

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

EXF

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SAI, SDIO, SPI, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	161
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	216-TFBGA
Supplier Device Package	216-TFBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f479ngh6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of figures

Figure 1.	Incompatible board design for LQFP176 package	16
Figure 2.	Incompatible board design for LQFP208 package	17
Figure 3.	UFBGA176 port-to-terminal assignment differences	18
Figure 4.	TFBGA216 port-to-terminal assignment differences.	19
Figure 5.	STM32F479xx block diagram	20
Figure 6.	STM32F479xx Multi-AHB matrix	23
Figure 7.	VDDUSB connected to an external independent power supply	29
Figure 8.	Power supply supervisor interconnection with internal reset OFF	30
Figure 9.	PDR_ON control with internal reset OFF	31
Figure 10.	Regulator OFF	33
Figure 11.	Startup in regulator OFF: slow V _{DD} slope	
	- power-down reset risen after V _{CAP_1} , V _{CAP_2} stabilization	34
Figure 12.	Startup in regulator OFF mode: fast V _{DD} slope	
	- power-down reset risen before V _{CAP_1} , V _{CAP_2} stabilization	34
Figure 13.	STM32F47x LQFP100 pinout	
Figure 14.	STM32F47x LQFP144 pinout	
Figure 15.	STM32F47x WLCSP168 pinout	
Figure 16.	STM32F47x UFBGA169 ballout	
Figure 17.	STM32F47x UFBGA176 ballout	
Figure 18.	STM32F47x LQFP176 pinout	
Figure 19.	STM32F47x LQFP208 pinout	
Figure 20.	STM32F47x TFBGA216 ballout	
Figure 21.	Memory map	
Figure 22.	Pin loading conditions	
Figure 23.	Pin input voltage	
Figure 24.	Power supply scheme	
Figure 25.	Current consumption measurement scheme	
Figure 26.	External capacitor C _{EXT}	94
Figure 27.	Typical V _{BAT} current consumption	
	(RTC ON / backup SRAM ON and LSE in Low drive mode) 1	06
Figure 28.	Typical V _{BAT} current consumption	
	(RTC ON / backup SRAM ON and LSE in High drive mode) 1	
Figure 29.	High-speed external clock source AC timing diagram	
Figure 30.	Low-speed external clock source AC timing diagram1	
Figure 31.	Typical application with an 8 MHz crystal	
Figure 32.	Typical application with a 32.768 kHz crystal	
Figure 33.	ACCHSI vs. temperature	
Figure 34.	ACC _{LSI} versus temperature	
Figure 35.	PLL output clock waveforms in center spread mode1	
Figure 36.	PLL output clock waveforms in down spread mode 1	
Figure 37.	MIPI D-PHY HS/LP clock lane transition timing diagram	
Figure 38.	MIPI D-PHY HS/LP data lane transition timing diagram	
Figure 39.	FT I/O input characteristics	
Figure 40.	I/O AC characteristics definition 1	
Figure 41.	Recommended NRST pin protection	
Figure 42.	SPI timing diagram - slave mode and CPHA = 0	43
Figure 43.	SPI timing diagram - slave mode and CPHA = $1^{(1)}$	43
Figure 44.	SPI timing diagram - master mode ⁽¹⁾ 1	44

