E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	60/30MHz
Connectivity	UART/USART
Peripherals	POR
Number of I/O	32
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-VQFP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ts80c31x2-vce

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4. SFR Mapping

The Special Function Registers (SFRs) of the TS80C31X2 fall into the following categories:

- C51 core registers: ACC, B, DPH, DPL, PSW, SP, AUXR1
- I/O port registers: P0, P1, P2, P3
- Timer registers: TCON, TH0, TH1, TMOD, TL0, TL1
- Serial I/O port registers: SADDR, SADEN, SBUF, SCON
- Power and clock control registers: PCON
- Interrupt system registers: IE, IP, IPH
- Others: CKCON

Table 1. All SFRs with their address and their reset value

	Bit address- able			Non	n Bit address	able			
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	
F8h									FFh
F0h	B 0000 0000								F7h
E8h									EFh
E0h	ACC 0000 0000								E7h
D8h									DFh
D0h	PSW 0000 0000								D7h
C8h									CFh
C0h									C7h
B8h	IP XXX0 0000	SADEN 0000 0000							BFh
B0h	P3 1111 1111							IPH XXX0 0000	B7h
A8h	IE 0XX0 0000	SADDR 0000 0000							AFh
A0h	P2 1111 1111		AUXR1 XXXX XXX0						A7h
98h	SCON 0000 0000	SBUF XXXX XXXX							9Fh
90h	P1 1111 1111								97h
88h	TCON 0000 0000	TMOD 0000 0000	TL0 0000 0000	TL1 0000 0000	TH0 0000 0000	TH1 0000 0000		CKCON XXXX XXX0	8Fh
80h	P0 1111 1111	SP 0000 0111	DPL 0000 0000	DPH 0000 0000				PCON 00X1 0000	87h
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	

reserved

6. TS80C31X2 Enhanced Features

In comparison to the original 80C31, the TS80C31X2 implements some new features, which are:

- The X2 option.
- The Dual Data Pointer.
- The 4 level interrupt priority system.
- The power-off flag.
- The ONCE mode.
- Enhanced UART

6.1 X2 Feature

The TS80C31X2 core needs only 6 clock periods per machine cycle. This feature called "X2" provides the following advantages:

- Divide frequency crystals by 2 (cheaper crystals) while keeping same CPU power.
- Save power consumption while keeping same CPU power (oscillator power saving).
- Save power consumption by dividing dynamically operating frequency by 2 in operating and idle modes.
- Increase CPU power by 2 while keeping same crystal frequency.

In order to keep the original C51 compatibility, a divider by 2 is inserted between the XTAL1 signal and the main clock input of the core (phase generator). This divider may be disabled by software.

6.1.1 Description

The clock for the whole circuit and peripheral is first divided by two before being used by the CPU core and peripherals. This allows any cyclic ratio to be accepted on XTAL1 input. In X2 mode, as this divider is bypassed, the signals on XTAL1 must have a cyclic ratio between 40 to 60%. Figure 1. shows the clock generation block diagram. X2 bit is validated on XTAL1+2 rising edge to avoid glitches when switching from X2 to STD mode. Figure 2. shows the mode switching waveforms.

Figure 2. Mode Switching Waveforms

The X2 bit in the CKCON register (See Table 3.) allows to switch from 12 clock cycles per instruction to 6 clock cycles and vice versa. At reset, the standard speed is activated (STD mode). Setting this bit activates the X2 feature (X2 mode).

CAUTION

In order to prevent any incorrect operation while operating in X2 mode, user must be aware that all peripherals using clock frequency as time reference (UART, timers) will have their time reference divided by two. For example a free running timer generating an interrupt every 20 ms will then generate an interrupt every 10 ms. UART with 4800 baud rate will have 9600 baud rate.

Table 3. CKCON Register

CKCON - Clock Control Register (8Fh)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	X2

Bit Number	Bit Mnemonic	Description
7	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
6	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
5	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
4	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
3	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
2	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
1	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
0	X2	CPU and peripheral clock bit Clear to select 12 clock periods per machine cycle (STD mode, $F_{OSC}=F_{XTAL}/2$). Set to select 6 clock periods per machine cycle (X2 mode, $F_{OSC}=F_{XTAL}$).

Reset Value = XXXX XXX0b Not bit addressable

For further details on the X2 feature, please refer to ANM072 available on the web (http://www.atmel-wm.com)

6.2 Dual Data Pointer Register Ddptr

The additional data pointer can be used to speed up code execution and reduce code size in a number of ways.

The dual DPTR structure is a way by which the chip will specify the address of an external data memory location. There are two 16-bit DPTR registers that address the external memory, and a single bit called DPS = AUXR1/bit0 (See Table 5.) that allows the program code to switch between them (Refer to Figure 3).

