E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, SAI, SDIO, SPI, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	131
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 20x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f479zit6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1	Desc	ription	12
	1.1	Compatibility throughout the family	15
		1.1.1 LQFP176 package	. 16
		1.1.2 LQFP208 package	. 17
		1.1.3 UFBGA176 package	
		1.1.4 TFBGA216 package	. 19
2	Func	tional overview	21
	2.1	$ARM^{ extsf{B}}$ Cortex [®] -M4 with FPU and embedded Flash and SRAM $\ldots \ldots$	21
	2.2	Adaptive real-time memory accelerator (ART Accelerator™)	21
	2.3	Memory protection unit	21
	2.4	Embedded Flash memory	22
	2.5	CRC (cyclic redundancy check) calculation unit	22
	2.6	Embedded SRAM	22
	2.7	Multi-AHB bus matrix	22
	2.8	DMA controller (DMA)	23
	2.9	Flexible Memory Controller (FMC)	24
	2.10	Quad-SPI memory interface (QUADSPI)	25
	2.11	LCD-TFT controller	25
	2.12	DSI Host (DSIHOST)	25
	2.13	Chrom-ART Accelerator™ (DMA2D)	27
	2.14	Nested vectored interrupt controller (NVIC)	27
	2.15	External interrupt/event controller (EXTI)	27
	2.16	Clocks and startup	28
	2.17	Boot modes	28
	2.18	Power supply schemes	28
	2.19	Power supply supervisor	30
		2.19.1 Internal reset ON	. 30
		2.19.2 Internal reset OFF	. 30
	2.20	Voltage regulator	31
		2.20.1 Regulator ON	. 31
		2.20.2 Regulator OFF	. 32

2.32 Secure digital input/output interface (SDIO)

An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.

The interface allows data transfer at up to 48 MHz, and is compliant with the SD Memory Card Specification Version 2.0.

The SDIO Card Specification Version 2.0 is also supported with two different databus modes: 1-bit (default) and 4-bit.

The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack of MMC4.1 or previous.

In addition to SD/SDIO/MMC, this interface is fully compliant with the CE-ATA digital protocol Rev1.1.

2.33 Ethernet MAC interface with dedicated DMA and IEEE 1588 support

The devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for ethernet LAN communications through an industry-standard medium-independent interface (MII) or a reduced medium-independent interface (RMII). The microcontroller requires an external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair, fiber, etc.). The PHY is connected to the device MII port using 17 signals for MII or 9 signals for RMII, and can be clocked using the 25 MHz (MII) from the microcontroller.

The devices include the following features:

- Supports 10 and 100 Mbit/s rates
- Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM and the descriptors (see the STM32F4xx reference manual for details)
- Tagged MAC frame support (VLAN support)
- Half-duplex (CSMA/CD) and full-duplex operation
- MAC control sublayer (control frames) support
- 32-bit CRC generation and removal
- Several address filtering modes for physical and multicast address (multicast and group addresses)
- 32-bit status code for each transmitted or received frame
- Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the receive FIFO are both 2 Kbytes.
- Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008 (PTP V2) with the time stamp comparator connected to the TIM2 input
- Triggers interrupt when system time becomes greater than target time

2.34 Controller area network (bxCAN)

The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1 Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive

Universal hash

- SHA-1 and SHA-2 (secure hash algorithms)
- MD5
- HMAC

The cryptographic accelerator supports DMA request generation.

2.39 Random number generator (RNG)

All devices embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit.

2.40 General-purpose input/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain, with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current-capable and have speed selection to better manage internal noise, power consumption and electromagnetic emission.

The I/O configuration can be locked if needed by following a specific sequence in order to avoid spurious writing to the I/Os registers.

Fast I/O handling allowing maximum I/O toggling up to 90 MHz.