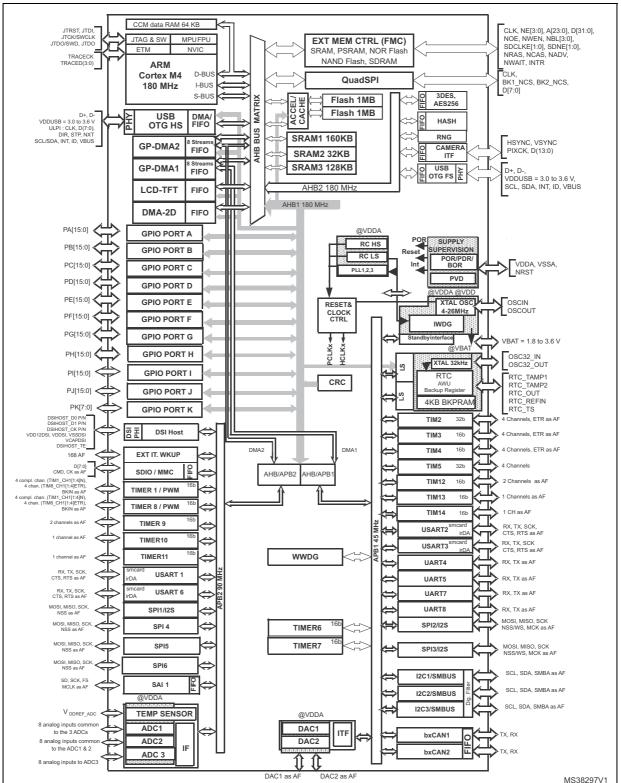


Figure 5. STM32F479xx block diagram

 The timers connected to APB2 are clocked from TIMxCLK up to 180 MHz, while the timers connected to APB1 are clocked from TIMxCLK either up to 90 MHz or 180 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR register.

2 Functional overview

2.1 **ARM[®] Cortex[®]-M4 with FPU and embedded Flash and SRAM**

The ARM[®] Cortex[®]-M4 with FPU processor is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.

The ARM[®] Cortex[®]-M4 with FPU core is a 32-bit RISC processor that features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.

The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution.

Its single precision FPU (floating point unit) speeds up software development by using metalanguage development tools, while avoiding saturation.

The STM32F47x line is compatible with all ARM tools and software.

Figure 5 shows the general block diagram of the STM32F47x line.

Note: Cortex[®]-M4 with FPU core is binary compatible with the Cortex[®]-M3 core.

2.2 Adaptive real-time memory accelerator (ART Accelerator[™])

The ART Accelerator[™] is a memory accelerator optimized for STM32 industry-standard ARM[®] Cortex[®]-M4 with FPU processors. It balances the inherent performance advantage of the ARM[®] Cortex[®]-M4 with FPU over Flash memory technologies, which normally require the processor to wait for the Flash memory at higher frequencies.

To release the processor full 225 DMIPS performance at this frequency, the accelerator implements an instruction prefetch queue and branch cache, which increases program execution speed from the 128-bit Flash memory. Based on CoreMark[®] benchmark, the performance achieved thanks to the ART Accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 180 MHz.

2.3 Memory protection unit

The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.

The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

2.10 Quad-SPI memory interface (QUADSPI)

All STM32F479xx devices embeds a Quad-SPI memory interface, which is a specialized communication interface targeting Single, Dual, Quad or Dual-flash SPI memories. It can work in direct mode through registers, external flash status register polling mode and memory mapped mode. Up to 256 Mbytes external Flash memory are mapped, supporting 8, 16 and 32-bit access. Code execution is supported.

The opcode and the frame format are fully programmable. Communication can be either in Single Data Rate or Dual Data Rate.

2.11 LCD-TFT controller

The LCD-TFT display controller provides a 24-bit parallel digital RGB (Red, Green, Blue) and delivers all signals to interface directly to a broad range of LCD and TFT panels up to XGA (1024x768) resolution with the following features:

- 2 displays layers with dedicated FIFO (64x32-bit)
- Color Look-Up table (CLUT) up to 256 colors (256x24-bit) per layer
- Up to 8 Input color formats selectable per layer
- Flexible blending between two layers using alpha value (per pixel or constant)
- Flexible programmable parameters for each layer
- Color keying (transparency color)
- Up to 4 programmable interrupt events.

2.12 DSI Host (DSIHOST)

The DSI Host is a dedicated peripheral for interfacing with MIPI[®] DSI compliant displays. It includes a dedicated video interface internally connected to the LTDC and a generic APB interface that can be used to transmit information to the display.