Figure 3. Use of Dual Pointer

Table 4. AUXR1: Auxiliary Register 1

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	DPS

Bit Number	Bit Mnemonic	Description
7	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
6	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
5	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
4	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
3	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
2	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
1	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
0	DPS	Data Pointer Selection Clear to select DPTR0. Set to select DPTR1.

Reset Value = XXXX XXX0 Not bit addressable

Application

Software can take advantage of the additional data pointers to both increase speed and reduce code size, for example, block operations (copy, compare, search ...) are well served by using one data pointer as a 'source' pointer and the other one as a "destination" pointer.

6.3 TS80C31X2 Serial I/O Port

The serial I/O port in the TS80C31X2 is compatible with the serial I/O port in the 80C31.

It provides both synchronous and asynchronous communication modes. It operates as an Universal Asynchronous Receiver and Transmitter (UART) in three full-duplex modes (Modes 1, 2 and 3). Asynchronous transmission and reception can occur simultaneously and at different baud rates

Serial I/O port includes the following enhancements:

- Framing error detection
- Automatic address recognition

6.3.1 Framing Error Detection

Framing bit error detection is provided for the three asynchronous modes (modes 1, 2 and 3). To enable the framing bit error detection feature, set SMOD0 bit in PCON register (See Figure 4).

Figure 4. Framing Error Block Diagram

When this feature is enabled, the receiver checks each incoming data frame for a valid stop bit. An invalid stop bit may result from noise on the serial lines or from simultaneous transmission by two CPUs. If a valid stop bit is not found, the Framing Error bit (FE) in SCON register (See Table 5.) bit is set.

Software may examine FE bit after each reception to check for data errors. Once set, only software or a reset can clear FE bit. Subsequently received frames with valid stop bits cannot clear FE bit. When FE feature is enabled, RI rises on stop bit instead of the last data bit (See Figure 5. and Figure 6.).

Figure 6. UART Timings in Modes 2 and 3

6.3.2 Automatic Address Recognition

The automatic address recognition feature is enabled when the multiprocessor communication feature is enabled (SM2 bit in SCON register is set).

Implemented in hardware, automatic address recognition enhances the multiprocessor communication feature by allowing the serial port to examine the address of each incoming command frame. Only when the serial port recognizes its own address, the receiver sets RI bit in SCON register to generate an interrupt. This ensures that the CPU is not interrupted by command frames addressed to other devices.

If desired, you may enable the automatic address recognition feature in mode 1. In this configuration, the stop bit takes the place of the ninth data bit. Bit RI is set only when the received command frame address matches the device's address and is terminated by a valid stop bit.

To support automatic address recognition, a device is identified by a given address and a broadcast address.

NOTE: The multiprocessor communication and automatic address recognition features cannot be enabled in mode 0 (i.e. setting SM2 bit in SCON register in mode 0 has no effect).

6.3.5 Reset Addresses

On reset, the SADDR and SADEN registers are initialized to 00h, i.e. the given and broadcast addresses are XXXX (all don't-care bits). This ensures that the serial port will reply to any address, and so, that it is backwards compatible with the 80C51 microcontrollers that do not support automatic address recognition.

SADEN - Slave Address Mask Register (B9h)

7	6	5	4	3	2	1	0

Reset Value = 0000 0000b Not bit addressable

SADDR - Slave Address Register (A9h)

7	6	5	4	3	2	1	0

Reset Value = 0000 0000b Not bit addressable

6.4 Interrupt System

The TS80C31X2 has a total of 5 interrupt vectors: two external interrupts ($\overline{INT0}$ and $\overline{INT1}$), two timer interrupts (timers 0 and 1) and the serial port interrupt. These interrupts are shown in Figure 7.

Figure 7. Interrupt Control System

Each of the interrupt sources can be individually enabled or disabled by setting or clearing a bit in the Interrupt Enable register (See Table 8.). This register also contains a global disable bit, which must be cleared to disable all interrupts at once.

Each interrupt source can also be individually programmed to one out of four priority levels by setting or clearing a bit in the Interrupt Priority register (See Table 9.) and in the Interrupt Priority High register (See Table 10.). shows the bit values and priority levels associated with each combination.

