

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SAI, SDIO, SPI, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	161
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	216-TFBGA
Supplier Device Package	216-TFBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f479nih6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The DMA can be used with the main peripherals:

- SPI and I²S
- I²C
- USART
- General-purpose, basic and advanced-control timers TIMx
- DAC
- SDIO
- Camera interface (DCMI)
- ADC
- SAI1
- QUADSPI.

2.9 Flexible Memory Controller (FMC)

The Flexible memory controller (FMC) includes three memory controllers:

- The NOR/PSRAM memory controller
- The NAND/memory controller
- The Synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) controller

The main features of the FMC controller are the following:

- Interface with static-memory mapped devices including:
 - Static random access memory (SRAM)
 - NOR Flash memory/OneNAND Flash memory
 - PSRAM
 - NAND Flash memory with ECC hardware to check up to 8 Kbytes of data
- Interface with synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) memories
- 8-,16-,32-bit data bus width
- Independent Chip Select control for each memory bank
- Independent configuration for each memory bank
- Write FIFO
- Read FIFO for SDRAM controller
- The Maximum FMC_CLK/FMC_SDCLK frequency for synchronous accesses is HCLK/2.

LCD parallel interface

The FMC can be configured to interface seamlessly with most graphic LCD controllers. It

supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to

specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost effective graphic applications using LCD modules with embedded controllers or high

performance solutions using external controllers with dedicated acceleration.

2.19 Power supply supervisor

2.19.1 Internal reset ON

On packages embedding the PDR_ON pin, the power supply supervisor is enabled by holding PDR_ON high. On the other package, the power supply supervisor is always enabled.

The device has an integrated power-on reset (POR)/ power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is reached, the option byte loading process starts, either to confirm or modify default BOR thresholds, or to disable BOR permanently. Three BOR thresholds are available through option bytes. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for an external reset circuit.

The device also features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

2.19.2 Internal reset OFF

This feature is available only on packages featuring the PDR_ON pin. The internal power-on reset (POR) / power-down reset (PDR) circuitry is disabled through the PDR_ON pin.

An external power supply supervisor should monitor V_{DD} and NRST and should maintain the device in reset mode as long as V_{DD} is below a specified threshold. PDR_ON must be connected to VSS, as shown in *Figure 8*.

Figure 8. Power supply supervisor interconnection with internal reset OFF

The V_{DD} specified threshold, below which the device must be maintained under reset, is 1.7 V (see *Figure 9*).

A comprehensive set of power-saving mode allows to design low-power applications.

DocID028010 Rev 4

Figure 15. STM32F47x WLCSP168 pinout

1. The above figure shows the package bottom view.

Figure 17. STM32F47x UFBGA176 ballout

1. The above figure shows the package top view.

			Pin nu	umber						es.			
LQFP100	LQFP144	UFBGA169	WLCSP168	UFBGA176	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin types	I/O structur	Notes	Alternate functions	Additional functions
-	-	J9	M4	-	-	100	P15	PH10	I/O	FT	-	TIM5_CH1, FMC_D18, DCMI_D1, LCD_R4, EVENTOUT	-
-	-	K9	N3	-	-	101	N15	PH11	I/O	FT	-	TIM5_CH2, FMC_D19, DCMI_D2, LCD_R5, EVENTOUT	-
-	-	H10	P2	-	-	102	M15	PH12	I/O	FT	-	TIM5_CH3, FMC_D20, DCMI_D3, LCD_R6, EVENTOUT	-
-	-	-	H7	-	-	-	K10	VSS	S	-	-	-	-
-	66	-	-	-	-	103	K11	VDD	S	-	-	-	-
46	67	N10	H5	P12	85	104	L13	PB12	I/O	FT	-	TIM1_BKIN, I2C2_SMBA, SPI2_NSS/I2S2_WS, USART3_CK, CAN2_RX, OTG_HS_ULPI_D5, ETH_MII_TXD0/ETH_RMII _TXD0, OTG_HS_ID, EVENTOUT	-
47	68	N11	К4	P13	86	105	K14	PB13	I/O	FT	-	TIM1_CH1N, SPI2_SCK/I2S2_CK, USART3_CTS, CAN2_TX, OTG_HS_ULPI_D6, ETH_MII_TXD1/ETH_RMII _TXD1, EVENTOUT	OTG_HS_ VBUS
48	69	N12	P1	R14	87	106	R14	PB14	I/O	FT	-	TIM1_CH2N, TIM8_CH2N, SPI2_MISO, I2S2ext_SD, USART3_RTS, TIM12_CH1, OTG_HS_DM, EVENTOUT	-
49	70	N13	N2	R15	88	107	R15	PB15	I/O	FT	-	RTC_REFIN, TIM1_CH3N, TIM8_CH3N, SPI2_MOSI/I2S2_SD, TIM12_CH2, OTG_HS_DP, EVENTOUT	-
50	71	L10	L4	P15	89	108	L15	PD8	I/O	FT	-	USART3_TX, FMC_D13, EVENTOUT	-
51	72	M10	N1	P14	90	109	L14	PD9	I/O	FT	-	USART3_RX, FMC_D14, EVENTOUT	-
52	73	L11	М3	N15	91	110	K15	PD10	I/O	FT	-	USART3_CK, FMC_D15, LCD_B3, EVENTOUT	-
-	74	M11	J4	N14	92	111	N10	PD11	I/O	FT	-	USART3_CTS, QUADSPI_BK1_IO0, FMC_A16/FMC_CLE, EVENTOUT	-