These interfaces are as follows:

- LTDC interface:
 - Used to transmit information in Video Mode, in which the transfers from the host processor to the peripheral take the form of a real-time pixel stream (DPI).
 - Through a customized for mode, this interface can be used to transmit information in full bandwidth in the Adapted Command Mode (DBI).
- APB slave interface:
 - Allows the transmission of generic information in Command mode, and follows a proprietary register interface.
 - Can operate concurrently with either LTDC interface in either Video Mode or Adapted Command Mode.
- Video mode pattern generator:
 - Allows the transmission of horizontal/vertical color bar and D-PHY BER testing pattern without any kind of stimuli.

2.19 Power supply supervisor

2.19.1 Internal reset ON

On packages embedding the PDR_ON pin, the power supply supervisor is enabled by holding PDR_ON high. On the other package, the power supply supervisor is always enabled.

The device has an integrated power-on reset (POR)/ power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is reached, the option byte loading process starts, either to confirm or modify default BOR thresholds, or to disable BOR permanently. Three BOR thresholds are available through option bytes. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for an external reset circuit.

The device also features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

2.19.2 Internal reset OFF

This feature is available only on packages featuring the PDR_ON pin. The internal power-on reset (POR) / power-down reset (PDR) circuitry is disabled through the PDR_ON pin.

An external power supply supervisor should monitor V_{DD} and NRST and should maintain the device in reset mode as long as V_{DD} is below a specified threshold. PDR_ON must be connected to VSS, as shown in *Figure 8*.

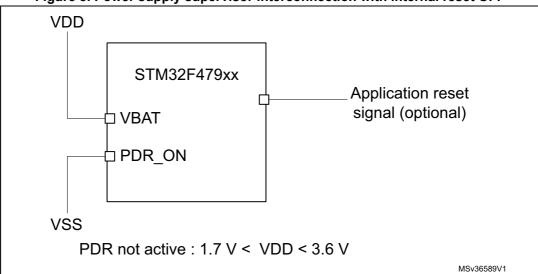


Figure 8. Power supply supervisor interconnection with internal reset OFF

The V_{DD} specified threshold, below which the device must be maintained under reset, is 1.7 V (see *Figure 9*).

A comprehensive set of power-saving mode allows to design low-power applications.

DocID028010 Rev 4

2.21 Real-time clock (RTC), backup SRAM and backup registers

The backup domain includes:

- The real-time clock (RTC)
- 4 Kbytes of backup SRAM
- 20 backup registers

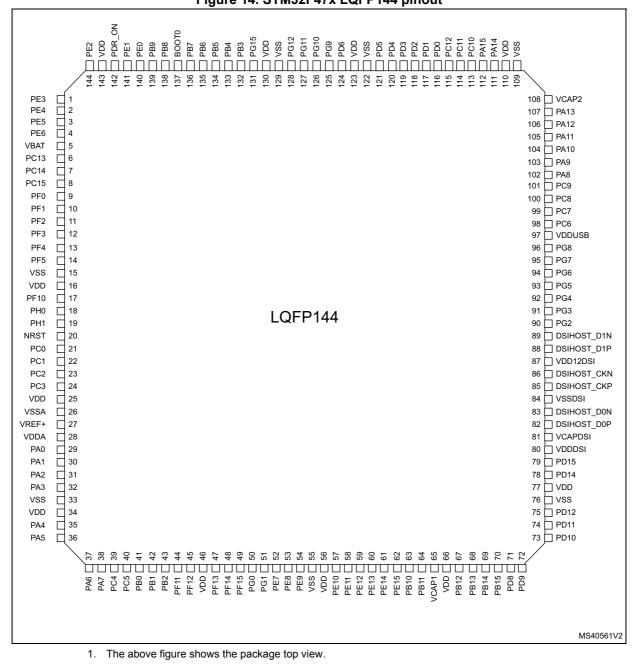
The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binary-coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are performed automatically. The RTC provides a programmable alarm and programmable periodic interrupts with wakeup from Stop and Standby modes. The sub-seconds value is also available in binary format.

It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural quartz deviation.