2.41 Analog-to-digital converters (ADCs)

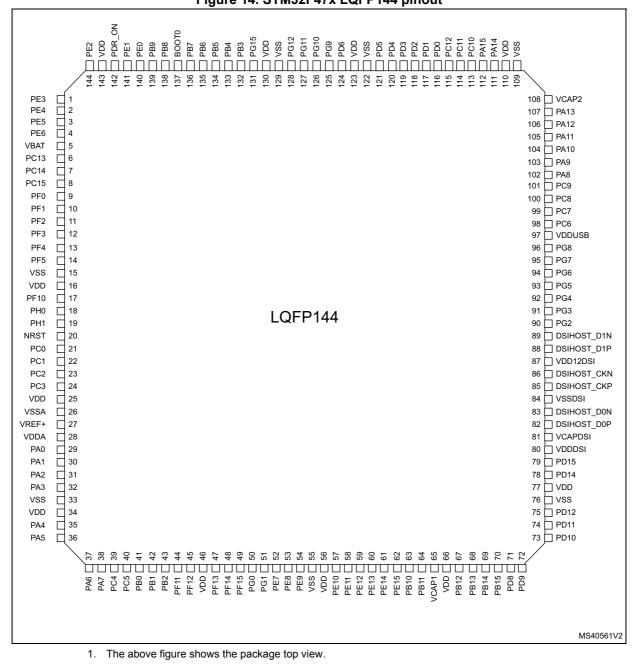
Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16 external channels, performing conversions in the single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs.

Additional logic functions embedded in the ADC interface allow:

- Simultaneous sample and hold
- Interleaved sample and hold

The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1, TIM2, TIM3, TIM4, TIM5, or TIM8 timer.


2.42 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally connected to the same input channel as V_{BAT}, ADC1_IN18, which is used to convert the sensor output voltage into a digital value. When the temperature sensor and V_{BAT} conversion are enabled at the same time, only V_{BAT} conversion is performed.

DocID028010 Rev 4

Figure 14. STM32F47x LQFP144 pinout

- If the device is delivered in an WLCSP168, UFBGA169, UFBGA176, LQFP176 or TFBGA216 package, and the BYPASS_REG pin is set to VDD (Regulator OFF/internal reset ON mode), then PA0 is used as an internal Reset (active low).
- 7. PI0 and PI1 cannot be used for I2S2 full-duplex mode.

ST	
M3	
2F4	
1793	
Ž	

Pinouts and pin description

	_						Г	able 12.	Alterna	te funct	ion (co	ontinued)					
5			AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	P	ort	SYS	TIM1/2	TIM3/4/ 5	TIM8/9/ 10/11	I2C1/2/3	SPI1/2/3 /4/5/6	SPI2/3/ SAI1	SPI2/3/ USART 1/2/3	USAR T6/ UART 4/5/7/ 8	CAN1/2/ TIM12/ 13/14/ QUAD SPI/LCD	QUAD SPI/OT G2_HS /OTG1 _FS	ETH	FMC/ SDIO/ OTG2_ FS	DCMI/ DSI HOST	LCD	SYS
		PI0	-	-	TIM5_CH4	-	-	SPI2_NSS/I 2S2_WS	-	-	-	-	-	-	FMC_D24	DCMI_D13	LCD_G5	EVENT OUT
		PI1	-	-	-	-	-	SPI2_SCK/I 2S2_CK	-	-	-	-	-	-	FMC_D25	DCMI_D8	LCD_G6	EVENT OUT
		PI2	-	-	-	TIM8_CH4	-	SPI2_MISO	I2S2ext_S D	-	-	-	-	-	FMC_D26	DCMI_D9	LCD_G7	EVENT OUT
		PI3	-	-	-	TIM8_ETR	-	SPI2_MOSI /I2S2_SD	-	-	-	-	-	-	FMC_D27	DCMI_D10		EVENT OUT
_		PI4	-	-	-	TIM8_BKI N	-	-	-	-	-	-	-	-	FMC_NBL2	DCMI_D5	LCD_B4	EVENT OUT
DocID028010 Rev 4		PI5	-	-	-	TIM8_CH1	-	-	-	-	-	-	-	-	FMC_NBL3	DCMI_VS YNC	LCD_B5	EVENT OUT
0280		PI6	-	-	-	TIM8_CH2	-	-	-	-	-	-	-	-	FMC_D28	DCMI_D6	LCD_B6	EVENT OUT
10 R		PI7	-	-	-	TIM8_CH3	-	-	-	-	-	-	-	-	FMC_D29	DCMI_D7	LCD_B7	EVENT OUT
ev 4	Port I	PI8	-	-	-	-	-	-	-	-	-	-	-	-	-	-		EVENT OUT
		PI9	-	-	-	-	-	-	-	-	-	CAN1_RX	-	-	FMC_D30	-	LCD_VSY NC	EVENT OUT
		PI10	-	-	-	-	-	-	-	-	-	-	-	ETH_MII_RX_ ER	FMC_D31	-	LCD_HSY NC	EVENT OUT
		PI11	-	-	-	-	-	-	-	-	-	LCD_G6	OTG_HS _ULPI _DIR	-	-	-	-	EVENT OUT
		PI12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_HSY NC	EVENT OUT
		PI13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_VSY NC	EVENT OUT
		PI14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_CLK	EVENT OUT
		PI15	-	-	-	-	-	-	-	-	-	LCD_G2	-	-	-	-	LCD_R0	EVENT 'OUT