Table 10. STM32F479xx pin and ball definitions (continued)

Pin name	NOR/PSRAM/SRAM	NOR/PSRAM Mux	NAND16	SDRAM
PF0	A0	-	-	A0
PF1	A1	-	-	A1
PF2	A2	_	-	A2
PF3	A3	_	-	A3
PF4	A4	_	-	A4
PF5	A5	_	-	A5
PF12	A6	_	-	A6
PF13	A7	-	-	A7
PF14	A8	-	-	A8
PF15	A9	-	-	A9
PG0	A10	-	-	A10
PG1	A11	-	-	A11
PG2	A12	-	-	A12
PG3	A13	-	-	
PG4	A14	-	-	BA0
PG5	A15	-	-	BA1
PD11	A16	A16	CLE	-
PD12	A17	A17	ALE	-
PD13	A18	A18	-	-
PE3	A19	A19	-	-
PE4	A20	A20	-	-
PE5	A21	A21	-	-
PE6	A22	A22	-	-
PE2	A23	A23	-	-
PG13	A24	A24	-	-
PG14	A25	A25	-	-
PD14	D0	DA0	D0	D0
PD15	D1	DA1	D1	D1
PD0	D2	DA2	D2	D2
PD1	D3	DA3	D3	D3
PE7	D4	DA4	D4	D4
PE8	D5	DA5	D5	D5
PE9	D6	DA6	D6	D6
PE10	D7	DA7	D7	D7
PE11	D8	DA8	D8	D8

Table 11. FMC pin definition

STM32F479xx

Pinouts and pin description

							Table 12.	Alterna	te funct	ion (co	ontinued)					
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
Р	ort	SYS	TIM1/2	TIM3/4/ 5	TIM8/9/ 10/11	12C1/2/3	SPI1/2/3 /4/5/6	SPI2/3/ SAI1	SPI2/3/ USART 1/2/3	USAR T6/ UART 4/5/7/ 8	CAN1/2/ TIM12/ 13/14/ QUAD SPI/LCD	QUAD SPI/OT G2_HS /OTG1 _FS	ЕТН	FMC/ SDIO/ OTG2_ FS	DCMI/ DSI HOST	LCD	SYS
	PE0	-	-	TIM4_ETR	-	-	-	-	-	UART8_ Rx	-	-	-	FMC_NBL0	DCMI_D2	-	EVENT OUT
	PE1	-	-	-	-	-	-	-	-	UART8_ Tx	-	-	-	FMC_NBL1	DCMI_D3	-	EVENT OUT
	PE2	TRACE CLK	-	-	-	-	SPI4_SCK	SAI1_ MCLK_A	-	-	QUADSPI_ BK1_IO2	-	ETH_MII_TXD 3	FMC_A23	-	-	EVENT OUT
	PE3	TRACE D0	-	-	-	-	-	SAI1 _SD_B	-	-	-	-	-	FMC_A19	-	-	EVENT OUT
	PE4	TRACE D1	-	-	-	-	SPI4_NSS	SAI1 _FS_A	-	-	-	-	-	FMC_A20	DCMI_D4	LCD_B0	EVENT OUT
	PE5	TRACE D2	-	-	TIM9_CH1	-	SPI4_MISO	SAI1 _SCK_A	-	-	-	-	-	FMC_A21	DCMI_D6	LCD_G0	EVENT OUT
	PE6	TRACE D3	-	-	TIM9_CH2	-	SPI4_MOSI	SAI1 _SD_A	-	-	-	-	-	FMC_A22	DCMI_D7	LCD_G1	EVENT OUT
Port	PE7	-	TIM1_ETR	-	-	-	-	-	-	UART7_ Rx	-	QUADSPI _BK2_IO0	-	FMC_D4	-	-	EVENT OUT
E	PE8	-	TIM1_CH1N	-	-	-	-	-	-	UART7_ Tx	-	QUADSPI _BK2_IO1	-	FMC_D5	-	-	EVENT OUT
	PE9	-	TIM1_CH1	-	-	-	-	-	-	-	-	QUADSPI _BK2_IO2	-	FMC_D6	-	-	EVENT OUT
	PE10	-	TIM1_CH2N	-	-	-	-	-	-	-	-	QUADSPI _BK2_IO3	-	FMC_D7	-	-	EVENT OUT
	PE11	-	TIM1_CH2	-	-	-	SPI4_NSS	-	-	-	-	-	-	FMC_D8	-	LCD_G3	EVENT OUT
	PE12	-	TIM1_CH3N	-	-	-	SPI4_SCK	-	-	-	-	-	-	FMC_D9	-	LCD_B4	EVENT OUT
	PE13	-	TIM1_CH3	-	-	-	SPI4_MISO	-	-	-	-	-	-	FMC_D10	-	LCD_DE	EVENT OUT
	PE14	-	TIM1_CH4	-	-	-	SPI4_MOSI	-	-	-	-	-	-	FMC_D11	-	LCD_CLK	EVENT OUT
	PE15	-	TIM1_BKIN	-	-	-	-	-	-	-	-	-	-	FMC_D12	-	LCD_R7	EVENT 'OUT