Two alarm registers are used to generate an alarm at a specific time and calendar fields can be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit programmable binary auto-reload downcounter with programmable resolution is available and allows automatic wakeup and periodic alarms from every 120 µs to every 36 hours.

A 20-bit prescaler is used for the time base clock. It is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.

The 4-Kbyte backup SRAM is an EEPROM-like memory area. It can be used to store data which need to be retained in VBAT and standby mode. This memory area is disabled by default to minimize power consumption (see *Section 2.22*). It can be enabled by software.


The backup registers are 32-bit registers used to store 80 bytes of user application data when V_{DD} power is not present. Backup registers are not reset by a system, a power reset, or when the device wakes up from the Standby mode (see Section 2.22).

Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes, hours, day, and date.

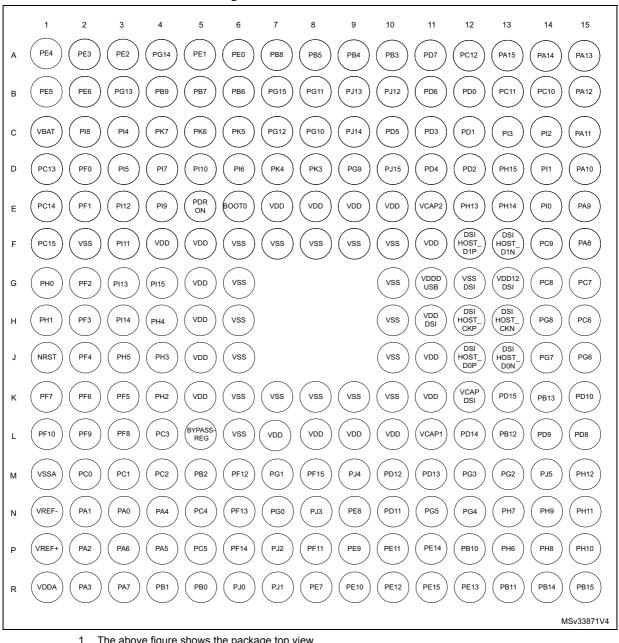

Like backup SRAM, the RTC and backup registers are supplied through a switch that is powered either from the V_{DD} supply when present or from the V_{BAT} pin.

Figure 14. STM32F47x LQFP144 pinout

Figure 20. STM32F47x TFBGA216 ballout

1. The above figure shows the package top view.

Bus	Boundary address	Peripheral
-	0x4008 0000- 0x4FFF FFFF	Reserved
	0x4004 0000 - 0x4007 FFFF	USB OTG HS
	0x4002 BC00- 0x4003 FFFF	Reserved
	0x4002 B000 - 0x4002 BBFF	Chrom (DMA2D)
	0x4002 9400 - 0x4002 AFFF	Reserved
	0x4002 9000 - 0x4002 93FF	
	0x4002 8C00 - 0x4002 8FFF	
	0x4002 8800 - 0x4002 8BFF	ETHERNET MAC
	0x4002 8400 - 0x4002 87FF	
	0x4002 8000 - 0x4002 83FF	
	0x4002 6800 - 0x4002 7FFF	Reserved
	0x4002 6400 - 0x4002 67FF	DMA2
	0x4002 6000 - 0x4002 63FF	DMA1
	0x4002 5000 - 0x4002 5FFF	Reserved
	0x4002 4000 - 0x4002 4FFF	BKPSRAM
AHB1	0x4002 3C00 - 0x4002 3FFF	Flash interface register
АПВТ	0x4002 3800 - 0x4002 3BFF	RCC
	0x4002 3400 - 0x4002 37FF	Reserved
	0x4002 3000 - 0x4002 33FF	CRC
	0x4002 2C00 - 0x4002 2FFF	Reserved
	0x4002 2800 - 0x4002 2BFF	GPIOK
	0x4002 2400 - 0x4002 27FF	GPIOJ
	0x4002 2000 - 0x4002 23FF	GPIOI
	0x4002 1C00 - 0x4002 1FFF	GPIOH
	0x4002 1800 - 0x4002 1BFF	GPIOG
	0x4002 1400 - 0x4002 17FF	GPIOF
	0x4002 1000 - 0x4002 13FF	GPIOE
	0x4002 0C00 - 0x4002 0FFF	GPIOD
	0x4002 0800 - 0x4002 0BFF	GPIOC
	0x4002 0400 - 0x4002 07FF	GPIOB
	0x4002 0000 - 0x4002 03FF	GPIOA