81/217

4 Memory mapping

The memory map is shown in *Figure 21*.

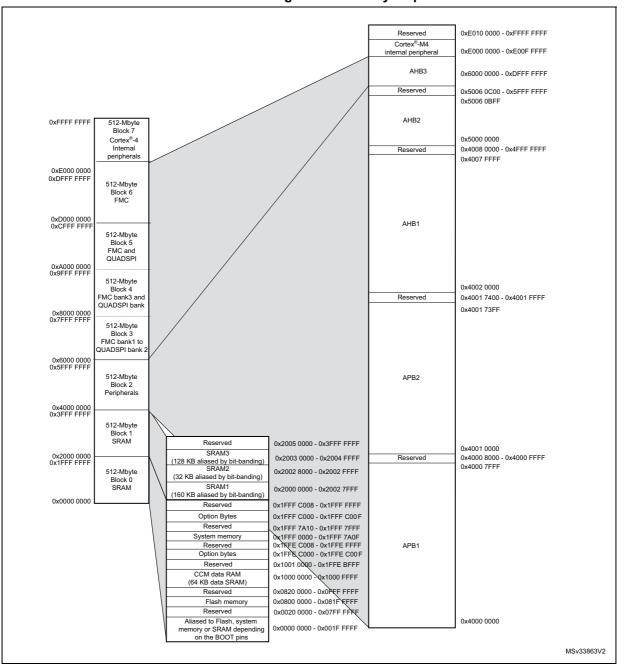


Figure 21. Memory map

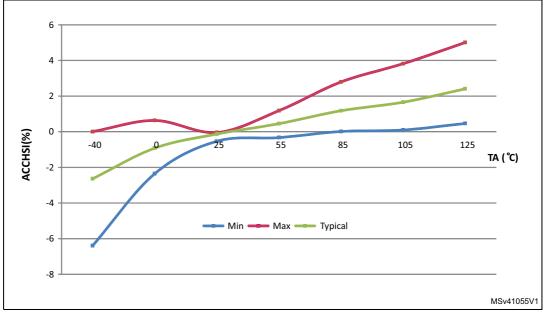
DocID028010 Rev 4

5.3.10 Internal clock source characteristics

The parameters given in *Table 39* and *Table 40* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	-	-	16	-	MHz
ACC _{HSI}	HSI user trimming step ⁽²⁾	-	-	-	1	%
		$T_A = -40$ to 105 °C ⁽³⁾	- 8	-	4.5	%
	HSI oscillator accuracy	$T_A = -10$ to 85 °C ⁽³⁾	- 4	-	4	%
		T _A = 25 °C ⁽⁴⁾	- 1	-	1	%
t _{su(HSI)} ⁽²⁾	HSI oscillator startup time	-	-	2.2	4	μs
I _{DD(HSI)} ⁽²⁾	HSI oscillator power consumption	-	-	60	80	μA


