

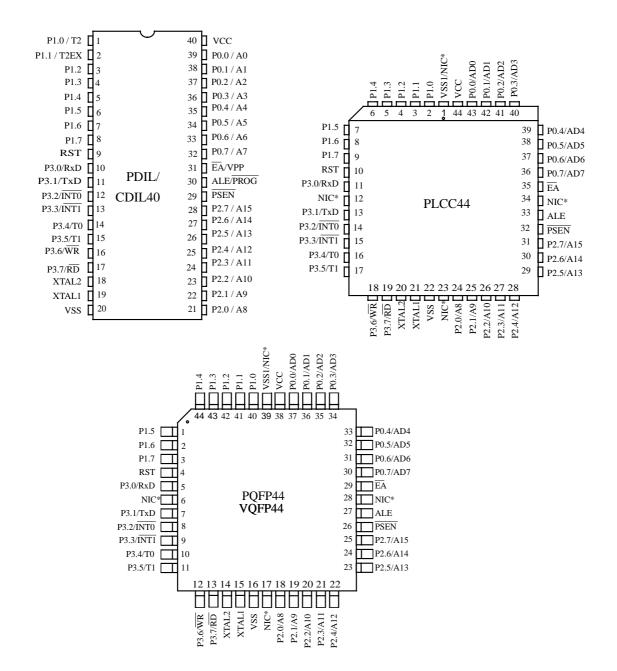
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Details	
Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	60/30MHz
Connectivity	UART/USART
Peripherals	POR
Number of I/O	32
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.6x16.6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ts80c31x2-vcb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5. Pin Configuration

*NIC: No Internal Connection

6.2 Dual Data Pointer Register Ddptr

The additional data pointer can be used to speed up code execution and reduce code size in a number of ways.

The dual DPTR structure is a way by which the chip will specify the address of an external data memory location. There are two 16-bit DPTR registers that address the external memory, and a single bit called DPS = AUXR1/bit0 (See Table 5.) that allows the program code to switch between them (Refer to Figure 3).

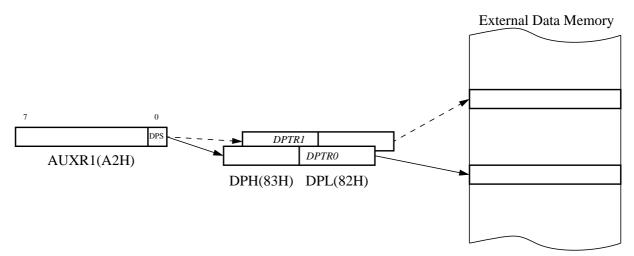


Figure 3. Use of Dual Pointer

Table 4. AUXR1: Auxiliary Register 1

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	DPS

Bit Number	Bit Mnemonic	Description						
7	-	Reserved The value read from this bit is indeterminate. Do not set this bit.						
6	-	served The value read from this bit is indeterminate. Do not set this bit.						
5	-	Reserved The value read from this bit is indeterminate. Do not set this bit.						
4	-	Reserved The value read from this bit is indeterminate. Do not set this bit.						
3	-	Reserved The value read from this bit is indeterminate. Do not set this bit.						
2	-	Reserved The value read from this bit is indeterminate. Do not set this bit.						
1	-	Reserved The value read from this bit is indeterminate. Do not set this bit.						
0	DPS	Data Pointer Selection Clear to select DPTR0. Set to select DPTR1.						

Reset Value = XXXX XXX0 Not bit addressable

Application

Software can take advantage of the additional data pointers to both increase speed and reduce code size, for example, block operations (copy, compare, search ...) are well served by using one data pointer as a 'source' pointer and the other one as a "destination" pointer.