Table 13. STM32F479xx register boundary addresses⁽¹⁾ (continued)

Symbol	Parameter	Conditions			
CEXT	Capacitance of external capacitor	2.2 μF			
ESR	ESR of external capacitor	< 2 Ω			

Table 19. VCAP1/VCAP2 operating conditions⁽¹⁾

1. When bypassing the voltage regulator, the two 2.2 μ F V_{CAP} capacitors are not required and should be replaced by two 100 nF decoupling capacitors.

5.3.3 Operating conditions at power-up / power-down (regulator ON)

Subject to general operating conditions for T_A.

Table 20. Operating conditions at power-up / power-down (regulator ON)

Symbol	Parameter	Min	Мах	Unit
+	V _{DD} rise time rate	20	∞	µs/V
tvdd	V _{DD} fall time rate	20	8	μ5/ν

5.3.4 Operating conditions at power-up / power-down (regulator OFF)

Subject to general operating conditions for T_A .

Table 21. Operating conditions at power-up / power-down (regulator OFF)⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit
t _{VDD}	V _{DD} rise time rate	Power-up	20	~	
	V _{DD} fall time rate	Power-down	20	~	µs/V
+	V_{CAP_1} and V_{CAP_2} rise time rate	Power-up	20	~	μ5/ν
t _{VCAP}	V_{CAP_1} and V_{CAP_2} fall time rate	Power-down	20	∞	

1. To reset the internal logic at power-down, a reset must be applied on pin PA0 when V_{DD} reach below 1.08 V.

5.3.5 Reset and power control block characteristics

The parameters given in *Table 22* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DD} \times f_{SW} \times C$$

where

 I_{SW} is the current sunk by a switching I/O to charge/discharge the capacitive load V_{DD} is the MCU supply voltage

 f_{SW} is the I/O switching frequency

C is the total capacitance seen by the I/O pin: C = C_{INT} + C_{EXT}

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

Symbol	Parameter	Conditions	I/O toggling frequency (fsw)	Тур	Unit
			2 MHz	0.0	
			8 MHz	0.2	
			25 MHz	0.6	
	I/O switching Current	$V_{DD} = 3.3 V$ $C = C_{INT}^{(2)}$	50 MHz	1.1	
			60 MHz	1.3	
			84 MHz	1.8	
			90 MHz	1.9	mA
I _{DDIO}		V _{DD} = 3.3 V	2 MHz	0.1	IIIA
			8 MHz	0.4	
			25 MHz	1.23	
		C _{EXT} = 0 pF	50 MHz	2.43	
		$C = C_{INT} + C_{EXT} + C_S$	60 MHz	2.93	
			84 MHz	3.86	
			90 MHz	4.07	

Table 32. Switching output I/C	current consumption ⁽¹⁾
--------------------------------	------------------------------------

I²S interface characteristics

Unless otherwise specified, the parameters given in *Table 65* for the I²S interface are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 17*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5 V_{DD}

Refer to Section 5.3.20 for more details on the input/output alternate function characteristics (CK, SD, WS).