Table 39. HS	l oscillator	characteristics	(1)
--------------	--------------	-----------------	-----

1. V_{DD} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by design

3. Based on test during characterization.

4. Factory calibrated, parts not soldered.

Figure 33. ACCHSI vs. temperature

1. Based on test during characterization.

Symbol	Parameter	Condi	Min	Тур	Max	Unit	
+	PLL lock time	VCO freq = 192	MHz	75	-	200	
t _{LOCK}		VCO freq = 432	MHz	100	-	300	μs
	Cycle-to-cycle jitter		RMS	-	25	-	
		System clock	peak to peak	-	±150	-	
Jitter ⁽³⁾	Period Jitter	120 MHz	RMS	-	15	-	
			peak to peak	-	±200	-	
	Main clock output (MCO) for RMII Ethernet	Cycle to cycle a 1000 samples	-	32	-	ps	
	Main clock output (MCO) for MII Ethernet	Cycle to cycle a 1000 samples	-	40	-		
	Bit Time CAN jitter Cycle to cycle at 1 MH: 1000 samples		t 1 MHz on	-	330	-	
I _{DD(PLL)} ⁽⁴⁾	PLL power consumption on VDD	VCO freq = 192 MHz		0.15	_	0.40	
יטט(PLL)		VCO freq = 432	0.45		0.75	mA	
I _{DDA(PLL)} ⁽⁴⁾	PLL power consumption on VDDA	VCO freq = 192 VCO freq = 432		0.30 0.55	-	0.40 0.85	

Table 41. Main PLL characteristics (continued)

1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared between PLL and PLLI2S.

2. Guaranteed by design.

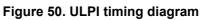
3. The use of 2 PLLs in parallel can degrade the Jitter up to +30%.

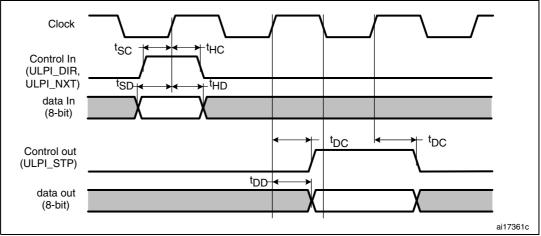
4. Based on test during characterization.

Symbol	Parameter	Condition	Min	Тур	Max	Unit	
f _{PLLI2S_IN}	PLLI2S input clock ⁽¹⁾	-	-			2.10	
f _{PLLI2S_OUT}	PLLI2S multiplier output clock	-		-	-	216	MHz
f _{VCO_OUT}	PLLI2S VCO output	-	-		-	432	
+	PLLI2S lock time	VCO freq = 192 MHz	75	-	200	μs	
t _{LOCK}	FLLIZS IOCK UITIE	VCO freq = 432 MHz	100	-	300		
		Cycle to cycle at	RMS	-	90	-	-
	Master 120 slask ütter	12.288 MHz on 48KHz period, N=432, R=5	peak to peak	-	±280	-	ps
Jitter ⁽³⁾	Master I2S clock jitter	Average frequency of 12 N=432, R=5 on 1000 samples	-	90	-	ps	
	WS I2S clock jitter	Cycle to cycle at 48 KHz on 1000 samples	-	400	-	ps	