ASSEMBLY LANGUAGE

; Block move using dual data pointers ; Destroys DPTR0, DPTR1, A and PSW ; note: DPS exits opposite of entry state ; unless an extra INC AUXR1 is added

00A2 AUXR1 EQU 0A2H 0000 909000MOV DPTR,#SOURCE : address of SOURCE 0003 05A2 INC AUXR1 ; switch data pointers 0005 90A000 MOV DPTR,#DEST ; address of DEST 0008 LOOP: 0008 05A2 INC AUXR1 ; switch data pointers ; get a byte from SOURCE 000A E0 MOVX A, @DPTR INC DPTR ; increment SOURCE address 000B A3 ; switch data pointers 000C 05A2 INC AUXR1 000E F0 MOVX @DPTR,A ; write the byte to DEST 000F A3 INC DPTR : increment DEST address 0010 70F6 JNZ LOOP ; check for 0 terminator 0012 05A2 INC AUXR1 ; (optional) restore DPS

INC is a short (2 bytes) and fast (12 clocks) way to manipulate the DPS bit in the AUXR1 SFR. However, note that the INC instruction does not directly force the DPS bit to a particular state, but simply toggles it. In simple routines, such as the block move example, only the fact that DPS is toggled in the proper sequence matters, not its actual value. In other words, the block move routine works the same whether DPS is '0' or '1' on entry. Observe that without the last instruction (INC AUXR1), the routine will exit with DPS in the opposite state.

6.3.3 Given Address

Each device has an individual address that is specified in SADDR register; the SADEN register is a mask byte that contains don't-care bits (defined by zeros) to form the device's given address. The don't-care bits provide the flexibility to address one or more slaves at a time. The following example illustrates how a given address is formed. To address a device by its individual address, the SADEN mask byte must be 1111 1111b. For example:

SADDR	0101 0110b
SADEN	<u>1111 1100b</u>
Given	0101 01XXb

The following is an example of how to use given addresses to address different slaves:

Slave A:	SADDR <u>SADEN</u> Given	1111 0001b <u>1111 1010b</u> 1111 0X0Xb
Slave B:	SADDR <u>SADEN</u> Given	1111 0011b <u>1111 1001b</u> 1111 0XX1b
Slave C:	SADDR <u>SADEN</u> Given	1111 0010b <u>1111 1101b</u> 1111 00X1b

The SADEN byte is selected so that each slave may be addressed separately.

For slave A, bit 0 (the LSB) is a don't-care bit; for slaves B and C, bit 0 is a 1. To communicate with slave A only, the master must send an address where bit 0 is clear (e.g. 1111 0000b).

For slave A, bit 1 is a 1; for slaves B and C, bit 1 is a don't care bit. To communicate with slaves B and C, but not slave A, the master must send an address with bits 0 and 1 both set (e.g. 1111 0011b).

To communicate with slaves A, B and C, the master must send an address with bit 0 set, bit 1 clear, and bit 2 clear (e.g. 1111 0001b).

6.3.4 Broadcast Address

A broadcast address is formed from the logical OR of the SADDR and SADEN registers with zeros defined as don't-care bits, e.g.:

0101 0110b
1111 1100b
1111 111Xb

The use of don't-care bits provides flexibility in defining the broadcast address, however in most applications, a broadcast address is FFh. The following is an example of using broadcast addresses:

Slave A:	SADDR <u>SADEN</u> Broadcast	1111 0001b <u>1111 1010b</u> 1111 1X11b,
Slave B:	SADDR <u>SADEN</u> Broadcast	1111 0011b <u>1111 1001b</u> 1111 1X11B,
Slave C:	SADDR= <u>SADEN</u> Broadcast	1111 0010b <u>1111 1101b</u> 1111 1111b

For slaves A and B, bit 2 is a don't care bit; for slave C, bit 2 is set. To communicate with all of the slaves, the master must send an address FFh. To communicate with slaves A and B, but not slave C, the master can send and address FBh.

6.3.5 Reset Addresses

On reset, the SADDR and SADEN registers are initialized to 00h, i.e. the given and broadcast addresses are XXXX (all don't-care bits). This ensures that the serial port will reply to any address, and so, that it is backwards compatible with the 80C51 microcontrollers that do not support automatic address recognition.

SADEN - Slave Address Mask Register (B9h)

7	6	5	4	3	2	1	0

Reset Value = 0000 0000b Not bit addressable

SADDR - Slave Address Register (A9h)

7	6	5	4	3	2	1	0

Reset Value = 0000 0000b Not bit addressable

Table 5. SCON Register

SCON - Serial Control Register (98h)