Table 10. IPH Register

IPH - Interrupt Priority High Register (B7h)

7	6	5	4	3	2	1	0
-	-	-	PSH	PT1H	PX1H	РТОН	РХОН

Bit Number	Bit Mnemonic	Descri	otion			
7	-	teserved The value read from this bit is indeterminate. Do not set this bit.				
6	-	Reserved The value read from this bit is indeterminate. Do not	set this bit.			
5	-	Reserved The value read from this bit is indeterminate. Do not	set this bit.			
4	PSH	Serial port Priority High bitPSHPSPriority Level00Lowest01110111Highest				
3	PT1H	Timer 1 overflow interrupt Priority High bit PT1H PT1 Priority Level 0 0 Lowest 0 1 1 1 0 1 1 1 Highest				
2	PX1H	External interrupt 1 Priority High bitPX1HPX1Priority Level00Lowest01110111Highest				
1	РТОН	Timer 0 overflow interrupt Priority High bit PT0H PT0 Priority Level 0 0 Lowest 0 1 1 1 0 1 1 1 Highest				
0	РХ0Н	External interrupt 0 Priority High bit <u>PX0H</u> <u>PX0</u> 0 0 Lowest 0 1 1 0 1 1 Highest				

Reset Value = XXX0 0000b Not bit addressable

Mode	Program Memory	ALE	PSEN	PORT0	PORT1	PORT2	PORT3
Idle	External	1	1	Floating	Port Data	Address	Port Data
Power Down	External	0	0	Floating	Port Data	Port Data	Port Data

Table 11. The state of ports during idle and power-down modes

6.7 ONCETM Mode (ON Chip Emulation)

The ONCE mode facilitates testing and debugging of systems using TS80C31X2 without removing the circuit from the board. The ONCE mode is invoked by driving certain pins of the TS80C31X2; the following sequence must be exercised:

- Pull ALE low while the device is in reset (RST high) and $\overline{\text{PSEN}}$ is high.
- Hold ALE low as RST is deactivated.

While the TS80C31X2 is in ONCE mode, an emulator or test CPU can be used to drive the circuit Table 26. shows the status of the port pins during ONCE mode.

Normal operation is restored when normal reset is applied.

Table 12. External Pin Status during ONCE Mode

ALE	PSEN	Port 0	Port 1	Port 2	Port 3	XTAL1/2
Weak pull-up	Weak pull-up	Float	Weak pull-up	Weak pull-up	Weak pull-up	Active

7.3 DC Parameters for Standard Voltage

 $\begin{array}{l} TA = 0^{\circ}C \mbox{ to } +70^{\circ}C; \mbox{ } V_{SS} = 0 \mbox{ } V; \mbox{ } V_{CC} = 5 \mbox{ } V \pm 10\%; \mbox{ } F = 0 \mbox{ to } 40 \mbox{ } MHz. \\ TA = -40^{\circ}C \mbox{ to } +85^{\circ}C; \mbox{ } V_{SS} = 0 \mbox{ } V; \mbox{ } V_{CC} = 5 \mbox{ } V \pm 10\%; \mbox{ } F = 0 \mbox{ to } 40 \mbox{ } MHz. \\ \end{array}$

Table 14.	DC	Parameters	in	Standard	Voltage
	_				

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V _{IL}	Input Low Voltage	-0.5		0.2 V _{CC} - 0.1	v	
V _{IH}	Input High Voltage except XTAL1, RST	0.2 V _{CC} + 0.9		V _{CC} + 0.5	V	
V _{IH1}	Input High Voltage, XTAL1, RST	0.7 V _{CC}		V _{CC} + 0.5	V	
V _{OL}	Output Low Voltage, ports 1, 2, 3 ⁽⁶⁾			0.3 0.45 1.0	V V V	$I_{OL} = 100 \ \mu A^{(4)}$ $I_{OL} = 1.6 \ m A^{(4)}$ $I_{OL} = 3.5 \ m A^{(4)}$
V _{OL1}	Output Low Voltage, port 0 ⁽⁶⁾			0.3 0.45 1.0	V V V	$I_{OL} = 200 \ \mu A^{(4)}$ $I_{OL} = 3.2 \ mA^{(4)}$ $I_{OL} = 7.0 \ mA^{(4)}$
V _{OL2}	Output Low Voltage, ALE, PSEN			0.3 0.45 1.0	V V V	$I_{OL} = 100 \ \mu A^{(4)}$ $I_{OL} = 1.6 \ mA^{(4)}$ $I_{OL} = 3.5 \ mA^{(4)}$
V _{OH}	Output High Voltage, ports 1, 2, 3	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			V V V	$I_{OH} = -10 \ \mu A$ $I_{OH} = -30 \ \mu A$ $I_{OH} = -60 \ \mu A$ $V_{CC} = 5 \ V \pm 10\%$
V _{OH1}	Output High Voltage, port 0	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			V V V	$I_{OH} = -200 \ \mu A$ $I_{OH} = -3.2 \ m A$ $I_{OH} = -7.0 \ m A$ $V_{CC} = 5 \ V \pm 10\%$
V _{OH2}	Output High Voltage, ALE, PSEN	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			V V V	$I_{OH} = -100 \ \mu A$ $I_{OH} = -1.6 \ m A$ $I_{OH} = -3.5 \ m A$ $V_{CC} = 5 \ V \pm 10\%$
R _{RST}	RST Pulldown Resistor	50	90 ⁽⁵⁾	200	kΩ	
I _{IL}	Logical 0 Input Current ports 1, 2 and 3			-50	μΑ	Vin = 0.45 V
I _{LI}	Input Leakage Current			±10	μΑ	$0.45 \text{ V} < \text{Vin} < \text{V}_{\text{CC}}$
I _{TL}	Logical 1 to 0 Transition Current, ports 1, 2, 3			-650	μΑ	Vin = 2.0 V
C _{IO}	Capacitance of I/O Buffer			10	pF	$Fc = 1 MHz$ $TA = 25^{\circ}C$
I _{PD}	Power Down Current		20 (5)	50	μΑ	$2.0 \ V < V_{CC} < 5.5 \ V^{(3)}$
I _{CC} under RESET	Power Supply Current Maximum values, X1 mode: ⁽⁷⁾			1 + 0.4 Freq (MHz) @12MHz 5.8 @16MHz 7.4	mA	$V_{CC} = 5.5 V^{(1)}$