Table 42. PLLI2S (audio PLL) characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{LPX}	Transmitted length of any Low- Power state period	-	50	-	-	
T _{CLK-PREPARE}	Time that the transmitter drives the Clock Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission.	-	38	-	95	ns
T _{CLK-PREPARE} + T _{CLK-ZERO}	Time that the transmitter drives the HS-0 state prior to starting the clock.	-	300	-	-	
T _{CLK-PRE}	Time that the HS clock shall be driven by the transmitter prior to any associated Data Lane beginning the transition from LP to HS mode.	-	8	-	-	UI
T _{CLK-POST}	Time that the transmitter continues to send HS clock after the last associated Data Lane has transitioned to LP Mode.	-	62+52*UI	-	-	
T _{CLK-TRAIL}	Time that the transmitter drives the HS-0 state after the last payload clock bit of an HS transmission burst.	-	60	-	-	
T _{HS-PREPARE}	Time that the transmitter drives the Data Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission.	-	40+4*UI	-	85+6*UI	
T _{HS-PREPARE} + T _{HS-ZERO}	T _{HS-PREPARE+} Time that the transmitter drives the HS-0 state prior to transmitting the Sync sequence.	-	145+10*UI	-	-	ns
T _{HS-TRAIL}	Time that the transmitter drives the flipped differential state after last payload data bit of a HS transmission burst.	-	Max (n*8*UI, 60+n*4*UI)	-	-	
T _{HS-EXIT}	Time that the transmitter drives LP-11 following a HS burst.	-	100	-	-	
T _{REOT}	30%-85% rise time and fall time	-	-	-	35	1
Т _{ЕОТ}	Transmitted time interval from the start of $T_{HS-TRAIL}$ or $T_{CLK-TRAIL}$, to the start of the LP-11 state following a HS burst.	-	-	-	105+ n*12UI	


1. Guaranteed based on test during characterization.



Symbol	Parameter	Min	Тур	Max	Unit		
-	f _{HCLK} value to guarantee proper operation of USB HS interface		30	-	-		
F _{START_8BIT}	Frequency (first transition)	8-bit ±10%	54	60	66	MHz	
F _{STEADY}	Frequency (steady state) ±500) ppm	59.97	60	60.03		
D _{START_8BIT}	Duty cycle (first transition)	8-bit ±10%	40	50	60	%	
D _{STEADY}	Duty cycle (steady state) ±500	49.975	50	50.025	70		
t _{STEADY}	Time to reach the steady state duty cycle after the first transiti	-	-	1.4	ms		
t _{START_DEV}	Clock startup time after the	Peripheral	-	-	5.6	20	
t _{START_HOST}	de-assertion of SuspendM	Host	-	-	-	ms	
t _{PREP}	PHY preparation time after the of the input clock	first transition	-	-	-	μs	

Table 71. USB HS clock timing parameters ⁽¹⁾	3 HS clock timing parameters ⁽¹⁾
---	---

1. Guaranteed by design.

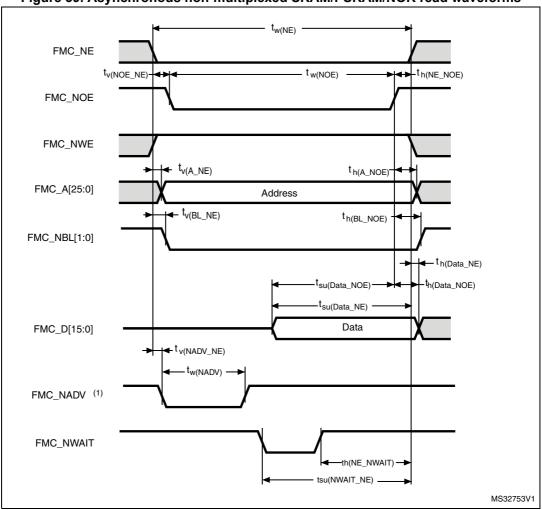


Figure 59. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms

1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.

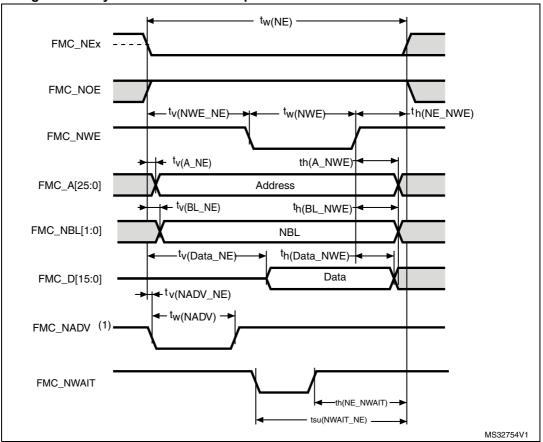


Figure 60. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms

1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.