7	6	5		4	3	2	1	0
FE/SM0	SM1	SM	2	REN	TB8	RB8	TI	RI
Bit Number	Bit Mnemonic				Descrip	otion		
7	FE	Set by ha	reset the err rdware whe	or state, not cle en an invalid st	eared by a valid sto op bit is detected. ss to the FE bit	op bit.		
	SM0		SM1 for ser	ial port mode a ared to enable	selection. access to the SM0	bit		
		Serial port M	fode bit 1 SM1	Mada	Decorinti	on Baud Rat		
6	SM1	0 0 1 1	0 1 0 1	<u>Mode</u> 0 1 2 3	Descripti Shift Reg 8-bit UA 9-bit UA 9-bit UA	ister F _{XTAL} / RT Variabl RT F _{XTAL} /	– 12 (/6 in X2 mode) e 64 or F _{XTAL} /32 (/32	
5	SM2	Clear to o Set to ena	disable mult	tiprocessor con ocessor comm	cessor Communic nmunication featur unication feature in	re.	d eventually mode	1. This bit should
4	REN			al reception.				
3	TB8	Clear to t	ransmit a lo	h bit to trans ogic 0 in the 9t ic 1 in the 9th l	mit in modes 2 an h bit. pit.	d 3.		
2	RB8	Cleared b Set by ha	y hardware rdware if 9	if 9th bit receith bit receith	modes 2 and 3 ived is a logic 0. is a logic 1. received stop bit. I	n mode 0 RB8 is 1	not used.	
1	TI	Transmit Int Clear to a Set by ha modes.	acknowledg	e interrupt.	th bit time in mode	e 0 or at the begin	ning of the stop bit	in the other
0	RI		acknowledg		th bit time in mode	e 0, see Figure 5.	and Figure 6. in the	e other modes.

Reset Value = 0000 0000b Bit addressable

Table 6. PCON Register

PCON - Power Control Register (87h)

7	6	5	4	3	2	1	0	
SMOD1	SMOD	-	POF	GF1	GF0	PD	IDL	
Bit Number	Bit Mnemonic		Description					
7	SMOD1		erial port Mode bit 1 Set to select double baud rate in mode 1, 2 or 3.					
6	SMOD0	Clear to select S	erial port Mode bit 0 Clear to select SM0 bit in SCON register. Set to to select FE bit in SCON register.					
5	-	Reserved The value read f	Reserved The value read from this bit is indeterminate. Do not set this bit.					
4	POF		Power-Off Flag Clear to recognize next reset type. Set by hardware when VCC rises from 0 to its nominal voltage. Can also be set by software.					
3	GF1	Cleared by user	General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage.					
2	GF0	Cleared by user	General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage.					
1	PD	Cleared by hard	Power-Down mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.					
0	IDL	Idle mode bit Clear by hardwa Set to enter idle	re when interrupt mode.	or reset occurs.				

Reset Value = 00X1 0000b Not bit addressable

Power-off flag reset value will be 1 only after a power on (cold reset). A warm reset doesn't affect the value of this bit.

IP - Interrupt Priority Register (B8h)

7	6	5	4	3	2	1	0
-	-	-	PS	PT1	PX1	РТО	PX0
Bit Number	Bit Mnemonic	Description					
7	-	Reserved The value read from this bit is indeterminate. Do not set this bit.					
6	-	Reserved The value read t	Reserved The value read from this bit is indeterminate. Do not set this bit.				
5	-	Reserved The value read from this bit is indeterminate. Do not set this bit.					
4	PS		Serial port Priority bit Refer to PSH for priority level.				
3	PT1		Timer 1 overflow interrupt Priority bit Refer to PT1H for priority level.				
2	PX1		External interrupt 1 Priority bit Refer to PX1H for priority level.				
1	PT0		Timer 0 overflow interrupt Priority bit Refer to PT0H for priority level.				
0	PX0	External interrupt Refer to PX0H	0 Priority bit for priority level.				

Reset Value = XXX0 0000b Bit addressable

Table 10. IPH Register

IPH - Interrupt Priority High Register (B7h)

