E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Det	ails
-----	------

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, SAI, SDIO, SPI, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	71
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 14x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f479vit6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	2 - (1)	
Figure 45.	I ² S slave timing diagram (Philips protocol) ⁽¹⁾ 1 ²	46
Figure 46.	I ² S master timing diagram (Philips protocol) ⁽¹⁾	46
Figure 47.	SAI master timing waveforms 14	48
Figure 48.	SAI slave timing waveforms	48
Figure 49.	USB OTG full speed timings: definition of data signal rise and fall time	50
Figure 50.	ULPI timing diagram	51
Figure 51.	Ethernet SMI timing diagram	52
Figure 52.	Ethernet RMII timing diagram	53
Figure 53.	Ethernet MII timing diagram	54
Figure 54.	ADC accuracy characteristics	59
Figure 55.	Typical connection diagram using the ADC15	59
Figure 56.	Power supply and reference decoupling (V _{REF+} not connected to V _{DDA})	30
Figure 57.	Power supply and reference decoupling (V _{REF+} connected to V _{DDA})	30
Figure 58.	12-bit buffered/non-buffered DAC16	34
Figure 59.	Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms	35
Figure 60.	Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms	67
Figure 61.	Asynchronous multiplexed PSRAM/NOR read waveforms.	68
Figure 62.	Asynchronous multiplexed PSRAM/NOR write waveforms	70
Figure 63.	Synchronous multiplexed NOR/PSRAM read timings	72
Figure 64.	Synchronous multiplexed PSRAM write timings	74
Figure 65.	Synchronous non-multiplexed NOR/PSRAM read timings	76
Figure 66.	Synchronous non-multiplexed PSRAM write timings	77
Figure 67.	NAND controller waveforms for read access	78
Figure 68.	NAND controller waveforms for write access	79
Figure 69.	NAND controller waveforms for common memory read access	79
Figure 70.	NAND controller waveforms for common memory write access	80
Figure 71.	SDRAM read access waveforms (CL = 1)	81
Figure 72.	SDRAM write access waveforms	82
Figure 73.	Quad-SPI SDR timing diagram	84
Figure 74.	Quad-SPI DDR timing diagram.	85
Figure 75.	DCMI timing diagram	86
Figure 76.	LCD-TFT horizontal timing diagram	87
Figure 77.	LCD-TFT vertical timing diagram	88
Figure 78.	SDIO high-speed mode	88
Figure 79.	SD default mode.	89
Figure 80.	LQEP100 - 100-pin, 14 x 14 mm low-profile guad flat package outline	91
Figure 81	I QEP100 - 100-pin, 14 x 14 mm low-profile guad flat	
1.90.0001	recommended footprint	93
Figure 82	I QEP100 marking example (package top view)	93
Figure 83	I OEP144 - 144-pin 20 x 20 mm low-profile guad flat package outline	94
Figure 84	I OEP144 - 144-pin 20 x 20 mm low-profile quad flat package outline	
rigure o4.	recommended footprint 10	96
Figure 85	I OEP144 marking example (package top view)	36
Figure 86	WI CSP168 - 168-nin $4.801 \times 5.602 \text{ mm} 0.4 \text{ mm}$ nitch wafer level chin	50
rigure oo.	scale package outline 10	07
Ejaure 87	UEBCA160 160 pin 7 x 7 mm 0.50 mm pitch ultra fine pitch ball grid	51
i igule or.	or bearies - res-pin, 7 x 7 min, 0.50 min pitch, dita nine pitch bail gitu	00
Figure 00	LIERCA160 marking example (nackage ten view)	79
Figure 20	$\Box OED176$ 24 x 24 mm 176 pin low profile guad flat package outline 20	JU ∩1
Figure 09.	Loren 170, 24 x 24 mm, 170-pin low-pione quad nat package outline	02 71
Figure 90.	LQFF 170 recommended toolphilt	J3 ∩4
Figure 91.		J4
Figure 92.	0 = 0 $A = 1 = 0$ $A = 20 = 20 = 0$ $B = 10 = 0$ $A = 10 = 0$ $B =$	

2.16 Clocks and startup

On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The 16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy over the full temperature range. The application can then select as system clock either the RC oscillator or an external 4-26 MHz clock source. This clock can be monitored for failure. If a failure is detected, the system automatically switches back to the internal RC oscillator and a software interrupt is generated (if enabled). This clock source is input to a PLL thus allowing to increase the frequency up to 180 MHz. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example if an indirectly used external oscillator fails).

