



#### Welcome to E-XFL.COM

#### Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

#### Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

#### Details

| Product Status                  | Obsolete                                                                  |
|---------------------------------|---------------------------------------------------------------------------|
| Core Processor                  | ARM1136JF-S                                                               |
| Number of Cores/Bus Width       | 1 Core, 32-Bit                                                            |
| Speed                           | 400MHz                                                                    |
| Co-Processors/DSP               | Multimedia; GPU, IPU, MPEG-4, VFP                                         |
| RAM Controllers                 | DDR                                                                       |
| Graphics Acceleration           | Yes                                                                       |
| Display & Interface Controllers | Keyboard, Keypad, LCD                                                     |
| Ethernet                        | -                                                                         |
| SATA                            | -                                                                         |
| USB                             | USB 2.0 (3)                                                               |
| Voltage - I/O                   | 1.8V, 2.0V, 2.5V, 2.7V, 3.0V                                              |
| Operating Temperature           | -40°C ~ 85°C (TA)                                                         |
| Security Features               | Random Number Generator, RTIC, Secure Fusebox, Secure JTAG, Secure Memory |
| Package / Case                  | 473-LFBGA                                                                 |
| Supplier Device Package         | 473-LFBGA (19x19)                                                         |
| Purchase URL                    | https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx31cjmn4dr2   |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



The MCIMX31C I/O parameters appear in Table 13 for DDR (Double Data Rate). See Table 7, "Operating Ranges," on page 12 for temperature and supply voltage ranges.

### NOTE

NVCC for Table 13 refers to NVCC2, NVCC21, and NVCC22.

## Table 13. DDR (Double Data Rate) I/O DC Electrical Parameters

| Parameter                   | Symbol          | Test Conditions                                                                             | Min                            | Тур  | Max      | Units |
|-----------------------------|-----------------|---------------------------------------------------------------------------------------------|--------------------------------|------|----------|-------|
| High-level output voltage   | V <sub>OH</sub> | I <sub>OH</sub> = -1 mA                                                                     | NVCC -0.12                     | —    | _        | V     |
|                             |                 | I <sub>OH</sub> = specified Drive                                                           | 0.8*NVCC                       | —    | —        | V     |
| Low-level output voltage    | V <sub>OL</sub> | I <sub>OL</sub> = 1 mA                                                                      | _                              | —    | 0.08     | V     |
|                             |                 | I <sub>OL</sub> = specified Drive                                                           | _                              | —    | 0.2*NVCC | V     |
| High-level output current   | I <sub>OH</sub> | V <sub>OH</sub> =0.8*NVCC<br>Std Drive<br>High Drive<br>Max Drive<br>DDR Drive <sup>1</sup> | -3.6<br>-7.2<br>-10.8<br>-14.4 | _    | _        | mA    |
| Low-level output current    | I <sub>OL</sub> | V <sub>OL</sub> =0.2*NVCC<br>Std Drive<br>High Drive<br>Max Drive<br>DDR Drive <sup>1</sup> | 3.6<br>7.2<br>10.8<br>14.4     |      | _        | mA    |
| High-Level DC input voltage | V <sub>IH</sub> | —                                                                                           | 0.7*NVCC                       | NVCC | NVCC+0.3 | V     |
| Low-Level DC input voltage  | V <sub>IL</sub> | —                                                                                           | -0.3                           | 0    | 0.3*NVCC | V     |
| Tri-state leakage current   | I <sub>OZ</sub> | V <sub>I</sub> = NVCC or GND<br>I/O = High Z                                                | _                              | —    | ±2       | μA    |

<sup>1</sup> Use of DDR Drive can result in excessive overshoot and ringing.

# 4.3.2 AC Electrical Characteristics

Figure 4 depicts the load circuit for outputs. Figure 5 depicts the output transition time waveform. The range of operating conditions appears in Table 14 for slow general I/O, Table 15 for fast general I/O, and Table 16 for DDR I/O (unless otherwise noted).



CL includes package, probe and fixture capacitance







| Parameter                   | Min                       | Тур | Мах | Units |
|-----------------------------|---------------------------|-----|-----|-------|
| Input Frequency             | 15                        | _   | 75  | MHz   |
| VIL (for square wave input) | 0                         | _   | 0.3 | V     |
| VIH (for square wave input) | (VDD <sup>1</sup> - 0.25) | _   | 3   | V     |
| Sinusoidal Input Amplitude  | 0.4 <sup>2</sup>          | _   | VDD | Vp-p  |
| Duty Cycle                  | 45                        | 50  | 55  | %     |

Table 17. Clock Amplifier Electrical Characteristics for CKIH Input

<sup>1</sup> VDD is the supply voltage of CAMP. See reference manual.

<sup>2</sup> This value of the sinusoidal input will be measured through characterization.

# 4.3.4 1-Wire Electrical Specifications

Figure 6 depicts the RPP timing, and Table 18 lists the RPP timing parameters.