Symbol	Parameter	Conditions	Min	Max	Unit
f _{MCK}	I2S Main clock output	-	256x8K	256xFs ⁽²⁾	
f	I2S clock frequency	Master data	-	64xFs	MHz
f _{СК}	125 Clock frequency	Slave data	-	64xFs	
D _{CK}	I2S clock frequency duty cycle	Slave receiver	30	70	%
t _{v(WS)}	WS valid time	Master mode	0	5	
t _{h(WS)}	WS hold time	Master mode	0	-	
		Slave mode	3.5	-	
t _{su(WS)}	/S) WS setup time	Slave mode PCM short pulse mode ⁽³⁾	3.5	-	
	WS hold time Slave mode PCM short pulse mode ⁽³⁾	Slave mode	0.5	-	
t _{h(WS)}			1	-	
t _{su(SD_MR)}	Data input setup time	Master receiver	5	-	ns
t _{su(SD_SR)}	Data input setup time	Slave receiver	1.5	-	
t _{h(SD_MR)}	Data input hold time	Master receiver	5	-	
t _{h(SD_SR)}	Data input noid time	Slave receiver	1.5	-	
t _{v(SD_ST)}	Data output valid time	Slave transmitter (after enable edge)	-	19	
t _{v(SD_MT)}	Data output valid time	Master transmitter (after enable edge)	-	2.50	
t _{h(SD_ST)}	Data output hold time	Slave transmitter (after enable edge)	5	-	
t _{h(SD_MT)}		Master transmitter (after enable edge)	0	-	

Table 65. I²S dynamic characteristics⁽¹⁾

1. Guaranteed based on test during characterization.

2. 128xFs maximum is 24.756 MHz (APB1 Maximum frequency).

3. Measurement done with respect to I2S_CK rising edge.

Note:

Refer to the I2S section of RM0386 reference manual for more details on the sampling frequency (F_S).

 f_{MCK} , f_{CK} , and D_{CK} values reflect only the digital peripheral behavior, source clock precision might slightly change the values. The values of these parameters might be slightly impacted by the source clock precision. D_{CK} depends mainly on the value of ODD bit. The digital

DocID028010 Rev 4

Table 91. Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT timings⁽¹⁾

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	8T _{HCLK} +1	8T _{HCLK} +2	
t _{w(NWE)}	FMC_NWE low time	6T _{HCLK} – 1	6T _{HCLK} +2	ns
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	6T _{HCLK} +1.5	-	110
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} +1	-	

1. Based on test during characterization.

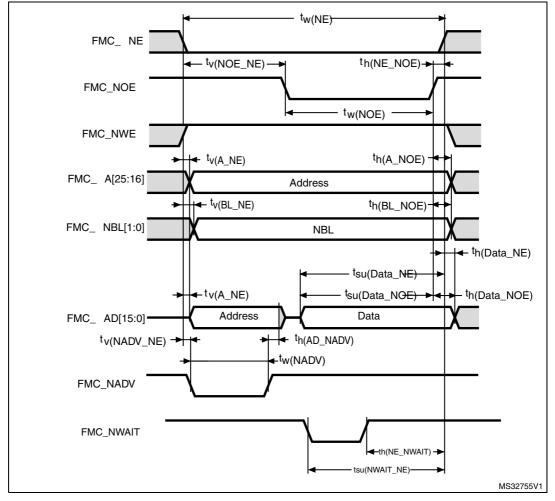
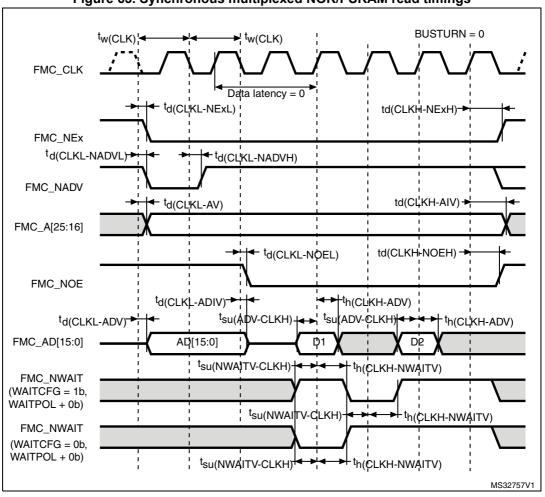