7	6	5	4	3	2	1	0
-	-	-	PSH	PT1H	PX1H	РТОН	РХОН

Bit Number	Bit Mnemonic	Description								
7	-	Reserved The value read f	Reserved The value read from this bit is indeterminate. Do not set this bit.							
6	-	Reserved The value read f	Reserved The value read from this bit is indeterminate. Do not set this bit.							
5	-	Reserved The value read f	rom this bit is inde	terminate. Do not set this	bit.					
4	PSH	Serial port Priority <u>PSH</u> 0 1 1 1	High bit PS 0 1 0 1	<u>Priority Level</u> Lowest Highest						
3	PT1H	Timer 1 overflow in PT1H 0 1 1	iterrupt Priority I <u>PT1</u> 0 1 0 1	Jigh bit <u>Priority Level</u> Lowest Highest						
2	PX1H	External interrupt <u>PX1H</u> 0 0 1 1	1 Priority High bi <u>PX1</u> 0 1 0 1 1	t <u>Priority Level</u> Lowest Highest						
1	РТОН	Timer 0 overflow in <u>PT0H</u> 0 0 1 1 1	tterrupt Priority I <u>PTO</u> 0 1 0 1 1	Fligh bit <u>Priority Level</u> Lowest Highest						
0	РХОН	External interrupt 0 Priority High bit Piority Level 0 0 Lowest 0 1 1 1 0 1 1 1 Highest								

Reset Value = XXX0 0000b Not bit addressable

6.5 Idle mode

An instruction that sets PCON.0 causes that to be the last instruction executed before going into the Idle mode. In the Idle mode, the internal clock signal is gated off to the CPU, but not to the interrupt, Timer, and Serial Port functions. The CPU status is preserved in its entirely : the Stack Pointer, Program Counter, Program Status Word, Accumulator and all other registers maintain their data during Idle. The port pins hold the logical states they had at the time Idle was activated. ALE and PSEN hold at logic high levels.

There are two ways to terminate the Idle. Activation of any enabled interrupt will cause PCON.0 to be cleared by hardware, terminating the Idle mode. The interrupt will be serviced, and following RETI the next instruction to be executed will be the one following the instruction that put the device into idle.

The flag bits GF0 and GF1 can be used to give and indication if an interrupt occured during normal operation or during an Idle. For example, an instruction that activates Idle can also set one or both flag bits. When Idle is terminated by an interrupt, the interrupt service routine can examine the flag bits.

The over way of terminating the Idle mode is with a hardware reset. Since the clock oscillator is still running, the hardware reset needs to be held active for only two machine cycles (24 oscillator periods) to complete the reset.

6.6 Power-Down Mode

To save maximum power, a power-down mode can be invoked by software (Refer to Table 6., PCON register).

In power-down mode, the oscillator is stopped and the instruction that invoked power-down mode is the last instruction executed. The internal RAM and SFRs retain their value until the power-down mode is terminated. V_{CC} can be lowered to save further power. Either a hardware reset or an external interrupt can cause an exit from power-down. To properly terminate power-down, the reset or external interrupt should not be executed before V_{CC} is restored to its normal operating level and must be held active long enough for the oscillator to restart and stabilize.

Only external interrupts $\overline{INT0}$ and $\overline{INT1}$ are useful to exit from power-down. For that, interrupt must be enabled and configured as level or edge sensitive interrupt input.

Holding the pin low restarts the oscillator but bringing the pin high completes the exit as detailed in Figure 8. When both interrupts are enabled, the oscillator restarts as soon as one of the two inputs is held low and power down exit will be completed when the first input will be released. In this case the higher priority interrupt service routine is executed.

Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction that put TS80C31X2 into power-down mode.

Figure 8. Power-Down Exit Waveform

Exit from power-down by reset redefines all the SFRs, exit from power-down by external interrupt does no affect the SFRs.

Exit from power-down by either reset or external interrupt does not affect the internal RAM content. NOTE: If idle mode is activated with power-down mode (IDL and PD bits set), the exit sequence is unchanged, when execution is vectored to interrupt, PD and IDL bits are cleared and idle mode is not entered.

6.8 Power-Off Flag

The power-off flag allows the user to distinguish between a "cold start" reset and a "warm start" reset.

A cold start reset is the one induced by V_{CC} switch-on. A warm start reset occurs while V_{CC} is still applied to the device and could be generated for example by an exit from power-down.

The power-off flag (POF) is located in PCON register (See Table 13.). POF is set by hardware when V_{CC} rises from 0 to its nominal voltage. The POF can be set or cleared by software allowing the user to determine the type of reset.

The POF value is only relevant with a Vcc range from 4.5V to 5.5V. For lower Vcc value, reading POF bit will return indeterminate value.

