

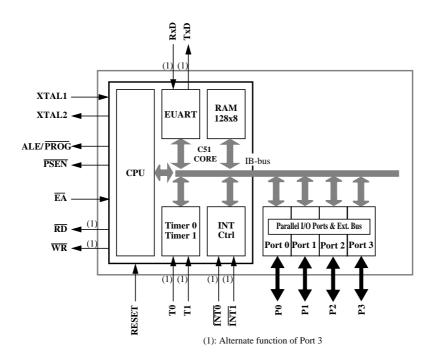
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	40/20MHz
Connectivity	UART/USART
Peripherals	POR
Number of I/O	32
Program Memory Size	
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIL
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ts80c31x2-mca

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3. Block Diagram

4. SFR Mapping

The Special Function Registers (SFRs) of the TS80C31X2 fall into the following categories:

- C51 core registers: ACC, B, DPH, DPL, PSW, SP, AUXR1
- I/O port registers: P0, P1, P2, P3
- Timer registers: TCON, TH0, TH1, TMOD, TL0, TL1
- Serial I/O port registers: SADDR, SADEN, SBUF, SCON
- Power and clock control registers: PCON
- Interrupt system registers: IE, IP, IPH
- Others: CKCON

Table 1. All SFRs with their address and their reset value

	Bit address- able			Nor	n Bit address	able			
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	
F8h									FFh
F0h	B 0000 0000								F7h
E8h									EFh
E0h	ACC 0000 0000								E7h
D8h									DFh
D0h	PSW 0000 0000								D7h
C8h									CFh
C0h									C7h
B8h	IP XXX0 0000	SADEN 0000 0000							BFh
B0h	P3 1111 1111							IPH XXX0 0000	B7h
A8h	IE 0XX0 0000	SADDR 0000 0000							AFh
A0h	P2 1111 1111		AUXR1 XXXX XXX0						A7h
98h	SCON 0000 0000	SBUF XXXX XXXX							9Fh
90h	P1 1111 1111								97h
88h	TCON 0000 0000	TMOD 0000 0000	TL0 0000 0000	TL1 0000 0000	TH0 0000 0000	TH1 0000 0000		CKCON XXXX XXX0	8Fh
80h	P0 1111 1111	SP 0000 0111	DPL 0000 0000	DPH 0000 0000				PCON 00X1 0000	87h
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	

reserved

Table 2.	Pin	Description	for	40/44	pin	packages
----------	-----	-------------	-----	-------	-----	----------