Several prescalers allow the configuration of the two AHB buses, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two AHB buses is 180 MHz while the maximum frequency of the high-speed APB domains is 90 MHz. The maximum allowed frequency of the low-speed APB domain is 45 MHz.

The devices embed a dedicated PLL (PLLI2S) and PLLSAI which allows to achieve audio class performance. In this case, the I²S master clock can generate all standard sampling frequencies from 8 kHz to 192 kHz.

2.17 Boot modes

At startup, boot pins are used to select one out of three boot options:

- Boot from user Flash
- Boot from system memory
- Boot from embedded SRAM

The boot loader is located in system memory. It is used to reprogram the Flash memory through a serial interface. Refer to application note AN2606 for details.

2.18 Power supply schemes

- V_{DD} = 1.7 to 3.6 V: external power supply for I/Os and the internal regulator (when enabled), provided externally through V_{DD} pins.
- V_{SSA}, V_{DDA} = 1.7 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks, RCs and PLL. V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS}, respectively.

Note:

 V_{DD}/V_{DDA} minimum value of 1.7 V is obtained when the internal reset is OFF (refer to Section 2.19.2). Refer to Table 3 to identify the packages supporting this option.

- V_{BAT} = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.
- V_{DDUSB} can be connected either to VDD or an external independent power supply (3.0 to 3.6V) for USB transceivers.
 For example, when device is powered at 1.8V, an independent power supply 3.3V can be connected to V_{DDUSB}. When the V_{DDUSB} is connected to a separated power supply, it is independent from V_{DD} or V_{DDA} but it must be the last supply to be provided and the first to disappear.

When the internal reset is OFF, the following integrated features are no more supported:

- The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled
- The brownout reset (BOR) circuitry must be disabled
- The embedded programmable voltage detector (PVD) is disabled
- V_{BAT} functionality is no more available and V_{BAT} pin should be connected to V_{DD}.

All packages allow to disable the internal reset through the PDR_ON signal when connected to VSS.

1. PDR_ON signal to be kept always low.

2.20 Voltage regulator

The regulator has four operating modes:

- Regulator ON
 - Main regulator mode (MR)
 - Low power regulator (LPR)
 - Power-down
- Regulator OFF

2.20.1 Regulator ON

On packages embedding the BYPASS_REG pin, the regulator is enabled by holding BYPASS_REG low. On all other packages, the regulator is always enabled.

DocID028010 Rev 4

Since the internal voltage scaling is not managed internally, the external voltage value must be aligned with the targeted maximum frequency. Refer to *Operating conditions*. The two 2.2 μ F ceramic capacitors should be replaced by two 100 nF decoupling capacitors. Refer to *Section 2.18*.

When the regulator is OFF, there is no more internal monitoring on V_{12} . An external power supply supervisor should be used to monitor the V_{12} of the logic power domain. PA0 pin should be used for this purpose, and act as power-on reset on V_{12} power domain.

In regulator OFF mode, the following features are no more supported:

- PA0 cannot be used as a GPIO pin since it allows to reset a part of the V₁₂ logic power domain which is not reset by the NRST pin.
- As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As a consequence, PA0 and NRST pins must be managed separately if the debug connection under reset or pre-reset is required.
- The over-drive and under-drive modes are not available.
- The Standby mode is not available.

Figure 10. Regulator OFF

The following conditions must be respected:

- V_{DD} should always be higher than V_{CAP_1} and V_{CAP_2} to avoid current injection between power domains.
- If the time for V_{CAP_1} and V_{CAP_2} to reach V₁₂ minimum value is faster than the time for V_{DD} to reach 1.7 V, then PA0 should be kept low to cover both conditions: until V_{CAP_1} and V_{CAP_2} reach V₁₂ minimum value and until V_{DD} reaches 1.7 V (see *Figure 11*).
- Otherwise, if the time for V_{CAP_1} and V_{CAP_2} to reach V₁₂ minimum value is slower than the time for V_{DD} to reach 1.7 V, then PA0 could be asserted low externally (see *Figure 12*).
- If V_{CAP_1} and V_{CAP_2} go below V₁₂ minimum value and V_{DD} is higher than 1.7 V, then a reset must be asserted on PA0 pin.