Table 13. PCON Register

PCON - Power Control Register (87h)

7	6	5	5 4 3 2 1									
SMOD1	SMOD		POF	GF1	GF0	PD	IDL					
Bit Number	Bit Mnemonic	Description										
7	SMOD1	Serial port Mode bi Set to select dou	Serial port Mode bit 1 Set to select double baud rate in mode 1, 2 or 3.									
6	SMOD0	Clear to select S	Serial port Mode bit 0 Clear to select SM0 bit in SCON register. Set to to select FE bit in SCON register.									
5	-	Reserved The value read f	Reserved The value read from this bit is indeterminate. Do not set this bit.									
4	POF		Power-Off Flag Clear to recognize next reset type. Set by hardware when V _{CC} rises from 0 to its nominal voltage. Can also be set by software.									
3	GF1	Cleared by user	General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage.									
2	GF0	General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage.										
1	PD	Power-Down mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.										
0	IDL	Idle mode bit Clear by hardware when interrupt or reset occurs. Set to enter idle mode.										

Reset Value = 00X1 0000b Not bit addressable

7. Electrical Characteristics

7.1 Absolute Maximum Ratings ⁽¹⁾

Ambiant Temperature Under Bias:	
C = commercial	0°C to 70°C
I = industrial	-40°C to 85°C
Storage Temperature	$-65^{\circ}C$ to $+ 150^{\circ}C$
Voltage on V _{CC} to V _{SS}	-0.5 V to + 7 V
Voltage on V_{PP} to V_{SS}	-0.5 V to + 13 V
Voltage on Any Pin to V _{SS}	-0.5 V to V_{CC} + 0.5 V
Power Dissipation	$1 W^{(2)}$

NOTES

1. Stresses at or above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

2. This value is based on the maximum allowable die temperature and the thermal resistance of the package.

7.2 Power consumption measurement

Since the introduction of the first C51 devices, every manufacturer made operating Icc measurements under reset, which made sense for the designs were the CPU was running under reset. In Atmel Wireless & Microcontrollers new devices, the CPU is no more active during reset, so the power consumption is very low but is not really representative of what will happen in the customer system. That's why, while keeping measurements under Reset, Atmel Wireless & Microcontrollers presents a new way to measure the operating Icc:

Using an internal test ROM, the following code is executed:

Label: SJMP Label (80 FE)

Ports 1, 2, 3 are disconnected, Port 0 is tied to FFh, EA = Vcc, RST = Vss, XTAL2 is not connected and XTAL1 is driven by the clock.

This is much more representative of the real operating Icc.

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
I _{CC} idle	Power Supply Current Maximum values, X1 mode: ⁽⁷⁾			0.15 Freq (MHz) + 0.2 @12MHz 2 @16MHz 2.6	mA	$V_{\rm CC} = 3.3 \ V^{(2)}$

NOTES

1. I_{CC} under reset is measured with all output pins disconnected; XTAL1 driven with T_{CLCH} , $T_{CHCL} = 5$ ns (see Figure 13.), $V_{IL} = V_{SS} + 0.5$ V, $V_{IH} = V_{CC} - 0.5$ V; XTAL2 N.C.; $\overline{EA} = RST = Port 0 = V_{CC}$. I_{CC} would be slightly higher if a crystal oscillator used.

2. Idle I_{CC} is measured with all output pins disconnected; XTAL1 driven with T_{CLCH} , $T_{CHCL} = 5$ ns, $V_{IL} = V_{SS} + 0.5$ V, $V_{IH} = V_{CC} - 0.5$ V; XTAL2 N.C; Port $0 = V_{CC}$; $\overline{EA} = RST = V_{SS}$ (see Figure 11.).

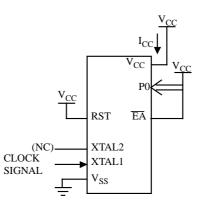
3. Power Down I_{CC} is measured with all output pins disconnected; $\overline{EA} = V_{SS}$, PORT $0 = V_{CC}$; XTAL2 NC.; RST = V_{SS} (see Figure 12.).

4. Capacitance loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the V_{OL} s of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1 to 0 transitions during bus operation. In the worst cases (capacitive loading 100pF), the noise pulse on the ALE line may exceed 0.45V with maxi V_{OL} peak 0.6V. A Schmitt Trigger use is not necessary.