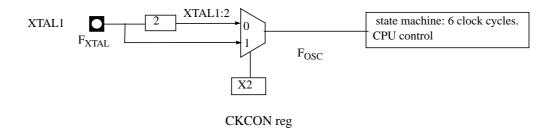
	PIN NUMBER				NAME AND EUNOTION			
MNEMONIC	DIL	LCC	VQFP 1.4	TYPE	NAME AND FUNCTION			
V _{SS}	20	22	16	I	Ground: 0V reference			
Vss1		1	39	Ι	Optional Ground: Contact the Sales Office for ground connection.			
V _{CC}	40	44	38	Ι	Power Supply: This is the power supply voltage for normal, idle and power- down operation			
P0.0-P0.7	39-32	43-36	37-30	I/O	Port 0 : Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s written to them float and can be used as high impedance inputs. Port 0 pins must be polarized to Vcc or Vss in order to prevent any parasitic current consumption. Port 0 is also the multiplexed low-order address and data bus during access to external program and data memory. In this application, it uses strong internal pull-up when emitting 1s.			
P1.0-P1.7	1-8	2-9	40-44 1-3	I/O	Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Port 1 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 1 pins that are externally pulled low will source current because of the internal pull-ups.			
P2.0-P2.7	21-28	24-31	18-25	I/O	Port 2 : Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally pulled low will source current because of the internal pull-ups. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @DPTR).In this application, it uses strong internal pull-ups emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @Ri), port 2 emits the contents of the P2 SFR.			
P3.0-P3.7	10-17	11, 13-19	5, 7-13	I/O	Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally pulled low will source current because of the internal pull-ups. Port 3 also serves the special features of the 80C51 family, as listed below.			
	10	11	5	I	RXD (P3.0): Serial input port			
	11	13	7	0	TXD (P3.1): Serial output port			
	12	14	8	I	INTO (P3.2): External interrupt 0			
	13	15	9	I	INT1 (P3.3): External interrupt 1			
	14	16	10	I	T0 (P3.4): Timer 0 external input			
	15	17	11	I	T1 (P3.5): Timer 1 external input			
	16	18	12	0	WR (P3.6): External data memory write strobe			
	17	19	13	0	RD (P3.7): External data memory read strobe			
Reset	9	10	4	Ι	Reset: A high on this pin for two machine cycles while the oscillator is running, resets the device. An internal diffused resistor to V_{SS} permits a power-on reset using only an external capacitor to V_{CC} .			
ALE	30	33	27	(I) O	Address Latch Enable: Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 (1/3 in X2 mode) the oscillator frequency, and can be used for external timing or clocking. Note that one ALE pulse is skipped during each access to external data memory.			
PSEN	29	32	26	0	Program Store ENable: The read strobe to external program memory. When executing code from the external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory. PSEN is not activated during fetches from internal program memory.			
ĒĀ	31	35	29	Ι	External Access Enable: \overline{EA} must be externally held low to enable the device to fetch code from external program memory locations.			
XTAL1	19	21	15	I	Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator circuits.			
XTAL2	18	20	14	0	Crystal 2: Output from the inverting oscillator amplifier			

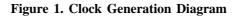
6. TS80C31X2 Enhanced Features

In comparison to the original 80C31, the TS80C31X2 implements some new features, which are:

- The X2 option.
- The Dual Data Pointer.
- The 4 level interrupt priority system.
- The power-off flag.
- The ONCE mode.
- Enhanced UART

6.1 X2 Feature


The TS80C31X2 core needs only 6 clock periods per machine cycle. This feature called "X2" provides the following advantages:


- Divide frequency crystals by 2 (cheaper crystals) while keeping same CPU power.
- Save power consumption while keeping same CPU power (oscillator power saving).
- Save power consumption by dividing dynamically operating frequency by 2 in operating and idle modes.
- Increase CPU power by 2 while keeping same crystal frequency.

In order to keep the original C51 compatibility, a divider by 2 is inserted between the XTAL1 signal and the main clock input of the core (phase generator). This divider may be disabled by software.

6.1.1 Description

The clock for the whole circuit and peripheral is first divided by two before being used by the CPU core and peripherals. This allows any cyclic ratio to be accepted on XTAL1 input. In X2 mode, as this divider is bypassed, the signals on XTAL1 must have a cyclic ratio between 40 to 60%. Figure 1. shows the clock generation block diagram. X2 bit is validated on XTAL1+2 rising edge to avoid glitches when switching from X2 to STD mode. Figure 2. shows the mode switching waveforms.

6.2 Dual Data Pointer Register Ddptr

The additional data pointer can be used to speed up code execution and reduce code size in a number of ways.

The dual DPTR structure is a way by which the chip will specify the address of an external data memory location. There are two 16-bit DPTR registers that address the external memory, and a single bit called DPS = AUXR1/bit0 (See Table 5.) that allows the program code to switch between them (Refer to Figure 3).