Note: The minimum value of V_{12} depends on the maximum frequency targeted in the application (see Operating conditions).

DocID028010 Rev 4

Figure 16. STM32F47x UFBGA169 ballout

1. The above figure shows the package top view.

			Pin n	umber	,					sə.			
LQFP100	LQFP144	UFBGA169	WLCSP168	UFBGA176	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin types	I/O structur	Notes	Alternate functions	Additional functions
77	110	D10	C2	G13	131	150	F11	VDD	S	-	-	-	-
-	-	D9	B1	-	-	151	E12	PH13	I/O	FT	-	TIM8_CH1N, CAN1_TX, FMC_D21, LCD_G2, EVENTOUT	-
-	-	C13	D3	-	-	152	E13	PH14	I/O	FT	-	TIM8_CH2N, FMC_D22, DCMI_D4, LCD_G3, EVENTOUT	-
-	-	C12	E4	-	-	153	D13	PH15	I/O	FT	-	TIM8_CH3N, FMC_D23, DCMI_D11, LCD_G4, EVENTOUT	-
-	-	B13	E5	E14	132	154	E14	PI0	I/O	FT	-	TIM5_CH4, SPI2_NSS/I2S2_WS ⁽⁷⁾ , FMC_D24, DCMI_D13, LCD_G5, EVENTOUT	-
-	-	C11	C3	D14	133	155	D14	PI1	I/O	FT	-	SPI2_SCK/I2S2_CK ⁽⁷⁾ , FMC_D25, DCMI_D8, LCD_G6, EVENTOUT	-
-	-	B12	A1	-	NC (2)	156	C14	PI2	I/O	FT	-	TIM8_CH4, SPI2_MISO, I2S2ext_SD, FMC_D26, DCMI_D9, LCD_G7, EVENTOUT	-
-	-	B10	B2	C13	134	157	C13	PI3	I/O	FT	-	TIM8_ETR, SPI2_MOSI/I2S2_SD, FMC_D27, DCMI_D10, EVENTOUT	-
78	-	-	-	D9	135	-	F9	VSS	S	-	-	-	-
-	-	-	B5	C9	136	158	E10	VDD	S	-	-	-	-
79	111	A10	D4	A14	137	159	A14	PA14(JTCK- SWCLK)	I/O	FT	-	JTCK-SWCLK, EVENTOUT	-
80	112	B11	A2	A13	138	160	A13	PA15(JTDI)	I/O	FT	-	JTDI, TIM2_CH1/TIM2_ETR, SPI1_NSS, SPI3_NSS/I2S3_WS, EVENTOUT	-
81	113	C10	D5	B14	139	161	B14	PC10	I/O	FT	-	SPI3_SCK/I2S3_CK, USART3_TX, UART4_TX, QUADSPI_BK1_IO1, SDIO_D2, DCMI_D8, LCD_R2, EVENTOUT	-
82	114	В9	В3	B13	140	162	B13	PC11	I/O	FT	-	I2S3ext_SD, SPI3_MISO, USART3_RX, UART4_RX, QUADSPI_BK2_NCS, SDIO_D3, DCMI_D4, EVENTOUT	-

Table 10. STM32F479xx pin and ball definitions (continued)

5.3 Operating conditions

5.3.1 General operating conditions

Symbol	Parameter	Conditions ⁽¹⁾	Conditions ⁽¹⁾				Unit
		Power Scale 3 (VOS[1:0] bits in PWR_CR register = 0x01), Regulator ON, over-drive OFF			-	120	
f _{HCLK}		Power Scale 2 (VOS[1:0] bits	Over-drive OFF	0	-	144	
	Internal AHB clock frequency	Regulator ON	Over-drive ON	0	-	168	
		Power Scale 1 (VOS[1:0] bits	Over-drive OFF	0	-	168	MHz
		Regulator ON	Over-drive ON	0	-	180	
f	Internal APB1 clock frequency	Over-drive OFF			-	42	
'PCLK1	Internal AF BT Clock frequency	Over-drive ON			-	45	
f	Internal ADP2 clock froquency	Over-drive OFF			-	84	
IPCLK2	Internal AFB2 Clock frequency	Over-drive ON	0	-	90		
V _{DD}	Standard operating voltage	-		1.7 ⁽²⁾	-	3.6	
y (3)(4)	Analog operating voltage (ADC limited to 1.2 M samples)	Must be the same notantial as	vy (5)	1.7 ⁽²⁾	-	2.4	
VDDA	Analog operating voltage (ADC limited to 2.4 M samples)	must be the same potential as	V DD (1)	2.4	-	3.6	V
	USB supply voltage	USB not used		1.7	3.3	3.6	
VDDUSB	PB14 and PB15 pins)	USB used			-	3.6	
V _{DDDSI}	DSI system operating voltage	-		1.7 ⁽²⁾	-	3.6	
V _{BAT}	Backup operating voltage	-		1.65	-	3.6	