Figure 6. Reset and Presence Pulses (RPP) Timing Diagram

| ID  | Parameters           | Symbol            | Min | Тур | Мах | Units |
|-----|----------------------|-------------------|-----|-----|-----|-------|
| OW1 | Reset Time Low       | t <sub>RSTL</sub> | 480 | 511 | —   | μs    |
| OW2 | Presence Detect High | t <sub>PDH</sub>  | 15  | —   | 60  | μs    |
| OW3 | Presence Detect Low  | t <sub>PDL</sub>  | 60  | —   | 240 | μs    |
| OW4 | Reset Time High      | t <sub>RSTH</sub> | 480 | 512 | —   | μs    |

Table 18. RPP Sequence Delay Comparisons Timing Parameters

Figure 7 depicts Write 0 Sequence timing, and Table 19 lists the timing parameters.





| Name   | Description                                                                                                                                        | Value/<br>Contributing Factor <sup>1</sup> |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| tskew5 | Max difference in cable propagation delay between (ata_dior, ata_diow, ata_dmack) and ata_cs0, ata_cs1, ata_da2, ata_da1, ata_da0, ata_data(write) | cable                                      |
| tskew6 | Max difference in cable propagation delay without accounting for ground bounce                                                                     | cable                                      |

#### Table 21. ATA Timing Parameters (continued)

<sup>1</sup> Values provided where applicable.

### 4.3.5.2 PIO Mode Timing

Figure 10 shows timing for PIO read, and Table 22 lists the timing parameters for PIO read.



Figure 10. PIO Read Timing Diagram

### Table 22. PIO Read Timing Parameters

| ATA<br>Parameter | Parameter<br>from Figure 10 | Value                                                                                                                                                                 | Controlling<br>Variable        |
|------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| t1               | t1                          | t1 (min) = time_1 * T – (tskew1 + tskew2 + tskew5)                                                                                                                    | time_1                         |
| t2               | t2r                         | t2 min) = time_2r * T – (tskew1 + tskew2 + tskew5)                                                                                                                    | time_2r                        |
| t9               | t9                          | t9 (min) = time_9 * T – (tskew1 + tskew2 + tskew6)                                                                                                                    | time_3                         |
| t5               | t5                          | t5 (min) = tco + tsu + tbuf + tbuf + tcable1 + tcable2                                                                                                                | If not met, increase<br>time_2 |
| t6               | t6                          | 0                                                                                                                                                                     | —                              |
| tA               | tA                          | $tA (min) = (1.5 + time_ax) * T - (tco + tsui + tcable2 + tcable2 + 2*tbuf)$                                                                                          | time_ax                        |
| trd              | trd1                        | $      trd1 (max) = (-trd) + (tskew3 + tskew4)       trd1 (min) = (time_pio_rdx - 0.5)*T - (tsu + thi)       (time_pio_rdx - 0.5) * T > tsu + thi + tskew3 + tskew4 $ | time_pio_rdx                   |
| t0               | —                           | t0 (min) = (time_1 + time_2 + time_9) * T                                                                                                                             | time_1, time_2r, time_9        |

Figure 11 shows timing for PIO write, and Table 23 lists the timing parameters for PIO write.





Figure 12. MDMA Read Timing Diagram



Figure 13. MDMA Write Timing Diagram

| Table 24 | . MDMA | Read | and | Write | Timing | Parameters |
|----------|--------|------|-----|-------|--------|------------|
|----------|--------|------|-----|-------|--------|------------|

| ATA<br>Parameter | Parameter<br>from<br>Figure 12,<br>Figure 13 | Value                                                                                            | Controlling<br>Variable |
|------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------|
| tm, ti           | tm                                           | tm (min) = ti (min) = time_m * T – (tskew1 + tskew2 + tskew5)                                    | time_m                  |
| td               | td, td1                                      | td1.(min) = td (min) = time_d * T – (tskew1 + tskew2 + tskew6)                                   | time_d                  |
| tk               | tk                                           | tk.(min) = time_k * T – (tskew1 + tskew2 + tskew6)                                               | time_k                  |
| tO               | —                                            | t0 (min) = (time_d + time_k) * T                                                                 | time_d, time_k          |
| tg(read)         | tgr                                          | tgr (min-read) = tco + tsu + tbuf + tbuf + tcable1 + tcable2<br>tgr.(min-drive) = td - te(drive) | time_d                  |
| tf(read)         | tfr                                          | tfr (min-drive) = 0                                                                              | —                       |
| tg(write)        | —                                            | tg (min-write) = time_d * T – (tskew1 + tskew2 + tskew5)                                         | time_d                  |
| tf(write)        | —                                            | tf (min-write) = time_k * T – (tskew1 + tskew2 + tskew6)                                         | time_k                  |
| tL               | —                                            | $tL (max) = (time_d + time_k-2)^*T - (tsu + tco + 2^*tbuf + 2^*tcable2)$                         | time_d, time_k          |
| tn, tj           | tkjn                                         | tn= tj= tkjn = (max(time_k,. time_jn) * T – (tskew1 + tskew2 + tskew6)                           | time_jn                 |
| _                | ton<br>toff                                  | ton = time_on * T - tskew1<br>toff = time_off * T - tskew1                                       |                         |