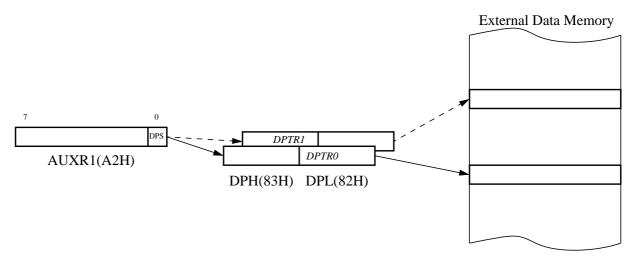
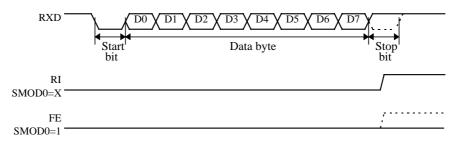


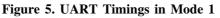
Figure 3. Use of Dual Pointer

Table 4. AUXR1: Auxiliary Register 1

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	DPS

Bit Number	Bit Mnemonic	Description
7	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
6	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
5	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
4	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
3	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
2	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
1	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
0	DPS	Data Pointer Selection Clear to select DPTR0. Set to select DPTR1.


Reset Value = XXXX XXX0 Not bit addressable


Application

Software can take advantage of the additional data pointers to both increase speed and reduce code size, for example, block operations (copy, compare, search ...) are well served by using one data pointer as a 'source' pointer and the other one as a "destination" pointer.

Software may examine FE bit after each reception to check for data errors. Once set, only software or a reset can clear FE bit. Subsequently received frames with valid stop bits cannot clear FE bit. When FE feature is enabled, RI rises on stop bit instead of the last data bit (See Figure 5. and Figure 6.).

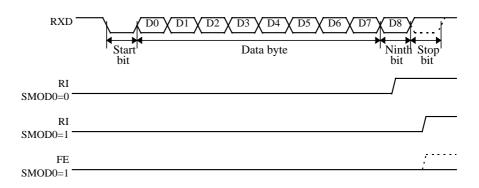


Figure 6. UART Timings in Modes 2 and 3

6.3.2 Automatic Address Recognition

The automatic address recognition feature is enabled when the multiprocessor communication feature is enabled (SM2 bit in SCON register is set).

Implemented in hardware, automatic address recognition enhances the multiprocessor communication feature by allowing the serial port to examine the address of each incoming command frame. Only when the serial port recognizes its own address, the receiver sets RI bit in SCON register to generate an interrupt. This ensures that the CPU is not interrupted by command frames addressed to other devices.

If desired, you may enable the automatic address recognition feature in mode 1. In this configuration, the stop bit takes the place of the ninth data bit. Bit RI is set only when the received command frame address matches the device's address and is terminated by a valid stop bit.

To support automatic address recognition, a device is identified by a given address and a broadcast address.

NOTE: The multiprocessor communication and automatic address recognition features cannot be enabled in mode 0 (i.e. setting SM2 bit in SCON register in mode 0 has no effect).

6.3.5 Reset Addresses

On reset, the SADDR and SADEN registers are initialized to 00h, i.e. the given and broadcast addresses are XXXX (all don't-care bits). This ensures that the serial port will reply to any address, and so, that it is backwards compatible with the 80C51 microcontrollers that do not support automatic address recognition.

SADEN - Slave Address Mask Register (B9h)

7	6	5	4	3	2	1	0

Reset Value = 0000 0000b Not bit addressable

SADDR - Slave Address Register (A9h)

7	6	5	4	3	2	1	0

Reset Value = 0000 0000b Not bit addressable

Table 5. SCON Register

SCON - Serial Control Register (98h)