5. Typicals are based on a limited number of samples and are not guaranteed. The values listed are at room temperature and 5V.

6. Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows:

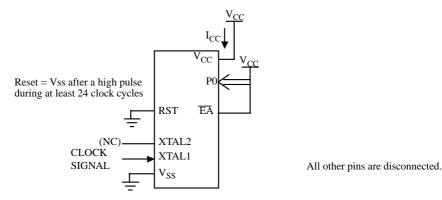
Maximum I_{OL} per port pin: 10 mA Maximum I_{OL} per 8-bit port:

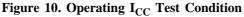

Port 0: 26 mA

Ports 1, 2 and 3: 15 mA Maximum total I_{OL} for all output pins: 71 mA

If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions. 7. For other values, please contact your sales office.

8. Operating I_{CC} is measured with all output pins disconnected; XTAL1 driven with T_{CLCH} , $T_{CHCL} = 5$ ns (see Figure 13.), $V_{IL} = V_{SS} + 0.5$ V,


 $V_{IH} = V_{CC} - 0.5V$; XTAL2 N.C.; $\overline{EA} = Port \ 0 = V_{CC}$; RST = V_{SS} . The internal ROM runs the code 80 FE (label: SJMP label). I_{CC} would be slightly higher if a crystal oscillator is used. Measurements are made with OTP products when possible, which is the worst case.



All other pins are disconnected.

Figure 9. I_{CC} Test Condition, under reset

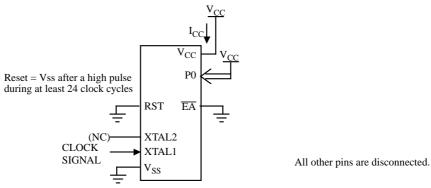


Figure 11. I_{CC} Test Condition, Idle Mode

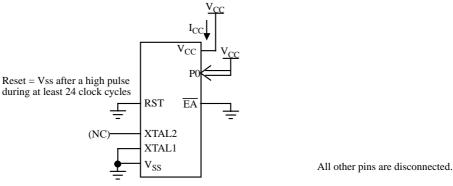


Figure 12. I_{CC} Test Condition, Power-Down Mode

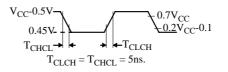


Figure 13. Clock Signal Waveform for $I_{\mbox{\scriptsize CC}}$ Tests in Active and Idle Modes

7.5.2 External Program Memory Characteristics

Symbol	Parameter
Т	Oscillator clock period
T _{LHLL}	ALE pulse width
T _{AVLL}	Address Valid to ALE
T _{LLAX}	Address Hold After ALE
T _{LLIV}	ALE to Valid Instruction In
T _{LLPL}	ALE to PSEN
T _{PLPH}	PSEN Pulse Width
T _{PLIV}	PSEN to Valid Instruction In
T _{PXIX}	Input Instruction Hold After PSEN
T _{PXIZ}	Input Instruction FloatAfter PSEN
T _{PXAV}	PSEN to Address Valid
T _{AVIV}	Address to Valid Instruction In
T _{PLAZ}	PSEN Low to Address Float

Table 19. AC Parameters for F	Fix Clock
-------------------------------	-----------

Speed		M MHz	X2 n 30 N	V node ⁄IHz z equiv.	-V standard mode 40 MHz		-L X2 mode 20 MHz 40 MHz equiv.		-L standard mode 30 MHz		Units
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Т	25		33		25		50		33		ns
T _{LHLL}	40		25		42		35		52		ns
T _{AVLL}	10		4		12		5		13		ns
T _{LLAX}	10		4		12		5		13		ns
T _{LLIV}		70		45		78		65		98	ns
T _{LLPL}	15		9		17		10		18		ns
T _{PLPH}	55		35		60		50		75		ns
T _{PLIV}		35		25		50		30		55	ns
T _{PXIX}	0		0		0		0		0		ns
T _{PXIZ}		18		12		20		10		18	ns
T _{AVIV}		85		53		95		80		122	ns
T _{PLAZ}		10		10		10		10		10	ns

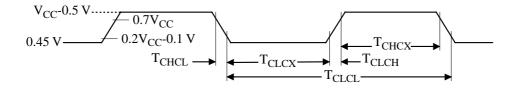
7.5.4 External Data Memory Characteristics