Figure 61. Asynchronous multiplexed PSRAM/NOR read waveforms

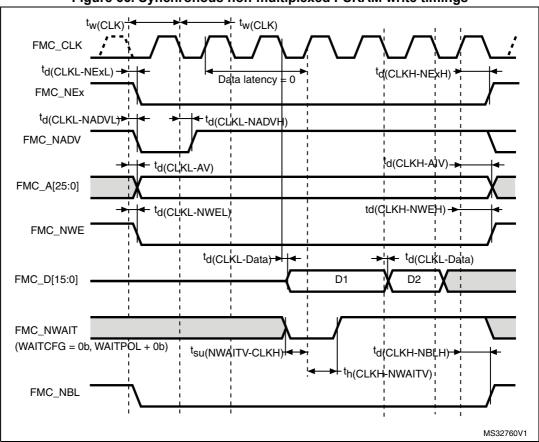


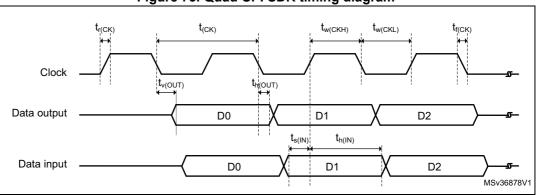
Table 99. Synchronous non-multiplexed PSRAM write timings⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _(CLK)	FMC_CLK period	2T _{HCLK} – 1	-	
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x=02)	-	0.5	
t _(CLKH-NExH)	FMC_CLK high to FMC_NEx high (x= 02)	T _{HCLK}	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	0	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	0	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	0	
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	0	-	ns
t _{d(CLKL-NWEL)}	FMC_CLK low to FMC_NWE low	-	0	115
t _{d(CLKH-NWEH)}	FMC_CLK high to FMC_NWE high	T _{HCLK} -0.5	-	
t _{d(CLKL-Data)}	FMC_D[15:0] valid data after FMC_CLK low	-	2.5	
t _{d(CLKL-NBLL)}	FMC_CLK low to FMC_NBL low	0	-	Ī
t _{d(CLKH-NBLH)}	FMC_CLK high to FMC_NBL high	T _{HCLK} -0.5	-	
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	4	-	
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	0	-	

1. Based on test during characterization.

5.3.30 Quad-SPI interface characteristics

Unless otherwise specified, the parameters given in *Table 106* and *Table 107* for Quad-SPI are derived from tests performed under the ambient temperature, f_{AHB} frequency and V_{DD} supply voltage conditions summarized in Table xx, with the following configuration:

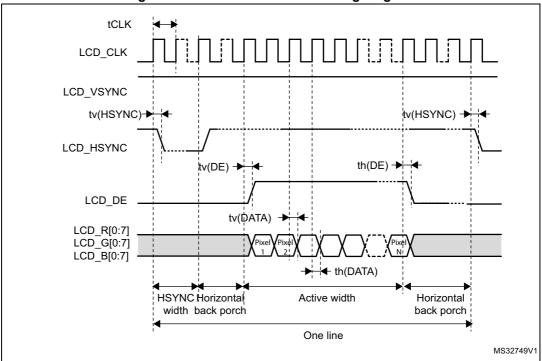

- Output speed is set to OSPEEDRy[1:0] = 11
- Measurement points are done at CMOS levels: 0.5 V_{DD}

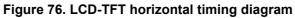
Refer to *Section 5.3.20* for more details on the input/output alternate function characteristics.

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
F _{ck} 1/t _(CK)	Qued CDL clock frequency	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{ C}_{\text{L}} = 20 \text{ pF}$	-	-	90	
	Quad-SPI clock frequency	1.71 V ≤ V _{DD} ≤ 3.6 V, C _L = 15 pF	-	-	84	MHz
t _{w(CKH)}	Quad-SPI clock high time	-	t _(CK) /2-1	-	t _(CK) /2	
t _{w(CKL)}	Quad-SPI clock low time	-	t _(CK) /2	-	t _(CK) /2+1	
t _{s(IN)}	Data input set-up time	-	0.5	-	-	ns
t _{h(IN)}	Data input hold time	-	3	-	-	115
t _{v(OUT)}	Data output valid time	-	-	3	4	
t _{h(OUT)}	Data output hold time	-	2.5	-	-	