DocID028010 Rev 4

5

77/217

		,			, i g	Max ⁽¹⁾	-				
Symbol	Daramatar	Conditions	f _{HCLK}	Tun		IVIAX 7		Unit			
Symbol	Farameter	Conditions	(MHz)	тур	Т _А = 25 °С	т _А = 85 °С	T _A = 105 °C	Unit			
			168	97	102	128	154				
			150	87	92	118	143				
			144	80	84	108	131				
		All Peripherals	120	65	68	88	108				
		enabled ⁽²⁾⁽³⁾	90	51	54	73	93	I			
			60	37	41	59	79				
			30	21	23	42	62				
1	Supply current in		25	18	20	39	59				
I _{DD}	RUN mode		168	49	55	79	105	mA			
			150	44	49	44	100				
						144	40	45	68	92	
		All Peripherals	120	36	39	58	78				
		disabled	90	29	32	51	71				
			60	22	25	44	64				
			30	13	15	34	54				
			25	11	13	32	52				

Table 25. Typical and maximum current consumption in Run mode, code with data processingrunning from Flash memory (ART accelerator disabled), regulator ON

1. Guaranteed based on test during characterization.

2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.

3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part.

0. makes	Demonster	O a maliti a ma	6 (MUL_)	τ		Max ⁽¹⁾⁽²⁾⁽³⁾		11
Symbol	Parameter	Conditions	T _{HCLK} (MHZ)	тур	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
			180	78	88 ⁽⁴⁾	118	151 ⁽⁴⁾	
			168	71	76	101	127	
			150	64	71	94	119	
			144	58	62	85	109	
			120	43	46	65	85	
		All	90	33	37	54	74	
		Peripherals	60	23	25	44	63	
		enabled	30	13	15	34	53	
			25	11	13	32	52	
				16	5	8	27	47
			8	4	7	25	45	
l _{DD} cu Sle			4	3	5	24	44	
	Supply current in Sleep mode		2	2	5	23	43	m (
			180	23	29 ⁽⁴⁾	63	96 ⁽⁴⁾	ШA
			168	21	25	50	76	
			150	19	23	48	74	
			144	17	31	43	67	
			120	13	16	34	54	
		All	90	10	13	31	51	
		Peripherals	60	7	10	28	48	
		disabled	30	5	7	25	45	
			25	4	7	25	45	
			16	2	5	23	43	
			8	2	5	23	43	
			4	2	5	23	43	
			2	2	4	23	42	

Table 27. Typical and maximum	current consump	tion in Sleep	mode, regulator ON

1. Guaranteed based on test during characterization.

2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.

3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part.