| ID   | Parameter                       | Symbol                 | Min | Max | Units |
|------|---------------------------------|------------------------|-----|-----|-------|
| CS1  | SCLK Cycle Time                 | t <sub>clk</sub>       | 60  | _   | ns    |
| CS2  | SCLK High or Low Time           | t <sub>SW</sub>        | 30  | —   | ns    |
| CS3  | SCLK Rise or Fall               | t <sub>RISE/FALL</sub> |     | 7.6 | ns    |
| CS4  | SSx pulse width                 | t <sub>CSLH</sub>      | 25  | —   | ns    |
| CS5  | SSx Lead Time (CS setup time)   | t <sub>SCS</sub>       | 25  | _   | ns    |
| CS6  | SSx Lag Time (CS hold time)     | t <sub>HCS</sub>       | 25  | _   | ns    |
| CS7  | Data Out Setup Time             | t <sub>Smosi</sub>     | 5   | —   | ns    |
| CS8  | Data Out Hold Time              | t <sub>Hmosi</sub>     | 5   | _   | ns    |
| CS9  | Data In Setup Time              | t <sub>Smiso</sub>     | 6   | _   | ns    |
| CS10 | Data In Hold Time               | t <sub>Hmiso</sub>     | 5   | _   | ns    |
| CS11 | SPI_RDY Setup Time <sup>1</sup> | t <sub>SRDY</sub>      |     |     | ns    |

#### Table 27. CSPI Interface Timing Parameters

<sup>1</sup> SPI\_RDY is sampled internally by ipg\_clk and is asynchronous to all other CSPI signals.

# 4.3.8 DPLL Electrical Specifications

The three PLL's of the MCIMX31C (MCU, USB, and Serial PLL) are all based on same DPLL design. The characteristics provided herein apply to all of them, except where noted explicitly. The PLL characteristics are provided based on measurements done for both sources—external clock source (CKIH), and FPM (Frequency Pre-Multiplier) source.

### 4.3.8.1 Electrical Specifications

Table 28 lists the DPLL specification.

Table 28. DPLL Specifications

| Parameter                                                      | Min       | Тур              | Max             | Unit | Comments                                                                       |
|----------------------------------------------------------------|-----------|------------------|-----------------|------|--------------------------------------------------------------------------------|
| CKIH frequency                                                 | 15        | 26 <sup>1</sup>  | 75 <sup>2</sup> | MHz  | _                                                                              |
| CKIL frequency<br>(Frequency Pre-multiplier (FPM) enable mode) | -         | 32; 32.768, 38.4 | —               | kHz  | FPM lock time $\approx$ 480 µs.                                                |
| Predivision factor (PD bits)                                   | 1         | —                | 16              |      | _                                                                              |
| PLL reference frequency range after Predivider                 | 15        | _                | 35              | MHz  | $15 \le CKIH$ frequency/PD $\le 35$ MHz<br>$15 \le FPM$ output/PD $\le 35$ MHz |
| PLL output frequency range:<br>MPLL and SPLL<br>UPLL           | 52<br>190 | _                | 400<br>240      | MHz  | _                                                                              |
| Maximum allowed reference clock phase noise.                   | -         | —                | ±100            | ps   | _                                                                              |
| Frequency lock time<br>(FOL mode or non-integer MF)            | -         | —                | 398             | —    | Cycles of divided reference clock.                                             |



## NOTE

High is defined as 80% of signal value and low is defined as 20% of signal value.

## NOTE

Timing for HCLK is 133 MHz and internal NFC clock (flash clock) is approximately 33 MHz (30 ns). All timings are listed according to this NFC clock frequency (multiples of NFC clock phases), except NF16 and NF17, which are not NFC clock related.

# 4.3.9.2 Wireless External Interface Module (WEIM)

All WEIM output control signals may be asserted and deasserted by internal clock related to BCLK rising edge or falling edge according to corresponding assertion/negation control fields. Address always begins related to BCLK falling edge but may be ended both on rising and falling edge in muxed mode according to control register configuration. Output data begins related to BCLK rising edge except in muxed mode where both rising and falling edge may be used according to control register configuration. Input data, ECB and DTACK all captured according to BCLK rising edge time. Figure 26 depicts the timing of the WEIM module, and Table 30 lists the timing parameters.