Table 90. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings ⁽¹⁾
--

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	3T _{HCLK}	3T _{HCLK} +1	
t _{v(NWE_NE)}	FMC_NEx low to FMC_NWE low	T _{HCLK} – 0.5	T _{HCLK} + 0.5	
t _{w(NWE)}	FMC_NWE low time	T _{HCLK}	T _{HCLK} + 0.5	
t _{h(NE_NWE)}	FMC_NWE high to FMC_NE high hold time	T _{HCLK} +1.5	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	0	
t _{h(A_NWE)}	Address hold time after FMC_NWE high	T _{HCLK} +0.5	-	20
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	1.5	ns
t _{h(BL_NWE)}	FMC_BL hold time after FMC_NWE high	T _{HCLK} +0.5	-	
t _{v(Data_NE)}	Data to FMC_NEx low to Data valid	-	T _{HCLK} + 2	
t _{h(Data_NWE)}	Data hold time after FMC_NWE high	T _{HCLK} +0.5	-	
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	-	0.5	
t _{w(NADV)}	FMC_NADV low time	-	T _{HCLK} + 0.5	

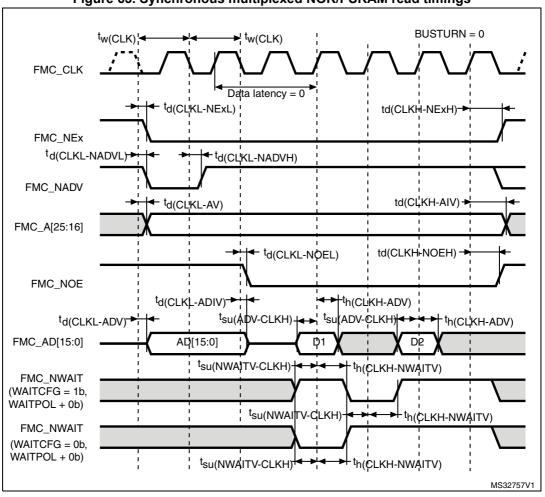
1. Based on test during characterization.

	· ·			
Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	9T _{HCLK}	9T _{HCLK} +0.5	
t _{w(NWE)}	FMC_NWE low time		7T _{HCLK} +2	ns
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	6T _{HCLK} +1.5	-	
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} –1	-	

Table 95. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings⁽¹⁾

1. Based on test during characterization.

Synchronous waveforms and timings


Figures 63 through 66 represent synchronous waveforms and *Table 96* through *Table 99* provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration:

- BurstAccessMode = FMC_BurstAccessMode_Enable;
- MemoryType = FMC_MemoryType_CRAM;
- WriteBurst = FMC_WriteBurst_Enable;
- CLKDivision = 1;
- DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM
- C_L = 30 pF on data and address lines. C_L = 10 pF on FMC_CLK unless otherwise specified.

In all timing tables, the T_{HCLK} is the HCLK clock period:

- For 2.7 V \leq V_{DD} \leq 3.6 V, maximum FMC_CLK = 90 MHz at C_L = 30 pF (on FMC_CLK).
- For 1.71 V \leq V_{DD}<1.9 V, maximum FMC_CLK = 60 MHz at C_L = 10 pF (on FMC_CLK).