Table 21. Symbol Description

Symbol	Parameter
T _{RLRH}	RD Pulse Width
T _{WLWH}	WR Pulse Width
T _{RLDV}	RD to Valid Data In
T _{RHDX}	Data Hold After RD
T _{RHDZ}	Data Float After RD
T _{LLDV}	ALE to Valid Data In
T _{AVDV}	Address to Valid Data In
T _{LLWL}	ALE to WR or RD
T _{AVWL}	Address to WR or RD
T _{QVWX}	Data Valid to WR Transition
T _{QVWH}	Data set-up to WR High
T _{WHQX}	Data Hold After WR
T _{RLAZ}	RD Low to Address Float
T _{WHLH}	RD or WR High to ALE high

Speed		M MHz	X2 1 30 M	V node MHz z equiv.	-V standard mode 40 MHz		-L K2 mode 20 MHz 40 MHz equiv.		-L standard mode 30 MHz		Units
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
T _{RLRH}	130		85		135		125		175		ns
T _{WLWH}	130		85		135		125		175		ns
T _{RLDV}		100		60		102		95		137	ns
T _{RHDX}	0		0		0		0		0		ns
T _{RHDZ}		30		18		35		25		42	ns
T _{LLDV}		160		98		165		155		222	ns
T _{AVDV}		165		100		175		160		235	ns
T _{LLWL}	50	100	30	70	55	95	45	105	70	130	ns
T _{AVWL}	75		47		80		70		103		ns
T _{QVWX}	10		7		15		5		13		ns
T _{QVWH}	160		107		165		155		213		ns
T _{WHQX}	15		9		17		10		18		ns
T _{RLAZ}		0		0		0		0		0	ns
T _{WHLH}	10	40	7	27	15	35	5	45	13	53	ns

Table 22. AC Parameters for a Fix Clock



7.5.9 External Clock Drive Characteristics (XTAL1)

Table	27.	AC	Parameters
-------	-----	----	------------

Symbol	Parameter	Min	Max	Units
T _{CLCL}	Oscillator Period	25		ns
T _{CHCX}	High Time	5		ns
T _{CLCX}	Low Time	5		ns
T _{CLCH}	Rise Time		5	ns
T _{CHCL}	Fall Time		5	ns
T _{CHCX} /T _{CLCX}	Cyclic ratio in X2 mode	40	60	%

7.5.10 External Clock Drive Waveforms

Figure 18. External Clock Drive Waveforms

7.5.11 AC Testing Input/Output Waveforms



Figure 19. AC Testing Input/Output Waveforms

AC inputs during testing are driven at V_{CC} - 0.5 for a logic "1" and 0.45V for a logic "0". Timing measurement are made at V_{IH} min for a logic "1" and V_{IL} max for a logic "0".

7.5.12 Float Waveforms

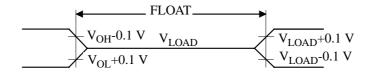


Figure 20. Float Waveforms

8. Ordering Information

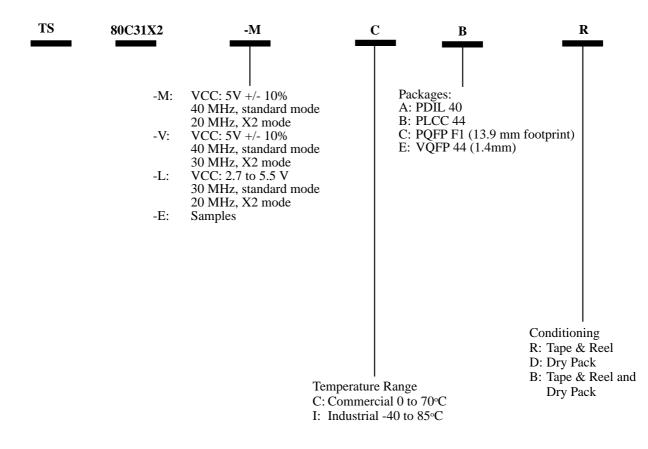


Table 28. Maximum Clock Frequency

Code	-M	-V	-L	Unit
Standard Mode, oscillator frequency	40	40	30	MHz
Standard Mode, internal frequency	40	40	30	
X2 Mode, oscillator frequency	20	30	20	MHz
X2 Mode, internal equivalent frequency	40	60	40	