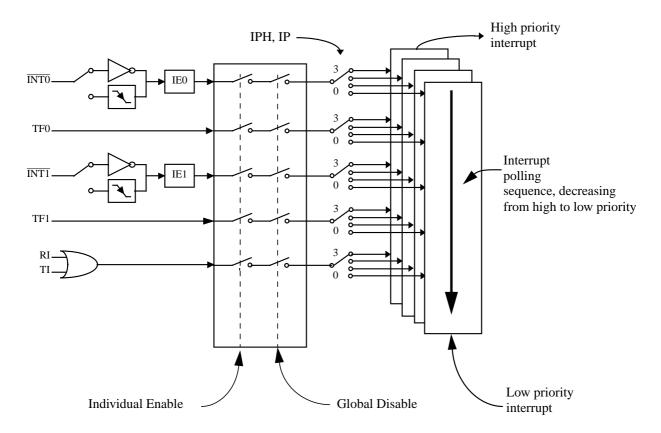
7	6	5		4	3	2	1	0
FE/SM0	SM1	SM	2	REN	TB8	RB8	TI	RI
Bit Number	Bit Mnemonic				Descrip	otion		
7	FE	Set by ha	reset the err rdware whe	or state, not cle en an invalid st	eared by a valid sto op bit is detected. ss to the FE bit	op bit.		
	SM0		SM1 for ser	ial port mode ared to enable	selection. access to the SM0	bit		
		Serial port M	fode bit 1 SM1	Mada	Decorinti	on Baud Rat		
6	SM1	0 0 1 1	0 1 0 1	<u>Mode</u> 0 1 2 3	Descripti Shift Reg 8-bit UA 9-bit UA 9-bit UA	ister F _{XTAL} / RT Variabl RT F _{XTAL} /	– 12 (/6 in X2 mode) e 64 or F _{XTAL} /32 (/32	
5	SM2	Clear to o Set to ena	disable mult	tiprocessor con	cessor Communic nmunication featur unication feature in	re.	d eventually mode	1. This bit should
4	REN			al reception.				
3	TB8	Clear to t	ransmit a lo	h bit to trans ogic 0 in the 9t ic 1 in the 9th l	mit in modes 2 an h bit. pit.	d 3.		
2	RB8	Cleared b Set by ha	y hardware rdware if 9	if 9th bit receith bit receith	modes 2 and 3 ived is a logic 0. is a logic 1. received stop bit. I	n mode 0 RB8 is 1	not used.	
1	TI	Transmit Int Clear to a Set by ha modes.	acknowledg	e interrupt.	th bit time in mode	e 0 or at the begin	ning of the stop bit	in the other
0	RI		acknowledg		th bit time in mode	e 0, see Figure 5.	and Figure 6. in the	e other modes.

Reset Value = 0000 0000b Bit addressable

Table 6. PCON Register

PCON - Power Control Register (87h)

7	6	5	4	3	2	1	0			
SMOD1	SMOD	-	POF	GF0	PD	IDL				
Bit Number	Bit Mnemonic		Description							
7	SMOD1	Serial port Mode bi Set to select do	ial port Mode bit 1 Set to select double baud rate in mode 1, 2 or 3.							
6	SMOD0		tial port Mode bit 0 Clear to select SM0 bit in SCON register. Set to to select FE bit in SCON register.							
5	-	Reserved The value read f	eserved The value read from this bit is indeterminate. Do not set this bit.							
4	POF		ze next reset type. when VCC rises f	from 0 to its nomin	al voltage. Can also	be set by softwar	e.			
3	GF1		ag for general purpos eneral purpose usa							
2	GF0	Cleared by user	General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage.							
1	PD	Cleared by hard	Power-Down mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.							
0	IDL	Idle mode bit Clear by hardwa Set to enter idle	re when interrupt mode.	or reset occurs.						


Reset Value = 00X1 0000b Not bit addressable

Power-off flag reset value will be 1 only after a power on (cold reset). A warm reset doesn't affect the value of this bit.

6.4 Interrupt System

The TS80C31X2 has a total of 5 interrupt vectors: two external interrupts ($\overline{INT0}$ and $\overline{INT1}$), two timer interrupts (timers 0 and 1) and the serial port interrupt. These interrupts are shown in Figure 7.

Figure 7. Interrupt Control System

Each of the interrupt sources can be individually enabled or disabled by setting or clearing a bit in the Interrupt Enable register (See Table 8.). This register also contains a global disable bit, which must be cleared to disable all interrupts at once.