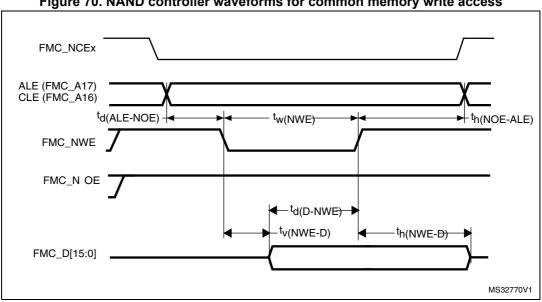
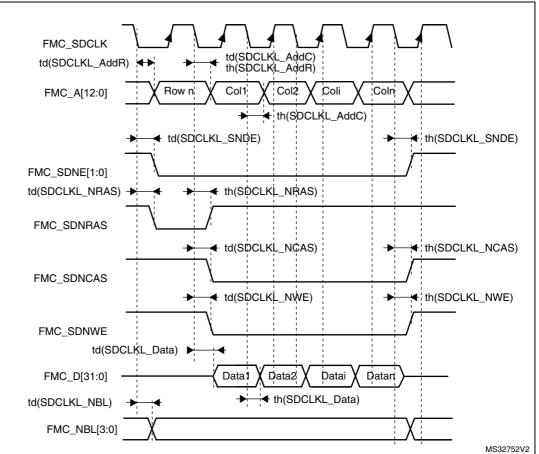


Table 100. Switching characteristics for NAND Flash read cycles

Symbol	Parameter	Min	Мах	Unit
t _{w(N0E)}	FMC_NOE low width	4T _{HCLK} – 0.5	4T _{HCLK} +0.5	
t _{su(D-NOE)}	FMC_D[15-0] valid data before FMC_NOE high	9	-	
t _{h(NOE-D)}	FMC_D[15-0] valid data after FMC_NOE high	0	-	ns
t _{d(ALE-NOE)}	FMC_ALE valid before FMC_NOE low	-	3T _{HCLK} – 0.5	
t _{h(NOE-ALE)}	FMC_NWE high to FMC_ALE invalid	3T _{HCLK} – 2	-	

Symbol	Parameter	Min	Мах	Unit
t _{w(NWE)}	FMC_NWE low width	4T _{HCLK}	4T _{HCLK} +1	
t _{v(NWE-D)}	FMC_NWE low to FMC_D[15-0] valid	0	-	
t _{h(NWE-D)}	FMC_NWE high to FMC_D[15-0] invalid	3T _{HCLK} – 1	-	ns
t _{d(D-NWE)}	FMC_D[15-0] valid before FMC_NWE high	5T _{HCLK} – 3	-	115
t _{d(ALE-NWE)}	FMC_ALE valid before FMC_NWE low	-	3T _{HCLK} -0.5	
t _{h(NWE-ALE)}	FMC_NWE high to FMC_ALE invalid	3T _{HCLK} – 1	-	

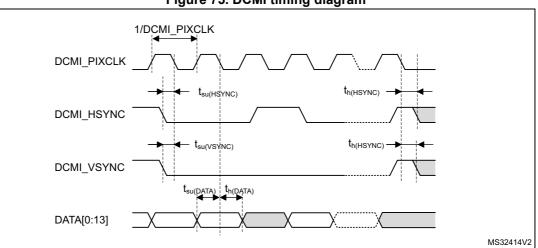
SDRAM waveforms and timings


- C_L = 30 pF on data and address lines.
- C_L = 10 pF on FMC_SDCLK unless otherwise specified.

Symbol	Parameter	Min	Мах	Unit
t _{W(SDCLK)}	FMC_SDCLK period	2T _{HCLK} – 0.5	2T _{HCLK} +0.5	
t _{su(SDCLKH_Data)}	Data input setup time	2.5	-	
t _{h(SDCLKH_Data)}	Data input hold time	0	-	
t _{d(SDCLKL_Add)}	Address valid time	-	1	
t _{d(SDCLKL_SDNE)}	Chip select valid time	-	1	ns
t _{h(SDCLKL_SDNE)}	Chip select hold time	1	-	113
t _{d(SDCLKL_SDNRAS}	SDNRAS valid time	-	1	
t _{h(SDCLKL_SDNRAS)}	SDNRAS hold time	1	-	
t _{d(SDCLKL_SDNCAS)}	SDNCAS valid time	-	1	
t _{h(SDCLKL_SDNCAS)}	SDNCAS hold time	1	-	

Table 103. LPSDR SDRAM read timings⁽¹⁾

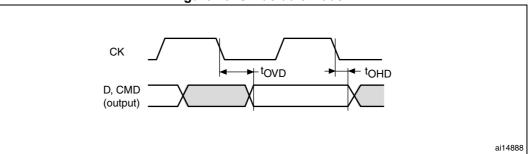
1. Guaranteed based on test during characterization.