4. Guaranteed by test in production.

				Тур ⁽¹⁾			Max ⁽²⁾		
Symbol	Parameter	Conditions	Т	a = 25 °C		T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
			V _{DD} = 1.7 V	V _{DD} = 2.4 V	V _{DD} = 3.3 V	v	_{DD} = 3.3	v	
		Backup SRAM ON, RTC and LSE oscillator OFF	1.7	2.5	2.9	6 ⁽³⁾	18	35 ⁽³⁾	
		Backup SRAM OFF, RTC and LSE oscillator OFF	1.0	1.8	2.20	5 ⁽³⁾	15	30 ⁽³⁾	
	Supply current	Backup SRAM OFF, RTC ON and LSE oscillator in Power Drive mode	1.7	2.7	3.2	7	20	39	
I _{DD_STBY}	in Standby mode	Backup SRAM ON, RTC ON and LSE oscillator in Power Drive mode	2.4	3.4	4.0	8	25	48	μA
		Backup SRAM ON, RTC ON and LSE oscillator in High Drive mode	3.2	4.2	4.8	10	29	57	
		Backup SRAM OFF, RTC ON and LSE oscillator in High Drive mode	2.5	3.5	4.1	8	25	48	

Table 30. Typical and maximum current consumption in Standby mode

1. PDR is off for V_{DD}=1.7 V. When the PDR is OFF (internal reset OFF), the typical current consumption is reduced by additional 1.2 μ A

2. Based on characterization, not tested in production unless otherwise specified.

3. Based on characterization, tested in production.

		(,			
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
I _{DD(PLLI2S)} ⁽⁴⁾	PLLI2S power consumption on $\rm V_{\rm DD}$	VCO freq = 192 MHz VCO freq = 432 MHz	0.15 0.45	-	0.40 0.75	m۸
I _{DDA(PLLI2S)} ⁽⁴⁾	PLLI2S power consumption on $V_{\mbox{DDA}}$	VCO freq = 192 MHz VCO freq = 432 MHz	0.30 0.55	-	0.40 0.85	IIIA

Table 42. PLLI2S (audio PLL) characteristics (continued)

1. Take care of using the appropriate division factor M to have the specified PLL input clock values.

2. Guaranteed by design.

3. Value given with main PLL running.

4. Based on test during characterization.

Table 43. PLLSAI (audio and LCD-TFT PLL) characteristics

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
f _{PLLSAI_IN}	PLLSAI input clock ⁽¹⁾	-		0.95 ⁽²⁾	1	2.10	
f _{PLLSAI_OUT}	PLLSAI multiplier output clock	-		-	-	216	MHz
f _{VCO_OUT}	PLLSAI VCO output	-		192	-	432	
+	DLLSALlock time	VCO freq = 192 MHz	<u>.</u>	75	-	200	110
LOCK		VCO freq = 432 MHz	2	100	-	300	μο
		Cycle to cycle at	RMS	-	90	-	
	Main SAL clock jitter	12.288 MHz on peak 48KHz period, to N=432, R=5 peak		-	±280	-	ps
Jitter ⁽³⁾	itter ⁽³⁾ Avera 12.28 N = 4 on 10		f	-	90	-	ps
	FS clock jitter	Cycle to cycle at 48 k on 1000 samples	〈Hz	-	400	-	ps
I _{DD(PLLSAI)} ⁽⁴⁾	PLLSAI power consumption on V _{DD}	VCO freq = 192 MHz VCO freq = 432 MHz		0.15 0.45	-	0.40 0.75	m۸
I _{DDA(PLLSAI)} ⁽⁴⁾	PLLSAI power consumption on V_{DDA}	VCO freq = 192 MHz VCO freq = 432 MHz	VCO freq = 192 MHz VCO freq = 432 MHz		-	0.40 0.85	

1. Take care of using the appropriate division factor M to have the specified PLL input clock values.

2. Guaranteed by design.

3. Value given with main PLL running.

4. Based on test during characterization.

Figure 35 and *Figure 36* show the main PLL output clock waveforms in center spread and down spread modes, where:

F0 is f_{PLL_OUT} nominal.

T_{mode} is the modulation period.

md is the modulation depth.