Each interrupt source can also be individually programmed to one out of four priority levels by setting or clearing a bit in the Interrupt Priority register (See Table 9.) and in the Interrupt Priority High register (See Table 10.). shows the bit values and priority levels associated with each combination.

Table 7. Priority Level Bit Values

IPH.x	IP.x	Interrupt Level Priority
0	0	0 (Lowest)
0	1	1
1	0	2
1	1	3 (Highest)

A low-priority interrupt can be interrupted by a high priority interrupt, but not by another low-priority interrupt. A high-priority interrupt can't be interrupted by any other interrupt source.

If two interrupt requests of different priority levels are received simultaneously, the request of higher priority level is serviced. If interrupt requests of the same priority level are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence.

Table 8. IE Register

IE - Interrupt Enable Register (A8h)									
7	6	5	4	3	2	1	0		
EA	-	-	ES	ET1	EX1	ЕТО	EX0		

Bit Number	Bit Mnemonic	Description
7	EA	Enable All interrupt bit Clear to disable all interrupts. Set to enable all interrupts. If EA=1, each interrupt source is individually enabled or disabled by setting or clearing its own interrupt enable bit.
6	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
5	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
4	ES	Serial port Enable bit Clear to disable serial port interrupt. Set to enable serial port interrupt.
3	ET1	Timer 1 overflow interrupt Enable bit Clear to disable timer 1 overflow interrupt. Set to enable timer 1 overflow interrupt.
2	EX1	External interrupt 1 Enable bit Clear to disable external interrupt 1. Set to enable external interrupt 1.
1	ET0	Timer 0 overflow interrupt Enable bit Clear to disable timer 0 overflow interrupt. Set to enable timer 0 overflow interrupt.
0	EX0	External interrupt 0 Enable bit Clear to disable external interrupt 0. Set to enable external interrupt 0.

Reset Value = 0XX0 0000b Bit addressable

IP - Interrupt Priority Register (B8h)

7	6	5	5 4 3 2 1							
-	-	-	PS	PT1	PX1	РТО	PX0			
Bit Number	Bit Mnemonic		Description							
7	-	Reserved The value read t	from this bit is inde	eterminate. Do not s	set this bit.					
6	-	Reserved The value read t	from this bit is inde	eterminate. Do not s	set this bit.					
5	-	Reserved The value read t	from this bit is inde	eterminate. Do not s	set this bit.					
4	PS	Serial port Priority Refer to PSH fo								
3	PT1	Timer 1 overflow in Refer to PT1H 1	nterrupt Priority I for priority level.	bit						
2	PX1	External interrupt Refer to PX1H	1 Priority bit for priority level.							
1	PT0		Timer 0 overflow interrupt Priority bit Refer to PT0H for priority level.							
0	PX0		External interrupt 0 Priority bit Refer to PX0H for priority level.							

Reset Value = XXX0 0000b Bit addressable

Table 10. IPH Register

IPH - Interrupt Priority High Register (B7h)

7	6	5	4	3	2	1	0
-	-	-	PSH	PT1H	PX1H	РТОН	РХОН

Bit Number	Bit Mnemonic			Description						
7	-	Reserved The value read f	eserved The value read from this bit is indeterminate. Do not set this bit.							
6	-	Reserved The value read f	eserved The value read from this bit is indeterminate. Do not set this bit.							
5	-	Reserved The value read f	rom this bit is inde	terminate. Do not set this	bit.					
4	PSH	Serial port Priority <u>PSH</u> 0 1 1 1	High bit PS 0 1 0 1	<u>Priority Level</u> Lowest Highest						
3	PT1H	Timer 1 overflow in PT1H 0 1 1	iterrupt Priority I <u>PT1</u> 0 1 0 1	Jigh bit <u>Priority Level</u> Lowest Highest						
2	PX1H	External interrupt <u>PX1H</u> 0 0 1 1	1 Priority High bi <u>PX1</u> 0 1 0 1 1	t <u>Priority Level</u> Lowest Highest						
1	РТОН	Timer 0 overflow in <u>PT0H</u> 0 0 1 1 1	tterrupt Priority I <u>PTO</u> 0 1 0 1 1	Fligh bit <u>Priority Level</u> Lowest Highest						
0	РХОН	External interrupt <u>PX0H</u> 0 1 1 1	0 Priority High bi <u>PX0</u> 0 1 0 1	t <u>Priority Level</u> Lowest Highest						