DocID028010 Rev 4

Symbol	Parameter		Мах	Unit	
-	Frequency ratio DCMI_PIXCLK/f _{HCLK}	-	0.4	-	
DCMI_PIXCLK	Pixel clock input	-	54	MHz	
D _{Pixel}	Pixel clock input duty cycle	30	70	%	
t _{su(DATA)}	Data input setup time	4	-		
t _{h(DATA)}	Data input hold time	1	-		
t _{su(HSYNC)} t _{su(VSYNC)}	DCMI_HSYNC/DCMI_VSYNC input setup time	3.5	-	ns	
t _{h(HSYNC)} t _{h(VSYNC)}	DCMI_HSYNC/DCMI_VSYNC input hold time	0	-		

Table 10	8. DCMI	characteristics ⁽¹⁾
----------	---------	--------------------------------

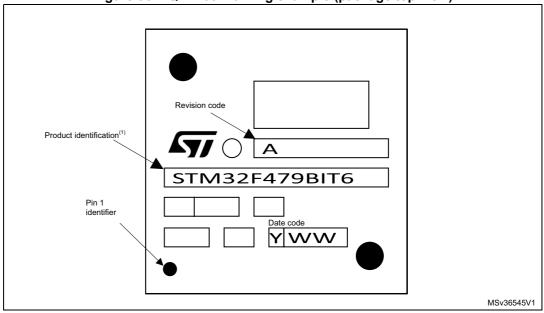
1. 1.Guaranteed based on test during characterization.


5.3.32 LCD-TFT controller (LTDC) characteristics

Unless otherwise specified, the parameters given in *Table 109* for LCD-TFT are derived from tests performed under the ambient temperature, f_{HCLK} frequency and VDD supply voltage summarized in *Table 17*, with the following configuration:

- LCD_CLK polarity: high
- LCD_DE polarity: low
- LCD_VSYNC and LCD_HSYNC polarity: high
- Pixel formats: 24 bits
- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C_L = 30 pF
- Measurement points are done at CMOS levels: 0.5 V_{DD}

Figure 79. SD default mode


	Table 110. Dynamic characteris	tics: SD / MMC	character	istics, V _{DD}	= 2.7 to 3.	6 V ⁽¹⁾
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{PP}	Clock frequency in data transfer mode	-	0	-	50	MHz
-	SDIO_CK/fPCLK2 frequency ratio	-	-	-	8/3	-
t _{W(CKL)}	Clock low time	f = 50 MHz	9.5	10.5	-	ns
t _{W(CKH)}	Clock high time	f _{pp} =50 MHz	8.5	9.5	-	
CMD, D in	puts (referenced to CK) in MMC and SE) HS mode				
t _{ISU}	Input setup time HS		2.0	-	-	ns
t _{IH}	Input hold time HS	f _{pp} =50 MHz	2.0	-	-	
CMD, D ou	tputs (referenced to CK) in MMC and S	SD HS mode				
t _{OV}	Output valid time HS	6 - FO MU-	-	13	13.5	
t _{OH}	Output hold time HS	f _{pp} =50 MHz	12.5	-	-	– ns
CMD, D in	puts (referenced to CK) in SD default m	node				
t _{ISUD}	Input setup time SD	£ 05 MU-	2.0	-	-	
t _{IHD}	Input hold time SD	f _{pp} =25 MHz	2.5	-	-	ns
CMD, D ou	tputs (referenced to CK) in SD default	mode		-		
t _{OVD}	Output valid default time SD	f _25 ML-	-	1.5	2.0	-
t _{OHD}	Output hold default time SD	f _{pp} =25 MHz	1.0	-	-	– ns

1. Guaranteed based on test during characterization.

Device Marking for LQFP208

The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 96. LQFP208 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