Symbol	Parameter	Condi	Min	Тур	Max	Unit	
t	DLL look time	VCO freq = 192	MHz	75	-	200	
LOCK		VCO freq = 432	MHz	100	-	300	μs
Jitter ⁽³⁾	Cycle te eyele jitter		RMS	-	25	-	
		System clock	peak to peak	-	±150	-	
	Doriod littor	120 MHz	RMS	-	15	-	
	r enoù sillei		peak to peak	-	±200	-	
	Main clock output (MCO) for RMII Ethernet	Cycle to cycle a 1000 samples	-	32	-	ps	
	Main clock output (MCO) for MII Ethernet	Cycle to cycle at 25 MHz on 1000 samples		-	40	-	
	Bit Time CAN jitter	Cycle to cycle a 1000 samples	-	330	-		
(4)	PLL power consumption on VDD	VCO freq = 192	MHz	0.15	_	0.40	
יטט(PLL)		VCO freq = 432 MHz		0.45		0.75	mA
	PLL power consumption on VDDA	VCO freq = 192	MHz	0.30	-	0.40	
		VCO freq = 432	0.55		0.85		

Table 41. Main PLL characteristics (continued)

1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared between PLL and PLLI2S.

2. Guaranteed by design.

3. The use of 2 PLLs in parallel can degrade the Jitter up to +30%.

4. Based on test during characterization.

Symbol	Parameter	Conditions			Тур	Max	Unit
f _{PLLI2S_IN}	PLLI2S input clock ⁽¹⁾	-	0.95 ⁽²⁾	1	2.10		
f _{PLLI2S_OUT}	PLLI2S multiplier output clock	-		-	-	216	MHz
f _{VCO_OUT}	PLLI2S VCO output	-	192	-	432		
t _{LOCK}	PLL12S lock time	VCO freq = 192 MHz		75	-	200	110
		VCO freq = 432 MHz	100	-	300	μο	
		Cycle to cycle at	RMS	-	90	-	-
	Maataa 100 alaala üttaa	period, N=432, R=5 peak to peak		-	±280	-	ps
Jitter ⁽³⁾		Average frequency of 12 N=432, R=5 on 1000 samples	-	90	-	ps	
	WS I2S clock jitter	Cycle to cycle at 48 KHz on 1000 samples	-	400	-	ps	

Table 42. PLLI2S (audio PLL) characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{LPX}	Transmitted length of any Low- Power state period	-	50	-	-	
T _{CLK-PREPARE}	Time that the transmitter drives the Clock Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission.	-	38	-	95	ns
T _{CLK-PREPARE} + T _{CLK-ZERO}	Time that the transmitter drives the HS-0 state prior to starting the clock.	-	300	-	-	
T _{CLK-PRE}	Time that the HS clock shall be driven by the transmitter prior to any associated Data Lane beginning the transition from LP to HS mode.	-	8	-	-	UI
T _{CLK-POST}	Time that the transmitter continues to send HS clock after the last associated Data Lane has transitioned to LP Mode.	-	62+52*UI	-	-	
T _{CLK-TRAIL}	Time that the transmitter drives the HS-0 state after the last payload clock bit of an HS transmission burst.	-	60	-	-	
T _{HS-PREPARE}	Time that the transmitter drives the Data Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission.	-	40+4*UI	-	85+6*UI	
T _{HS-PREPARE} + T _{HS-ZERO}	T _{HS-PREPARE+} Time that the transmitter drives the HS-0 state prior to transmitting the Sync sequence.	-	145+10*UI	-	-	ns
T _{HS-TRAIL}	Time that the transmitter drives the flipped differential state after last payload data bit of a HS transmission burst.	-	Max (n*8*UI, 60+n*4*UI)	-	-	
T _{HS-EXIT}	Time that the transmitter drives LP-11 following a HS burst.	-	100	-	-	
T _{REOT}	30%-85% rise time and fall time	-	-	-	35	
Т _{ЕОТ}	Transmitted time interval from the start of $T_{HS-TRAIL}$ or $T_{CLK-TRAIL}$, to the start of the LP-11 state following a HS burst.	-	-	-	105+ n*12UI	