| ID   | Parameter                                        | Min        | Max     | Unit |
|------|--------------------------------------------------|------------|---------|------|
| WE8  | Clock rise/fall to OE Invalid                    | -3         | 3       | ns   |
| WE9  | Clock rise/fall to EB[x] Valid                   | -3         | 3       | ns   |
| WE10 | Clock rise/fall to EB[x] Invalid                 | -3         | 3       | ns   |
| WE11 | Clock rise/fall to LBA Valid                     | -3         | 3       | ns   |
| WE12 | Clock rise/fall to LBA Invalid                   | -3         | 3       | ns   |
| WE13 | Clock rise/fall to Output Data Valid             | -2.5       | 4       | ns   |
| WE14 | Clock rise to Output Data Invalid                | -2.5       | 4       | ns   |
| WE15 | Input Data Valid to Clock rise, FCE=0<br>FCE=1   | 8<br>2.5   | —       | ns   |
| WE16 | Clock rise to Input Data Invalid, FCE=0<br>FCE=1 | -2<br>-2   | —       | ns   |
| WE17 | ECB setup time, FCE=0<br>FCE=1                   | 6.5<br>3.5 | —       | ns   |
| WE18 | ECB hold time, FCE=0<br>FCE=1                    | -2<br>2    | _       | ns   |
| WE19 | DTACK setup time <sup>1</sup>                    | 0          | —       | ns   |
| WE20 | DTACK hold time <sup>1</sup>                     | 4.5        | —       | ns   |
| WE21 | BCLK High Level Width <sup>2, 3</sup>            | —          | T/2 – 3 | ns   |
| WE22 | BCLK Low Level Width <sup>2, 3</sup>             | —          | T/2 – 3 | ns   |
| WE23 | BCLK Cycle time <sup>2</sup>                     | 15         | —       | ns   |

| able 30. WEIM Bus Timin، آلا | g Parameters (continued) |
|------------------------------|--------------------------|
|------------------------------|--------------------------|

<sup>1</sup> Applies to rising edge timing

<sup>2</sup> BCLK parameters are being measured from the 50% VDD.

<sup>3</sup> The actual cycle time is derived from the AHB bus clock frequency.

### NOTE

High is defined as 80% of signal value and low is defined as 20% of signal value.

Test conditions: load capacitance, 25 pF. Recommended drive strength for all controls, address, and BCLK is Max drive.

Figure 27, Figure 28, Figure 29, Figure 30, Figure 31, and Figure 32 depict some examples of basic WEIM accesses to external memory devices with the timing parameters mentioned in Table 30 for specific control parameter settings.





Figure 27. Asynchronous Memory Timing Diagram for Read Access—WSC=1



WSC=1, EBWA=1, EBWN=1, LBN=1





Figure 34. SDR SDRAM Write Cycle Timing Diagram

| Table 32. SDR SDRAM Write Timing Parameters |
|---------------------------------------------|
|---------------------------------------------|

| ID   | Parameter                                       | Symbol | Min | Max | Unit  |
|------|-------------------------------------------------|--------|-----|-----|-------|
| SD1  | SDRAM clock high-level width                    | tCH    | 3.4 | 4.1 | ns    |
| SD2  | SDRAM clock low-level width                     | tCL    | 3.4 | 4.1 | ns    |
| SD3  | SDRAM clock cycle time                          | tCK    | 7.5 | —   | ns    |
| SD4  | CS, RAS, CAS, WE, DQM, CKE setup time           | tCMS   | 2.0 | —   | ns    |
| SD5  | CS, RAS, CAS, WE, DQM, CKE hold time            | tCMH   | 1.8 | —   | ns    |
| SD6  | Address setup time                              | tAS    | 2.0 | —   | ns    |
| SD7  | Address hold time                               | tAH    | 1.8 | —   | ns    |
| SD11 | Precharge cycle period <sup>1</sup>             | tRP    | 1   | 4   | clock |
| SD12 | Active to read/write command delay <sup>1</sup> | tRCD   | 1   | 8   | clock |



# 4.3.13 I<sup>2</sup>C Electrical Specifications

This section describes the electrical information of the  $I^2C$  Module.

# 4.3.13.1 I<sup>2</sup>C Module Timing

Figure 41 depicts the timing of  $I^2C$  module. Table 40 lists the  $I^2C$  module timing parameters where the I/O supply is 2.7 V. 1



Figure 41. I<sup>2</sup>C Bus Timing Diagram

|      |                                                     | Standard       | d Mode            | Fast Mode                         |                  |      |
|------|-----------------------------------------------------|----------------|-------------------|-----------------------------------|------------------|------|
| ID   | Parameter                                           | Min            | Max               | Min                               | Мах              | Unit |
| IC1  | I2CLK cycle time                                    | 10             | —                 | 2.5                               |                  | μs   |
| IC2  | Hold time (repeated) START condition                | 4.0            | —                 | 0.6                               |                  | μs   |
| IC3  | Set-up time for STOP condition                      | 4.0            | —                 | 0.6                               |                  | μs   |
| IC4  | Data hold time                                      | 0 <sup>1</sup> | 3.45 <sup>2</sup> | 0 <sup>1</sup>                    | 0.9 <sup>2</sup> | μs   |
| IC5  | HIGH Period of I2CLK Clock                          | 4.0            | —                 | 0.6                               |                  | μs   |
| IC6  | LOW Period of the I2CLK Clock                       | 4.7            | —                 | 1.3                               |                  | μs   |
| IC7  | Set-up time for a repeated START condition          | 4.7            | —                 | 0.6                               | _                | μs   |
| IC8  | Data set-up time                                    | 250            | —                 | 100 <sup>3</sup>                  |                  | ns   |
| IC9  | Bus free time between a STOP and START condition    | 4.7            | —                 | 1.3                               | _                | μs   |
| IC10 | Rise time of both I2DAT and I2CLK signals           |                | 1000              | 20+0.1C <sub>b</sub> <sup>4</sup> | 300              | ns   |
| IC11 | Fall time of both I2DAT and I2CLK signals           | _              | 300               | 20+0.1C <sub>b</sub> <sup>4</sup> | 300              | ns   |
| IC12 | Capacitive load for each bus line (C <sub>b</sub> ) | —              | 400               | _                                 | 400              | pF   |

### Table 40. I<sup>2</sup>C Module Timing Parameters—I<sup>2</sup>C Pin I/O Supply=2.7 V

<sup>1</sup> A device must internally provide a hold time of at least 300 ns for I2DAT signal in order to bridge the undefined region of the falling edge of I2CLK.