Figure 36. PLL output clock waveforms in down spread mode

5.3.13 MIPI D-PHY characteristics

The parameters given in *Table 45* and *Table 46* are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

I ADIE 45. MIPI D-PHY Characteristics	Table	45.	MIPI	D-PHY	characteristics ^{(*}	1)
---------------------------------------	-------	-----	------	--------------	-------------------------------	----

Symbol	Parameter	Conditions	Min	Тур	Max	Unit					
	Hi-Speed Input/Output Characteristics										
U _{INST}	UI instantaneous	-	2	-	12.5	ns					

Symbol	Parameter Conditions Min Typ		Мах	Unit		
V _{CMTX}	HS transmit common mode voltage	-	150	200	250	
ΔV _{CMTX}	V _{CMTX} mismatch when output is Differential-0	-	-	-	5	
V _{OD}	HS transmit differential voltage	-	140	200	270	mV
ΔV _{OD}	V _{OD} mismatch when output is Differential-1 or Differential-0	-	-	-	14	
V _{OHHS}	HS output high voltage	-	-	-	360	
Z _{OS}	Single ended output impedance	-	40	50	62.5	Ω
ΔZ _{OS}	ΔZ _{OS} Single ended output		-	-	10	%
t _{HSr} & t _{HSf} 20%-80% rise and fall time -		-	100	-	0.35*UI	ps
LP Receiver Input Characteristics						
V _{IL}	Logic 0 input voltage (not in ULP State)	-	-	-	550	
V _{IL-ULPS}	Logic 0 input voltage in ULP State	-	-	-	300	mV
V _{IH}	Input high level voltage	-	880	-	-	
V _{hys}	Voltage hysteresis	-	25	-	-	
	LP Emitter (Dutput Characteris	tics			
V _{IL}	Output low level voltage	-	1.1	1.2	1.2	V
V _{IL-ULPS}	Output high level voltage	-	-50	-	50	mV
V _{IH}	Output impedance of LP transmitter	-	110	-	-	Ω
V _{hys}	15%-85% rise and fall time	-	-	-	25	ns
	LP Contention	Detector Characte	ristics			
V _{ILCD}	Logic 0 contention threshold	-	-	-	200	m\/
V _{IHCD}	V _{IHCD} Logic 0 contention threshold		450	-	-	IIIV

Table 45. MIPI D-PHY characteristics⁽¹⁾ (continued)

1. Guaranteed based on test during characterization.

Symbol	Parameter	Test conditions	Тур	Max ⁽²⁾	Unit
ET	Total unadjusted error	(±3	±4	
EO	Offset error	$f_{ADC} = 18 \text{ MHz}$ V_DA = 1.7 to 3.6 V	±2	±3	
EG	Gain error	V_{REF} = 1.7 to 3.6 V	±1	±3	LSB
ED	Differential linearity error	V _{DDA} –V _{REF} < 1.2 V	±1	±2	
EL	Integral linearity error		±2	±3	

Table 77. ADC static accuracy at $f_{ADC} = 18 \text{ MHz}^{(1)}$

1. Better performance could be achieved in restricted V_{DD} , frequency and temperature ranges.

2. Based on test during characterization.

Symbol	Parameter	Test conditions	Тур	Max ⁽²⁾	Unit
ET	Total unadjusted error		±2	±5	
EO	Offset error	f _{ADC} = 30 MHz, R _{AIN} < 10 kΩ	±1.5	±2.5	
EG	Gain error	$V_{DDA} = 2.4 \text{ to } 3.6 \text{ V},$	±1.5	±3	LSB
ED	Differential linearity error	$V_{REF} = 1.7$ to 3.6 V, $V_{DDA} - V_{REF} < 1.2$ V	±1	±2	
EL	Integral linearity error		±1.5	±3	

Table 78. ADC static accuracy at $f_{ADC} = 30 \text{ MHz}^{(1)}$

1. Better performance could be achieved in restricted V_{DD} , frequency and temperature ranges.

2. Based on test during characterization.

Symbol	Parameter	Test conditions	Тур	Max ⁽²⁾	Unit
ET	Total unadjusted error		±4	±7	
EO	Offset error	f _{ADC} =36 MHz,	±2	±3	
EG	Gain error	V _{DDA} = 2.4 to 3.6 V, V _{REE} = 1.7 to 3.6 V	±3	±6	LSB
ED	Differential linearity error	$V_{DDA} - V_{REF} < 1.2 V$	±2	±3	
EL	Integral linearity error		±3	±6	