Table 40. MIPT D-PHT AC Characteristics LP mode and H3/LP transitions.	Table 46	. MIPI D-PHY	AC characteristic	s LP mode an	d HS/LP tran	isitions ⁽¹⁾
--	----------	--------------	-------------------	--------------	--------------	-------------------------

1. Guaranteed based on test during characterization.

CAN (controller area network) interface

Refer to Section 5.3.20 for more details on the input/output alternate function characteristics (CANx_TX and CANx_RX).

5.3.24 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 76* are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DDA} supply voltage conditions summarized in *Table 17*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDA}	Power supply		1.7 ⁽¹⁾	-	3.6	
V _{REF+}	Positive reference voltage	V _{DDA} –V _{REF+} < 1.2 V	1.7 ⁽¹⁾	-	V _{DDA}	V
V _{REF-}	Negative reference voltage		-	0	-	
f		$V_{DDA} = 1.7^{(1)}$ to 2.4 V	0.6	15	18	МНт
'ADC	ADC Clock frequency	V _{DDA} = 2.4 to 3.6 V	0.6	30	36	
f _{TRIG} ⁽²⁾	External trigger frequency	f _{ADC} = 30 MHz, 12-bit resolution	-	-	1764	kHz
1110		-	-	-	17	1/f _{ADC}
V _{AIN}	Conversion voltage range ⁽³⁾	-	0 (V _{SSA} or V _{REF-} tied to ground)	-	V _{REF+}	V
R _{AIN} ⁽²⁾	External input impedance	Details in Equation 1	-	-	50	kΩ
R _{ADC} ⁽²⁾⁽⁴⁾	Sampling switch resistance	-	-	-	6	kΩ
C _{ADC} ⁽²⁾	Internal sample and hold capacitor	-	-	4	7	pF
+ (2)	Injection trigger conversion	f _{ADC} = 30 MHz	-	-	0.100	μs
"Iat"	latency	-	-	-	3 ⁽⁵⁾	1/f _{ADC}
+ (2)	Regular trigger conversion	f _{ADC} = 30 MHz	-	-	0.067	μs
'latr'	latency		-	-	2 ⁽⁵⁾	1/f _{ADC}
+ (2)	Sampling time	f _{ADC} = 30 MHz	0.100	-	16	μs
'S` '		-	3	-	480	1/f _{ADC}
t _{STAB} ⁽²⁾	Power-up time	-	-	2	3	μs

Table 76. ADC characteristics

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ENOB	Effective number of bits	fade =18 MHz	10.3	10.4	-	bits
SINAD	Signal-to-noise and distortion ratio	$V_{DDA} = V_{REF+} = 1.7 V$	64	64.2	-	
SNR	Signal-to-noise ratio	Input Frequency = 20 KHz	64	65	-	dB
THD	Total harmonic distortion	Temperature = 25 °C	- 67	- 72	-	

Table 80. ADC dynamic accuracy at f_{ADC} = 18 MHz - limited test conditions⁽¹⁾

1. Guaranteed based on test during characterization.

Table 81. ADC dynamic accuracy at f_{ADC} = 36 MHz - limited test conditions⁽¹⁾

Symbol	Parameter	Test conditions	Min	Тур	Мах	Unit
ENOB	Effective number of bits	fade =36 MHz	10.6	10.8	-	bits
SINAD	Signal-to noise and distortion ratio	$V_{DDA} = V_{REF+} = 3.3 V$	66	67	-	
SNR	Signal-to noise ratio	Input Frequency = 20 KHz	64	68	-	dB
THD	Total harmonic distortion	Temperature = 25 °C	- 70	- 72	-	

1. Guaranteed based on test during characterization.

Note: ADC accuracy vs. negative injection current: injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 5.3.20 does not affect the ADC accuracy.