Reset Value = XXX0 0000b Not bit addressable

7.3 DC Parameters for Standard Voltage

 $\begin{array}{l} TA = 0^{\circ}C \mbox{ to } +70^{\circ}C; \mbox{ } V_{SS} = 0 \mbox{ } V; \mbox{ } V_{CC} = 5 \mbox{ } V \pm 10\%; \mbox{ } F = 0 \mbox{ to } 40 \mbox{ } MHz. \\ TA = -40^{\circ}C \mbox{ to } +85^{\circ}C; \mbox{ } V_{SS} = 0 \mbox{ } V; \mbox{ } V_{CC} = 5 \mbox{ } V \pm 10\%; \mbox{ } F = 0 \mbox{ to } 40 \mbox{ } MHz. \\ \end{array}$

Table 14.	DC	Parameters	in	Standard	Voltage
-----------	----	-------------------	----	----------	---------

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V _{IL}	Input Low Voltage	-0.5		0.2 V _{CC} - 0.1	v	
V _{IH}	Input High Voltage except XTAL1, RST	0.2 V _{CC} + 0.9		V _{CC} + 0.5	v	
V _{IH1}	Input High Voltage, XTAL1, RST	0.7 V _{CC}		V _{CC} + 0.5	v	
V _{OL}	Output Low Voltage, ports 1, 2, 3 ⁽⁶⁾			0.3 0.45 1.0	V V V	$I_{OL} = 100 \ \mu A^{(4)}$ $I_{OL} = 1.6 \ m A^{(4)}$ $I_{OL} = 3.5 \ m A^{(4)}$
V _{OL1}	Output Low Voltage, port 0 ⁽⁶⁾			0.3 0.45 1.0	V V V	$I_{OL} = 200 \ \mu A^{(4)}$ $I_{OL} = 3.2 \ m A^{(4)}$ $I_{OL} = 7.0 \ m A^{(4)}$
V _{OL2}	Output Low Voltage, ALE, PSEN			0.3 0.45 1.0	V V V	$I_{OL} = 100 \ \mu A^{(4)}$ $I_{OL} = 1.6 \ m A^{(4)}$ $I_{OL} = 3.5 \ m A^{(4)}$
V _{OH}	Output High Voltage, ports 1, 2, 3	$V_{CC} - 0.3$ $V_{CC} - 0.7$ $V_{CC} - 1.5$			V V V	$\begin{split} I_{OH} &= -10 \; \mu A \\ I_{OH} &= -30 \; \mu A \\ I_{OH} &= -60 \; \mu A \\ V_{CC} &= 5 \; V \pm 10\% \end{split}$
V _{OH1}	Output High Voltage, port 0	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			V V V	$I_{OH} = -200 \ \mu A$ $I_{OH} = -3.2 \ m A$ $I_{OH} = -7.0 \ m A$ $V_{CC} = 5 \ V \pm 10\%$
V _{OH2}	Output High Voltage, ALE, PSEN	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			V V V	$I_{OH} = -100 \ \mu A$ $I_{OH} = -1.6 \ m A$ $I_{OH} = -3.5 \ m A$ $V_{CC} = 5 \ V \pm 10\%$
R _{RST}	RST Pulldown Resistor	50	90 ⁽⁵⁾	200	kΩ	
I _{IL}	Logical 0 Input Current ports 1, 2 and 3			-50	μΑ	Vin = 0.45 V
I _{LI}	Input Leakage Current			±10	μΑ	0.45 V < Vin < V _{CC}
I _{TL}	Logical 1 to 0 Transition Current, ports 1, 2, 3			-650	μΑ	Vin = 2.0 V
C _{IO}	Capacitance of I/O Buffer			10	pF	Fc = 1 MHz $TA = 25^{\circ}C$
I _{PD}	Power Down Current		20 ⁽⁵⁾	50	μΑ	$2.0 \text{ V} < \text{V}_{\text{CC}} < 5.5 \text{ V}^{(3)}$
I _{CC} under RESET	Power Supply Current Maximum values, X1 mode: ⁽⁷⁾			1 + 0.4 Freq (MHz) @12MHz 5.8 @16MHz 7.4	mA	$V_{CC} = 5.5 V^{(1)}$

