponding timing diagram.

Figure 59. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms

1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	3T _{HCLK} – 1	3T _{HCLK} +0.5	
t _{v(NOE_NE)}	FMC_NEx low to FMC_NOE low	2T _{HCLK} – 0.5	2T _{HCLK}	
t _{tw(NOE)}	FMC_NOE low time	T _{HCLK} – 1	T _{HCLK} +1	
t _{h(NE_NOE)}	FMC_NOE high to FMC_NE high hold time	1	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	2	
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	0	2	
t _{w(NADV)}	FMC_NADV low time	T _{HCLK} – 0.5	T _{HCLK} +0.5	
t _{h(AD_NADV)}	FMC_AD(address) valid hold time after FMC_NADV high)	0	-	ns
t _{h(A_NOE)}	Address hold time after FMC_NOE high	T _{HCLK} – 0.5	-	
t _{h(BL_NOE)}	FMC_BL time after FMC_NOE high	0	-	
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	2	
t _{su(Data_NE)}	Data to FMC_NEx high setup time	T _{HCLK} +1.5	-	
t _{su(Data_NOE)}	Data to FMC_NOE high setup time	T _{HCLK} +1	-	
t _{h(Data_NE)}	Data hold time after FMC_NEx high	0	-	
t _{h(Data_NOE)}	Data hold time after FMC_NOE high	0	-	

Table 92. Asynchronous multiplexed PSRAM/NOR read timings ⁽¹	(1)
---	-----

1. Based on test during characterization.

Table 93.	Asynchronous	multiplexed PS	SRAM/NOR r	read-NWAIT	timings ⁽¹⁾
-----------	--------------	----------------	------------	------------	------------------------

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	8T _{HCLK} +0.5	8T _{HCLK} +2	
t _{w(NOE)}	FMC_NWE low time	5T _{HCLK} – 1	5T _{HCLK} +1.5	ns
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	5T _{HCLK} +1.5	-	
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} +1	-	

1. Based on test during characterization.

Table 98. Sy	ynchronous non-mult	iplexed NOR/PSRAM	read timings ⁽¹⁾
--------------	---------------------	-------------------	-----------------------------

Symbol	Parameter	Min	Мах	Unit
t _{w(CLK)}	FMC_CLK period	2T _{HCLK} – 1	-	
t _(CLKL-NExL)	FMC_CLK low to FMC_NEx low (x=02)	-	0.5	
t _{d(CLKH-NExH)}	FMC_CLK high to FMC_NEx high (x= 02)	T _{HCLK}	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	0	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	0	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	0	
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	T _{HCLK} – 0.5	-	ns
t _{d(CLKL-NOEL)}	FMC_CLK low to FMC_NOE low	-	T _{HCLK} +2	
t _{d(CLKH-NOEH)}	FMC_CLK high to FMC_NOE high	T _{HCLK} – 0.5	-	
t _{su(DV-CLKH)}	FMC_D[15:0] valid data before FMC_CLK high	5	-	
t _{h(CLKH-DV)}	FMC_D[15:0] valid data after FMC_CLK high	0	-	
t _(NWAIT-CLKH)	FMC_NWAIT valid before FMC_CLK high	4	-	
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	0	-	

1. Based on test during characterization.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
f _{PP}	Clock frequency in data transfer mode	-	0	-	50	MHz	
-	SDIO_CK/fPCLK2 frequency ratio	-	-	-	8/3	-	
t _{W(CKL)}	Clock low time	f _{pp} =50 MHz -	9.5	10.5	-	20	
t _{W(CKH)}	Clock high time		8.5	9.5	-	115	
CMD, D inp	CMD, D inputs (referenced to CK) in eMMC mode						
t _{ISU}	Input setup time HS	f -50 MH-7	0.5	-	-	- ns	
t _{IH}	Input hold time HS	1 _{pp} = 50 10112	3.5	-	-		
CMD, D outputs (referenced to CK) in eMMC mode							
t _{ov}	Output valid time HS	f -50 MH-7	-	13.5	14.5	ne	
t _{OH}	Output hold time HS		13.0	-	-	115	

Table 111. Dynamic characteristics: SD / MMC characteristics, V_{DD} = 1.71 to 1.9 V⁽¹⁾⁽²⁾

1. Guaranteed based on test during characterization.

2. C_{load} = 20 pF.

5.3.34 RTC characteristics

Table 112. RTC characteristics

Symbol	Parameter	Conditions	Min	Max
-	f _{PCLK1} /RTCCLK frequency ratio	Any read/write operation from/to an RTC register	4	-

Device Marking for TFBGA216

The following figure gives an example of topside marking orientation versus ball A1 identifier location. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 98. TFBGA216 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