Table 79. ADC static accuracy at f_{ADC} = 36 MHz⁽¹⁾

1. Better performance could be achieved in restricted $V_{\text{DD}},$ frequency and temperature ranges.

2. Based on test during characterization.

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	2T _{HCLK} – 0.5	2 T _{HCLK} +0.5	
t _{v(NOE_NE)}	FMC_NEx low to FMC_NOE low	0	1	
t _{w(NOE)}	FMC_NOE low time	2T _{HCLK}	2T _{HCLK} + 0.5	
t _{h(NE_NOE)}	FMC_NOE high to FMC_NE high hold time	0	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	2	
t _{h(A_NOE)}	Address hold time after FMC_NOE high	0	-	
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	2	20
t _{h(BL_NOE)}	FMC_BL hold time after FMC_NOE high	0	-	115
t _{su(Data_NE)}	Data to FMC_NEx high setup time	T _{HCLK} + 2.5	-	
t _{su(Data_NOE)}	Data to FMC_NOEx high setup time	T _{HCLK} +2	-	
t _{h(Data_NOE)}	Data hold time after FMC_NOE high	0	-	
t _{h(Data_NE)}	Data hold time after FMC_NEx high	0	-	
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	-	0	
t _{w(NADV)}	FMC_NADV low time	-	T _{HCLK} +1	

Table 88. Asynchronous non-multiplexed SRAM/PSRAM/NOR - read timings⁽¹⁾

1. Based on test during characterization.

Table 89. Asynchronous non-multiplexed SRAM/PSRAM/NOR read - NWAIT
timings ⁽¹⁾

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	(NE) FMC_NE low time		7T _{HCLK} +1	
t _{w(NOE)}	FMC_NWE low time	5T _{HCLK} – 1.5	5T _{HCLK} +2	ns
t _{su(NWAIT_NE)} FMC_NWAIT valid before FMC_NEx high		5T _{HCLK} +1.5	-	
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} +1	-	

1. Based on test during characterization.

Figure 68. NAND controller waveforms for write access

Figure 69. NAND controller waveforms for common memory read access

6.2 LQFP144 package information

Figure 83. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline

1. Drawing is not to scale.

Figure 95. LQFP208 recommended footprint

1. Dimensions are expressed in millimeters.

Revision history

Date	Revision	Changes	
01-Sep-2015	1	Initial release.	
19-Oct-2015	2	Updated Table 4: Regulator ON/OFF and internal reset ON/OFF availability and Table 54: EMI characteristics. Updated Figure 17: STM32F47x UFBGA176 ballout, Figure 35: PLL output clock waveforms in center spread mode and Figure 36: PLL output clock waveforms in down spread mode. Updated title of Section 6.8: TFBGA216 package information.	
08-Mar-2016	3	 Updated cover page with introduction of LQFP100 and LQFP144 packages. Updated Section 1: Description and Section 1.1: Compatibility throughout the family. Updated Figure 1: Incompatible board design for LQFP176 package and its footnote. Updated Table 1: Device summary, Table 2: STM32F479xx features and peripheral counts, Table 4: Regulator ON/OFF and internal reset ON/OFF availability, Table 10: STM32F479xx pin and ball definitions, Table 11: FMC pin definition, Table 12: Alternate function, Table 17: General operating conditions, Table 55: ESD absolute maximum ratings, Table 76: ADC characteristics, Table 122: Package thermal characteristics and Table 123: Ordering information scheme. Removed former Table 73: Ethernet DC electrical characteristics. Added Figure 17: STM32F47x UFBGA176 ballout, Figure 18: STM32F47x LQFP144 pinout. Updated Figure 17: STM32F47x UFBGA176 ballout, Figure 18: STM32F47x LQFP100 package information and Section 6.2: LQFP144 package information. Replaced former footnote 7 of Table 10: STM32F479xx pin and ball definitions, Added footnote 2. Added footnote 3 to Table 14: Voltage characteristics. 	
03-Mar-20174Updated Table 12: Alternate function. Corrected maximum characterized wakeup timing values for Stomode in Table 34: Low-power mode wakeup timings. Updated Figure 14: STM32F47x LQFP144 pinout. Updated Device Marking for LQFP100, Device Marking for UFBGA169, Device Marking for LQFP176, Device Marking for LQFP176 and Device Marking for LQFP176. Updated footnotes of figures 82, 85, 88, 91, 96 and 98 in Section Package information.		Updated Table 12: Alternate function. Corrected maximum characterized wakeup timing values for Stop mode in Table 34: Low-power mode wakeup timings. Updated Figure 14: STM32F47x LQFP144 pinout. Updated Device Marking for LQFP100, Device Marking for UFBGA169, Device Marking for LQFP176, Device Marking for LQFP176 and Device Marking for LQFP176. Updated footnotes of figures 82, 85, 88, 91, 96 and 98 in Section 6: Package information.	

Table 125	. Document revis	sion history
-----------	------------------	--------------