7.5 AC Parameters

7.5.1 Explanation of the AC Symbols

Each timing symbol has 5 characters. The first character is always a "T" (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

Example: T_{AVLL} = Time for Address Valid to ALE Low. T_{LLPL} = Time for ALE Low to PSEN Low.

TA = 0 to +70°C (commercial temperature range); $V_{SS} = 0$ V; $V_{CC} = 5$ V ± 10%; -M and -V ranges. TA = -40°C to +85°C (industrial temperature range); $V_{SS} = 0$ V; $V_{CC} = 5$ V ± 10%; -M and -V ranges. TA = 0 to +70°C (commercial temperature range); $V_{SS} = 0$ V; 2.7 V < $V_{CC} < 5.5$ V; -L range. TA = -40°C to +85°C (industrial temperature range); $V_{SS} = 0$ V; 2.7 V < $V_{CC} < 5.5$ V; -L range.

Table 16. gives the maximum applicable load capacitance for Port 0, Port 1, 2 and 3, and ALE and $\overline{\text{PSEN}}$ signals. Timings will be guaranteed if these capacitances are respected. Higher capacitance values can be used, but timings will then be degraded.

	-M	-V	-L
Port 0	100	50	100
Port 1, 2, 3	80	50	80
ALE / PSEN	100	30	100

Table 16.	Load	Capacitance	versus	speed	range.	in	рF
		Capacita in the second		Spece.			r-

Table 18., Table 21. and Table 24. give the description of each AC symbols.

Table 19., Table 22. and Table 25. give for each range the AC parameter.

Table 20., Table 23. and Table 26. give the frequency derating formula of the AC parameter. To calculate each AC symbols, take the x value corresponding to the speed grade you need (-M, -V or -L) and replace this value in the formula. Values of the frequency must be limited to the corresponding speed grade:

Table 17. Max frequency for derating formula regarding the speed grade

	-M X1 mode	-M X2 mode	-V X1 mode	-V X2 mode	-L X1 mode	-L X2 mode
Freq (MHz)	40	20	40	30	30	20
T (ns)	25	50	25	33.3	33.3	50

Example:

 T_{LLIV} in X2 mode for a -V part at 20 MHz (T = $1/20^{E6}$ = 50 ns):

x= 25 (Table 20.)

T = 50 ns

 $T_{LLIV} = 2T - x = 2 \times 50 - 25 = 75$ ns

7.5.4 External Data Memory Characteristics

Table 21. Symbol Description

Symbol	Parameter
T _{RLRH}	RD Pulse Width
T _{WLWH}	WR Pulse Width
T _{RLDV}	RD to Valid Data In
T _{RHDX}	Data Hold After RD
T _{RHDZ}	Data Float After RD
T _{LLDV}	ALE to Valid Data In
T _{AVDV}	Address to Valid Data In
T _{LLWL}	ALE to WR or RD
T _{AVWL}	Address to WR or RD
T _{QVWX}	Data Valid to WR Transition
T _{QVWH}	Data set-up to WR High
T _{WHQX}	Data Hold After WR
T _{RLAZ}	RD Low to Address Float
T _{WHLH}	RD or WR High to ALE high