Table 106. Quad-SPI characteristics in SDR mode ⁽¹⁾	Table 106.	Quad-SPI	characteristics	in	SDR mode ⁽¹⁾
--	------------	----------	-----------------	----	-------------------------

1. Guaranteed based on test during characterization.

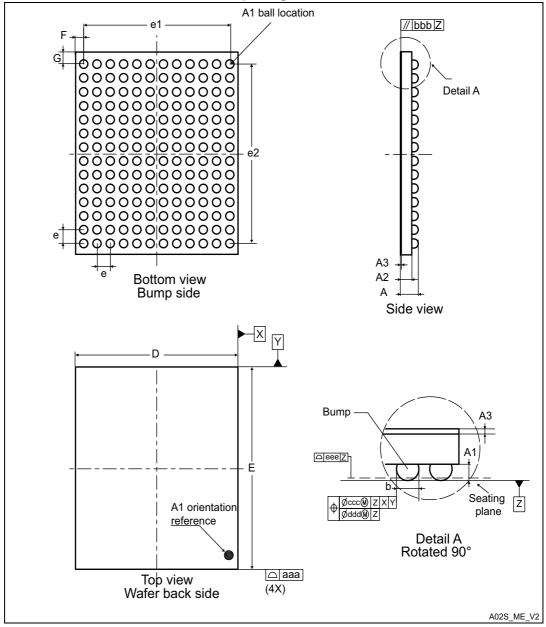



Figure 73. Quad-SPI SDR timing diagram

Symbol	Parameter	Min	Мах	Unit
f _{CLK}	LTDC clock output frequency	-	65	MHz
D _{CLK}	LTDC clock output duty cycle	45	55	%
t _{w(CLKH)} t _{w(CLKL)}	Clock High time, low time	t _{w(CLK)} /2 – 0.5	t _{w(CLK)} /2+0.5	
t _{v(DATA)}	Data output valid time	-	1.5	
t _{h(DATA)}	Data output hold time	0	-	
t _{v(HSYNC)}				
t _{v(VSYNC)}	HSYNC/VSYNC/DE output valid time	-	0.5	ns
t _{v(DE)}				
t _{h(HSYNC)}				
t _{h(VSYNC)}	HSYNC/VSYNC/DE output hold time	0	-	
th(DE)				

Table 109. LTDC characteristics⁽¹⁾

1. Based on test during characterization.



usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

6.3 WLCSP168 package information

Figure 86. WLCSP168 - 168-pin, 4.891 x 5.692 mm, 0.4 mm pitch wafer level chip scale package outline

package mechanical data									
Symbol -	millimeters			inches ⁽¹⁾					
	Min	Тур	Мах	Min	Тур	Max			
А	0.525	0.555	0.585	0.0207	0.0219	0.0230			
A1	-	0.170	-	-	0.0067	-			
A2	-	0.380	-	-	0.0150	-			
A3 ⁽²⁾	-	0.025	-	-	0.0010	-			
b ⁽³⁾	0.220	0.250	0.280	0.0087	0.0098	0.0110			
D	4.856	4.891	4.926	0.1912	0.1926	0.1939			
E	5.657	5.692	5.727	0.2227	0.2241	0.2255			
е	-	0.400	-	-	0.0157	-			
e1	-	4.400	-	-	0.1732	-			
e2	-	5.200	-	-	0.2047	-			
F	-	0.2455	-	-	0.0097	-			
G	-	0.246	-	-	0.0097	-			
aaa	-	-	0.100	-	-	0.0039			
bbb	-	-	0.100	-	-	0.0039			
ссс	-	-	0.100	-	-	0.0039			
ddd	-	-	0.050	-	-	0.0020			
eee	-	-	0.050	-	-	0.0020			

Table 115. WLCSP168 - 168-pin, 4.891 x 5.692 mm, 0.4 mm pitch wafer level chip scalepackage mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. Back side coating.

3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

DocID028010 Rev 4