<sup>2</sup> The maximum hold time has to be met only if the device does not stretch the LOW period (ID IC6) of the I2CLK signal.

<sup>3</sup> A Fast-mode I<sup>2</sup>C-bus device can be used in a standard-mode I<sup>2</sup>C-bus system, but the requirement of set-up time (ID IC7) of 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the I2CLK signal. If such a device does stretch the LOW period of the I2CLK signal, it must output the next data bit to the I2DAT line max\_rise\_time (ID No IC10) + data\_setup\_time (ID No IC8) = 1000 + 250 = 1250 ns (according to the Standard-mode I<sup>2</sup>C-bus specification) before the I2CLK line is released.

<sup>4</sup>  $C_b$  = total capacitance of one bus line in pF.

# 4.3.14 IPU—Sensor Interfaces

### 4.3.14.1 Supported Camera Sensors

Table 41 lists the known supported camera sensors at the time of publication.

| Vendor                 | Model                                                                                                                         |  |  |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|
| Conexant               | CX11646, CX20490 <sup>2</sup> , CX20450 <sup>2</sup>                                                                          |  |  |
| Agilant                | HDCP-2010, ADCS-1021 <sup>2</sup> , ADCS-1021 <sup>2</sup>                                                                    |  |  |
| Toshiba                | TC90A70                                                                                                                       |  |  |
| ICMedia                | ICM202A, ICM102 <sup>2</sup>                                                                                                  |  |  |
| iMagic                 | IM8801                                                                                                                        |  |  |
| Transchip              | TC5600, TC5600J, TC5640, TC5700, TC6000                                                                                       |  |  |
| Fujitsu                | MB86S02A                                                                                                                      |  |  |
| Micron                 | MI-SOC-0133                                                                                                                   |  |  |
| Matsushita             | MN39980                                                                                                                       |  |  |
| STMicro                | W6411, W6500, W6501 <sup>2</sup> , W6600 <sup>2</sup> , W6552 <sup>2</sup> , STV0974 <sup>2</sup>                             |  |  |
| OmniVision             | OV7620, OV6630                                                                                                                |  |  |
| Sharp                  | LZ0P3714 (CCD)                                                                                                                |  |  |
| Motorola               | MC30300 (Python) <sup>2</sup> , SCM20014 <sup>2</sup> , SCM20114 <sup>2</sup> , SCM22114 <sup>2</sup> , SCM20027 <sup>2</sup> |  |  |
| National Semiconductor | LM9618 <sup>2</sup>                                                                                                           |  |  |

<sup>1</sup> Freescale Semiconductor does not recommend one supplier over another and in no way suggests that these are the only camera suppliers.

<sup>2</sup> These sensors not validated at time of publication.

## 4.3.14.2 Functional Description

There are three timing modes supported by the IPU.

### 4.3.14.2.1 Pseudo BT.656 Video Mode

Smart camera sensors, which include imaging processing, usually support video mode transfer. They use an embedded timing syntax to replace the SENSB\_VSYNC and SENSB\_HSYNC signals. The timing syntax is defined by the BT.656 standard.

This operation mode follows the recommendations of ITU BT.656 specifications. The only control signal used is SENSB\_PIX\_CLK. Start-of-frame and active-line signals are embedded in the data stream. An active line starts with a SAV code and ends with a EAV code. In some cases, digital blanking is inserted in between EAV and SAV code. The CSI decodes and filters out the timing-coding from the data stream, thus recovering SENSB\_VSYNC and SENSB\_HSYNC signals for internal use.



## 4.3.14.2.2 Gated Clock Mode

The SENSB\_VSYNC, SENSB\_HSYNC, and SENSB\_PIX\_CLK signals are used in this mode. See Figure 42.



rising edge on SENSB VSYNC (all the timings correspond to str

A frame starts with a rising edge on SENSB\_VSYNC (all the timings correspond to straight polarity of the corresponding signals). Then SENSB\_HSYNC goes to high and hold for the entire line. Pixel clock is valid as long as SENSB\_HSYNC is high. Data is latched at the rising edge of the valid pixel clocks. SENSB\_HSYNC goes to low at the end of line. Pixel clocks then become invalid and the CSI stops receiving data from the stream. For next line the SENSB\_HSYNC timing repeats. For next frame the SENSB\_VSYNC timing repeats.