Figure 54. ADC accuracy characteristics

- 1. See also Table 78.
- 2. Example of an actual transfer curve.
- 3. Ideal transfer curve.
- 4. End point correlation line.

5. E_T = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EQ = Offset Error: deviation between the first actual transition and the first ideal one.

EG = Gain Error: deviation between the last ideal transition and the last actual one. ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one. EL = Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line.

- 1. Refer to Table 76 for the values of R_{AIN} , R_{ADC} and C_{ADC} .
- C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 5 pF). A high C_{parasitic} value downgrades conversion accuracy. To remedy this, f_{ADC} should be reduced.

Symbol	Parameter	Min	Тур	Мах	Unit	Comments
	DAC DC VDDA current	-	280	380	μA	With no load, middle code (0x800) on the inputs
I _{DDA} ⁽⁴⁾	consumption in quiescent mode ⁽³⁾	-	475	625	μA	With no load, worst code (0xF1C) at V _{REF+} = 3.6 V in terms of DC consumption on the inputs
DNL ⁽⁴⁾	Differential non linearity Difference between two	-	-	±0.5	LSB	Given for the DAC in 10-bit configuration.
	consecutive code-1LSB)	-	-	±2	LSB	Given for the DAC in 12-bit configuration.
	Integral non linearity	-	-	±1	LSB	Given for the DAC in 10-bit configuration.
INL ⁽⁴⁾	INL ⁽⁴⁾ (difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023)		-	±4	LSB	Given for the DAC in 12-bit configuration.
	Offset error	-	-	±10	mV	Given for the DAC in 12-bit configuration
Offset ⁽⁴⁾	(difference between measured value at Code	-	-	±3	LSB	Given for the DAC in 10-bit at V _{REF+} = 3.6 V
	(0x800) and the ideal value = V _{REF+} /2)	-	-	±12	LSB	Given for the DAC in 12-bit at V _{REF+} = 3.6 V
Gain error ⁽⁴⁾	Gain error	-	-	±0.5	%	Given for the DAC in 12-bit configuration
tsettling ⁽⁴⁾	Settling time (full scale: for a 10-bit input code transition between the lowest and the highest input codes when DAC_OUT reaches final value ±4LSB	-	3	6	μs	C _{LOAD} ≤ 50 pF, R _{LOAD} ≥ 5 kΩ
THD ⁽⁴⁾	Total Harmonic Distortion Buffer ON	-	-	-	dB	$C_{LOAD} \le 50 \text{ pF},$ $R_{LOAD} \ge 5 \text{ k}\Omega$
Update rate ⁽²⁾	Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB)	-	-	1	MS/s	$C_{LOAD} \le 50 \text{ pF},$ $R_{LOAD} \ge 5 \text{ k}\Omega$
t _{WAKEUP} ⁽⁴⁾	Wakeup time from off state (Setting the ENx bit in the DAC Control register)	-	6.5	10	μs	$C_{LOAD} \le 50$ pF, $R_{LOAD} \ge 5$ k Ω input code between lowest and highest possible ones.
PSRR+ ⁽²⁾	Power supply rejection ratio (to V _{DDA}) (static DC measurement)	-	-67	-40	dB	No R _{LOAD} , C _{LOAD} = 50 pF

Table 87. DAC characteristics (continued)

1. V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 2.19.2).

2. Guaranteed by design.

3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic consumption occurs.

4. Guaranteed based on test during characterization.

Figure 59. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms

1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	3T _{HCLK} – 1	3T _{HCLK} +0.5	
t _{v(NOE_NE)}	FMC_NEx low to FMC_NOE low 2T _{HCL}		2T _{HCLK}	
t _{tw(NOE)}	t _{tw(NOE)} FMC_NOE low time		T _{HCLK} +1	
t _{h(NE_NOE)}	FMC_NOE high to FMC_NE high hold time	1	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	2	
t _{v(NADV_NE)}	t _{v(NADV_NE)} FMC_NEx low to FMC_NADV low		2	
t _{w(NADV)}	NADV) FMC_NADV low time		T _{HCLK} +0.5	
t _{h(AD_NADV)} FMC_AD(address) valid hold time after FMC_NADV high)		0 -		ns
t _{h(A_NOE)}	Address hold time after FMC_NOE high	T _{HCLK} – 0.5	-	
t _{h(BL_NOE)}	FMC_BL time after FMC_NOE high	0	-	
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	2	
t _{su(Data_NE)}	t _{su(Data_NE)} Data to FMC_NEx high setup time		-	
t _{su(Data_NOE)} Data to FMC_NOE high setup time		T _{HCLK} +1	-	
t _{h(Data_NE)}	Data hold time after FMC_NEx high	0	-	
t _{h(Data_NOE)}	Data hold time after FMC_NOE high	0	-	