7.5.6 External Data Memory Read Cycle

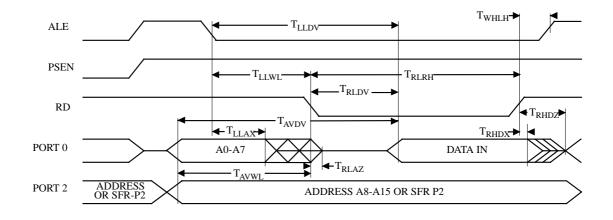


Figure 16. External Data Memory Read Cycle

7.5.7 Serial Port Timing - Shift Register Mode

Table 24. Symbol Description

Symbol	Parameter
T _{XLXL}	Serial port clock cycle time
T _{QVHX}	Output data set-up to clock rising edge
T _{XHQX}	Output data hold after clock rising edge
T _{XHDX}	Input data hold after clock rising edge
T _{XHDV}	Clock rising edge to input data valid

Table 25. AC Parameters for a Fix Clock

Speed	-M 40 MHz		X2 r 30 N	V node AHz z equiv.	standar	V rd mode ⁄IHz	X2 n 20 N	L node ⁄IHz z equiv.	standar	L d mode ⁄IHz	Units
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
T _{XLXL}	300		200		300		300		400		ns
T _{QVHX}	200		117		200		200		283		ns
T _{XHQX}	30		13		30		30		47		ns
T _{XHDX}	0		0		0		0		0		ns
T _{XHDV}		117		34		117		117		200	ns

Symbol	Туре	Standard Clock	X2 Clock	-М	-V	-L	Units
T _{XLXL}	Min	12 T	6 T				ns
T _{QVHX}	Min	10 T - x	5 T - x	50	50	50	ns
T _{XHQX}	Min	2 T - x	T - x	20	20	20	ns
T _{XHDX}	Min	х	х	0	0	0	ns
T _{XHDV}	Max	10 T - x	5 T- x	133	133	133	ns

 Table 26. AC Parameters for a Variable Clock: derating formula

7.5.8 Shift Register Timing Waveforms

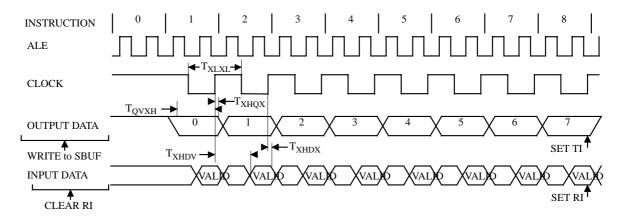


Figure 17. Shift Register Timing Waveforms

8. Ordering Information

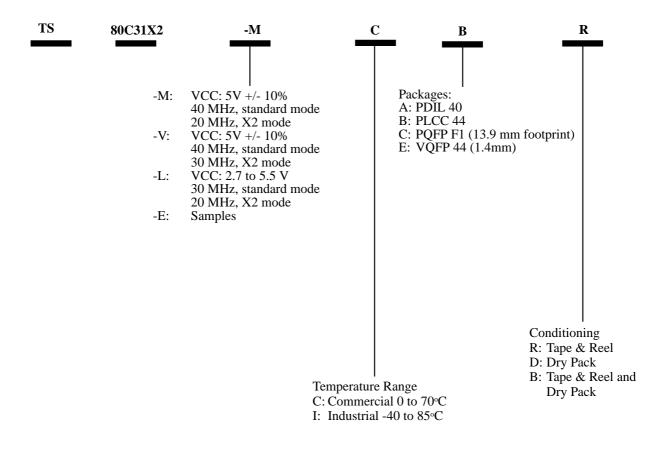


Table 28. Maximum Clock Frequency

Code	-M	-V	-L	Unit
Standard Mode, oscillator frequency	40	40	30	MHz
Standard Mode, internal frequency	40	40	30	
X2 Mode, oscillator frequency	20	30	20	MHz
X2 Mode, internal equivalent frequency	40	60	40	