### 4.3.14.2.3 Non-Gated Clock Mode

The timing is the same as the gated-clock mode (described in Section 4.3.14.2.2, "Gated Clock Mode," on page 52), except for the SENSB\_HSYNC signal, which is not used. See Figure 43. All incoming pixel clocks are valid and will cause data to be latched into the input FIFO. The SENSB\_PIX\_CLK signal is inactive (states low) until valid data is going to be transmitted over the bus.



Figure 43. Non-Gated Clock Mode Timing Diagram



• DISPB\_D3\_DRDY acts like an output enable signal to the CRT display. This output enables the data to be shifted onto the display. When disabled, the data is invalid and the trace is off.



Figure 45. Interface Timing Diagram for TFT (Active Matrix) Panels

### 4.3.15.2.2 Interface to Active Matrix TFT LCD Panels, Electrical Characteristics

Figure 46 depicts the horizontal timing (timing of one line), including both the horizontal sync pulse and the data. All figure parameters shown are programmable. The timing images correspond to inverse polarity of the DISPB\_D3\_CLK signal and active-low polarity of the DISPB\_D3\_HSYNC, DISPB\_D3\_VSYNC and DISPB\_D3\_DRDY signals.



Figure 47 depicts the vertical timing (timing of one frame). All figure parameters shown are programmable.



### NOTE

HSP\_CLK is the High-Speed Port Clock, which is the input to the Image Processing Unit (IPU). Its frequency is controlled by the Clock Control Module (CCM) settings. The HSP\_CLK frequency must be greater than or equal to the AHB clock frequency.

The SCREEN\_WIDTH, SCREEN\_HEIGHT, H\_SYNC\_WIDTH, V\_SYNC\_WIDTH, BGXP, BGYP and V\_SYNC\_WIDTH\_L parameters are programmed via the SDC\_HOR\_CONF, SDC\_VER\_CONF, SDC\_BG\_POS Registers. The FW and FH parameters are programmed for the corresponding DMA channel. The DISP3\_IF\_CLK\_PER\_WR, HSP\_CLK\_PERIOD and DISP3\_IF\_CLK\_CNT\_D parameters are programmed via the DI\_DISP3\_TIME\_CONF, DI\_HSP\_CLK\_PER and DI\_DISP\_ACC\_CC Registers.

Figure 48 depicts the synchronous display interface timing for access level, and Table 45 lists the timing parameters. The DISP3\_IF\_CLK\_DOWN\_WR and DISP3\_IF\_CLK\_UP\_WR parameters are set via the DI\_DISP3\_TIME\_CONF Register.



Figure 48. Synchronous Display Interface Timing Diagram—Access Level

| ID   | Parameter                                                | Symbol | Min                   | Typ <sup>1</sup>                       | Мах                   | Units |
|------|----------------------------------------------------------|--------|-----------------------|----------------------------------------|-----------------------|-------|
| IP16 | Display interface clock low time                         | Tckl   | Tdicd-Tdicu-1.5       | Tdicd <sup>2</sup> –Tdicu <sup>3</sup> | Tdicd-Tdicu+1.5       | ns    |
| IP17 | Display interface clock high time                        | Tckh   | Tdicp-Tdicd+Tdicu-1.5 | Tdicp-Tdicd+Tdicu                      | Tdicp-Tdicd+Tdicu+1.5 | ns    |
| IP18 | Data setup time                                          | Tdsu   | Tdicd-3.5             | Tdicu                                  | —                     | ns    |
| IP19 | Data holdup time                                         | Tdhd   | Tdicp-Tdicd-3.5       | Tdicp–Tdicu                            | —                     | ns    |
| IP20 | Control signals setup time to<br>display interface clock | Tcsu   | Tdicd–3.5             | Tdicu                                  | _                     | ns    |

 Table 45. Synchronous Display Interface Timing Parameters—Access Level

<sup>1</sup> The exact conditions have not been finalized, but will likely match the current customer requirement for their specific display. These conditions may be device specific.

<sup>2</sup> Display interface clock down time

$$\operatorname{dicd} = \frac{1}{2} \operatorname{T}_{\operatorname{HSP}_{\operatorname{CLK}}} \cdot \operatorname{ceil} \left[ \frac{2 \cdot \operatorname{DISP3}_{\operatorname{IF}_{\operatorname{CLK}}} \operatorname{DOWN}_{\operatorname{WR}}}{\operatorname{HSP}_{\operatorname{CLK}} \operatorname{PERIOD}} \right]$$







Figure 61. 4-Wire Serial Interface Timing Diagram

Figure 62 depicts timing of the 5-wire serial interface (Type 1). For this interface, a separate RS line is added. When a burst is transmitted within single active chip select interval, the RS can be changed at boundaries of words.