Table 92. Asynchronous multiplexed PSRAM/NOR read timings ⁽¹⁾	iplexed PSRAM/NOR read timings ⁽¹⁾	Table 92. Asynchronous multi
--	---	------------------------------

1. Based on test during characterization.

Table 93.	Asynchronous	multiplexed PSR	RAM/NOR read-	NWAIT timings ⁽¹⁾
-----------	--------------	-----------------	---------------	------------------------------

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	8T _{HCLK} +0.5	8T _{HCLK} +2	
t _{w(NOE)}	FMC_NWE low time	5T _{HCLK} – 1	5T _{HCLK} +1.5	ns
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	5T _{HCLK} +1.5	-	
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} +1	-	

1. Based on test during characterization.

Symbol	Parameter	Min	Мах	Unit
f _{CLK}	LTDC clock output frequency	-	65	MHz
D _{CLK}	LTDC clock output duty cycle	45	55	%
t _{w(CLKH)} t _{w(CLKL)}	Clock High time, low time	t _{w(CLK)} /2 – 0.5	t _{w(CLK)} /2+0.5	
t _{v(DATA)}	Data output valid time	-	1.5	
t _{h(DATA)}	Data output hold time	0	-	
t _{v(HSYNC)}				
t _{v(VSYNC)}	HSYNC/VSYNC/DE output valid time	-	0.5	ns
t _{v(DE)}				
t _{h(HSYNC)}				
t _{h(VSYNC)}	HSYNC/VSYNC/DE output hold time	0	-	
th(DE)				

Table 109. LTDC characteristics⁽¹⁾

1. Based on test during characterization.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit		
f _{PP}	Clock frequency in data transfer mode	-	0	-	50	MHz		
-	SDIO_CK/fPCLK2 frequency ratio	-	-	-	8/3	-		
t _{W(CKL)}	Clock low time	f = 50 MHz	9.5	10.5	-	ns		
t _{W(CKH)}	Clock high time	1 _{pp} = 50 101HZ	8.5	9.5	-			
CMD, D inp	CMD, D inputs (referenced to CK) in eMMC mode							
t _{ISU}	Input setup time HS	f -50 MH-7	0.5	-	-	ne		
t _{IH}	Input hold time HS	1 _{pp} = 50 10112	3.5	-	-	115		
CMD, D outputs (referenced to CK) in eMMC mode								
t _{ov}	Output valid time HS	f -50 MH-7	-	13.5	14.5	ne		
t _{OH}	Output hold time HS		13.0	-	-	115		

Table 111. Dynamic characteristics: SD / MMC characteristics, V_{DD} = 1.71 to 1.9 V⁽¹⁾⁽²⁾

1. Guaranteed based on test during characterization.

2. C_{load} = 20 pF.

5.3.34 RTC characteristics

Table 112. RTC characteristics

Symbol	Parameter	Conditions	Min	Max
-	f _{PCLK1} /RTCCLK frequency ratio	Any read/write operation from/to an RTC register	4	-

Symbol	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Max	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	-	0.200	0.0035	-	0.0079	
D	15.800	16.000	16.200	0.6220	0.6299	0.6378	
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
D3	-	12.000	-	-	0.4724	-	
E	15.800	16.000	16.200	0.6220	0.6299	0.6378	
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
E3	-	12.000	-	-	0.4724	-	
е	-	0.500	-	-	0.0197	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°	
CCC	-	-	0.080	-	-	0.0031	

Table 113. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat packagemechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

Device Marking for LQFP144

Figure 85 gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 85. LQFP144 marking example (package top view)

1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such

6.5 LQFP176 package information

Figure 89. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package outline

1. Drawing is not to scale.

Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	-	1.450	0.0531	-	0.0060
b	0.170	-	0.270	0.0067	-	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	23.900	-	24.100	0.9409	-	0.9488
E	23.900	-	24.100	0.9409	-	0.9488