| ID   | Parameter                                | Symbol | Min.                 | Typ. <sup>1</sup> | Max.                                              | Units |
|------|------------------------------------------|--------|----------------------|-------------------|---------------------------------------------------|-------|
| IP56 | Controls setup time for write            | Tdcsw  | Tdicuw-1.5           | Tdicuw            | —                                                 | ns    |
| IP57 | Controls hold time for write             | Tdchw  | Tdicpw-Tdicdw-1.5    | Tdicpw-Tdicdw     | —                                                 | ns    |
| IP58 | Slave device data delay <sup>8</sup>     | Tracc  | 0                    | —                 | Tdrp <sup>9</sup> –Tlbd <sup>10</sup> –Tdicur–1.5 | ns    |
| IP59 | Slave device data hold time <sup>8</sup> | Troh   | Tdrp-Tlbd-Tdicdr+1.5 | _                 | Tdicpr-Tdicdr-1.5                                 | ns    |
| IP60 | Write data setup time                    | Tds    | Tdicdw-1.5           | Tdicdw            | —                                                 | ns    |
| IP61 | Write data hold time                     | Tdh    | Tdicpw-Tdicdw-1.5    | Tdicpw-Tdicdw     | —                                                 | ns    |
| IP62 | Read period <sup>2</sup>                 | Tdicpr | Tdicpr-1.5           | Tdicpr            | Tdicpr+1.5                                        | ns    |
| IP63 | Write period <sup>3</sup>                | Tdicpw | Tdicpw-1.5           | Tdicpw            | Tdicpw+1.5                                        | ns    |
| IP64 | Read down time <sup>4</sup>              | Tdicdr | Tdicdr-1.5           | Tdicdr            | Tdicdr+1.5                                        | ns    |
| IP65 | Read up time <sup>5</sup>                | Tdicur | Tdicur-1.5           | Tdicur            | Tdicur+1.5                                        | ns    |
| IP66 | Write down time <sup>6</sup>             | Tdicdw | Tdicdw-1.5           | Tdicdw            | Tdicdw+1.5                                        | ns    |
| IP67 | Write up time <sup>7</sup>               | Tdicuw | Tdicuw-1.5           | Tdicuw            | Tdicuw+1.5                                        | ns    |
| IP68 | Read time point <sup>9</sup>             | Tdrp   | Tdrp–1.5             | Tdrp              | Tdrp+1.5                                          | ns    |

#### Table 48. Asynchronous Serial Interface Timing Parameters—Access Level (continued)

<sup>1</sup> The exact conditions have not been finalized, but will likely match the current customer requirement for their specific display. These conditions may be device specific.

<sup>2</sup> Display interface clock period value for read:

 $Tdicpr = T_{HSP\_CLK} \cdot ceil \left[ \frac{DISP\#\_IF\_CLK\_PER\_RD}{HSP\_CLK\_PERIOD} \right]$ 

<sup>3</sup> Display interface clock period value for write:

 $Tdicpw = T_{HSP\_CLK} \cdot ceil \left[ \frac{DISP\#\_IF\_CLK\_PER\_WR}{HSP\_CLK\_PERIOD} \right]$ 

<sup>4</sup> Display interface clock down time for read:

 $Tdicdr = \frac{1}{2}T_{HSP\_CLK} \cdot ceil \left[\frac{2 \cdot DISP\#\_IF\_CLK\_DOWN\_RD}{HSP\_CLK\_PERIOD}\right]$ 

<sup>5</sup> Display interface clock up time for read:

 $Tdicur = \frac{1}{2}T_{HSP\_CLK} \cdot ceil \left[\frac{2 \cdot DISP\#\_IF\_CLK\_UP\_RD}{HSP\_CLK\_PERIOD}\right]$ 

<sup>6</sup> Display interface clock down time for write:

$$\label{eq:clcdw} \ensuremath{\mathsf{Fdicdw}} = \frac{1}{2} \ensuremath{\mathsf{T}}_{\ensuremath{\mathsf{HSP}}\xspace{\mathsf{CLK}}} \cdot \ensuremath{\mathsf{ceil}} \ensuremath{\left[ \frac{2 \cdot \ensuremath{\mathsf{DISP}}\xspace{\mathsf{HSP}}\xspace{\mathsf{LLK}}\xspace{\mathsf{DOWN}}\xspace{\mathsf{WRR}} \ensuremath{\mathsf{HSP}}\xspace{\mathsf{CLK}}\xspace{\mathsf{PERIOD}} \ensuremath{\mathsf{I}} \ensuremath{\mathsf{SPace}}\xspace{\mathsf{I}} \ensuremath{\mathsf{SPace}}\xspace{\mathsf{I}} \ensuremath{\mathsf{R}}\xspace{\mathsf{I}} \ensuremath{\mathsf{R}}\xspace{\mathsf{I}} \ensuremath{\mathsf{R}}\xspace{\mathsf{I}} \ensuremath{\mathsf{R}}\xspace{\mathsf{I}} \ensuremath{\mathsf{R}}\xspace{\mathsf{I}} \ensuremath{\mathsf{R}}\xspace{\mathsf{I}} \ensuremath{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}\xspace{\mathsf{R}}$$

<sup>7</sup> Display interface clock up time for write:

$$\label{eq:clk_up_kr} \begin{split} \mathbb{I} dicuw \ = \ \frac{1}{2} T_{\mbox{HSP\_CLK}} \cdot ceil \bigg[ \frac{2 \cdot D \mbox{ISP\#\_F\_CLK\_UP\_WR}}{\mbox{HSP\_CLK\_PERIOD}} \bigg] \end{split}$$

- <sup>8</sup> This parameter is a requirement to the display connected to the IPU.
- <sup>9</sup> Data read point:

 $drp = T_{HSP_CLK} \cdot ceil \left[ \frac{DISP\#_READ_EN}{HSP_CLK_PERIOD} \right]$ 

<sup>10</sup> Loopback delay Tlbd is the cumulative propagation delay of read controls and read data. It includes an IPU output delay, a device-level output delay, board delays, a device-level input delay, an IPU input delay. This value is device specific.





Figure 73. Internal-Reset Card Reset Sequence

### 4.3.20.2.2 Cards with Active Low Reset

The sequence of reset for this kind of card is as follows (see Figure 74):

- 1. After powerup, the clock signal is enabled on CLK (time T0)
- 2. After 200 clock cycles, RX must be high.
- 3. RST must remain Low for at least 40000 clock cycles after T0 (no response is to be received on RX during those 40000 clock cycles)
- 4. RST is set High (time T1)
- 5. RST must remain High for at least 40000 clock cycles after T1 and a response must be received on RX between 400 and 40000 clock cycles after T1.



Figure 74. Active-Low-Reset Card Reset Sequence



### 4.3.22.3 SSI Transmitter Timing with External Clock

Figure 82 depicts the SSI transmitter timing with external clock, and Table 59 lists the timing parameters.



Figure 82. SSI Transmitter with External Clock Timing Diagram



**Package Information and Pinout** 

# 5.1 MAPBGA Production Package 473 19 x 19 mm, 0.8 mm Pitch

This section contains the outline drawing, signal assignment map, and MAPBGA ground/power ID by ball grid location for the 473 19 x 19 mm, 0.8 mm pitch package.

# 5.1.1 Production Package Outline Drawing–19 x 19 mm 0.8 mm



Figure 85. Production Package: Case 1931-0.8 mm Pitch

| Signal | Ball Location |
|--------|---------------|
| NC     | N7            |
| NC     | P7            |
| NC     | U21           |

| Table 63. | . 19 x | 19 | BGA | No | Connects <sup>1</sup> |
|-----------|--------|----|-----|----|-----------------------|
|-----------|--------|----|-----|----|-----------------------|

<sup>1</sup> These contacts are not used and must be floated by the user.

## 5.1.3.2 BGA Signal ID by Ball Grid Location—19 x 19 0.8 mm

Table 64. 19 x 19 BGA Signal ID by Ball Grid Location

| Signal ID  | Ball Location |
|------------|---------------|
| A0         | Y6            |
| A1         | AC5           |
| A10        | V15           |
| A11        | AB3           |
| A12        | AA3           |
| A13        | Y3            |
| A14        | Y15           |
| A15        | Y14           |
| A16        | V14           |
| A17        | Y13           |
| A18        | V13           |
| A19        | Y12           |
| A2         | AB5           |
| A20        | V12           |
| A21        | Y11           |
| A22        | V11           |
| A23        | Y10           |
| A24        | Y9            |
| A25        | Y8            |
| A3         | AA5           |
| A4         | Y5            |
| A5         | AC4           |
| A6         | AB4           |
| A7         | AA4           |
| A8         | Y4            |
| A9         | AC3           |
| ATA_CS0    | E1            |
| ATA_CS1    | G4            |
| ATA_DIOR   | E3            |
| ATA_DIOW   | H6            |
| ATA_DMACK  | E2            |
| ATA_RESET  | F3            |
| BATT_LINE  | F6            |
| BCLK       | W20           |
| BOOT_MODE0 | F17           |
| BOOT_MODE1 | C21           |

| Signal ID     | Ball Location |
|---------------|---------------|
| CKIL          | E21           |
| CLKO          | C20           |
| CLKSS         | H17           |
| COMPARE       | A20           |
| CONTRAST      | N21           |
| CS0           | U17           |
| CS1           | Y22           |
| CS2           | Y18           |
| CS3           | Y19           |
| CS4           | Y20           |
| CS5           | AA21          |
| CSI_D10       | K21           |
| CSI_D11       | K22           |
| CSI_D12       | K23           |
| CSI_D13       | L20           |
| CSI_D14       | L18           |
| CSI_D15       | L21           |
| CSI_D4        | J20           |
| CSI_D5        | J21           |
| CSI_D6        | L17           |
| CSI_D7        | J22           |
| CSI_D8        | J23           |
| CSI_D9        | K20           |
| CSI_HSYNC     | H22           |
| CSI_MCLK      | H20           |
| CSI_PIXCLK    | H23           |
| CSI_VSYNC     | H21           |
| CSPI1_MISO    | N2            |
| CSPI1_MOSI    | N1            |
| CSPI1_SCLK    | M4            |
| CSPI1_SPI_RDY | M1            |
| CSPI1_SS0     | M2            |
| CSPI1_SS1     | N6            |
| CSPI1_SS2     | M3            |
| CSPI2_MISO    | B4            |
| CSPI2 MOSI    | D5            |