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
I _{CC} idle	Power Supply Current Maximum values, X1 mode: ⁽⁷⁾			0.15 Freq (MHz) + 0.2 @12MHz 2 @16MHz 2.6	mA	$V_{CC} = 3.3 V^{(2)}$

NOTES

1. I_{CC} under reset is measured with all output pins disconnected; XTAL1 driven with T_{CLCH} , $T_{CHCL} = 5$ ns (see Figure 13.), $V_{IL} = V_{SS} + 0.5$ V, $V_{IH} = V_{CC} - 0.5$ V; XTAL2 N.C.; $\overline{EA} = RST = Port 0 = V_{CC}$. I_{CC} would be slightly higher if a crystal oscillator used.

2. Idle I_{CC} is measured with all output pins disconnected; XTAL1 driven with T_{CLCH} , $T_{CHCL} = 5$ ns, $V_{IL} = V_{SS} + 0.5$ V, $V_{IH} = V_{CC} - 0.5$ V; XTAL2 N.C; Port $0 = V_{CC}$; $\overline{EA} = RST = V_{SS}$ (see Figure 11.).

3. Power Down I_{CC} is measured with all output pins disconnected; $\overline{EA} = V_{SS}$, PORT $0 = V_{CC}$; XTAL2 NC.; RST = V_{SS} (see Figure 12.).

4. Capacitance loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the V_{OL} s of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1 to 0 transitions during bus operation. In the worst cases (capacitive loading 100pF), the noise pulse on the ALE line may exceed 0.45V with maxi V_{OL} peak 0.6V. A Schmitt Trigger use is not necessary.

5. Typicals are based on a limited number of samples and are not guaranteed. The values listed are at room temperature and 5V.

6. Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows:

Maximum I_{OL} per port pin: 10 mA Maximum I_{OL} per 8-bit port:

Port 0: 26 mA

Ports 1, 2 and 3: 15 mA Maximum total I_{OL} for all output pins: 71 mA

If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions. 7. For other values, please contact your sales office.

8. Operating I_{CC} is measured with all output pins disconnected; XTAL1 driven with T_{CLCH} , $T_{CHCL} = 5$ ns (see Figure 13.), $V_{IL} = V_{SS} + 0.5$ V,

 $V_{IH} = V_{CC} - 0.5V$; XTAL2 N.C.; $\overline{EA} = Port \ 0 = V_{CC}$; RST = V_{SS} . The internal ROM runs the code 80 FE (label: SJMP label). I_{CC} would be slightly higher if a crystal oscillator is used. Measurements are made with OTP products when possible, which is the worst case.

All other pins are disconnected.

Figure 9. I_{CC} Test Condition, under reset

Symbol	Туре	Standard Clock	X2 Clock	-M	-V	-L	Units
T _{LHLL}	Min	2 T - x	T - x	10	8	15	ns
T _{AVLL}	Min	T - x	0.5 T - x	15	13	20	ns
T _{LLAX}	Min	T - x	0.5 T - x	15	13	20	ns
T _{LLIV}	Max	4 T - x	2 T - x	30	22	35	ns
T _{LLPL}	Min	T - x	0.5 T - x	10	8	15	ns
T _{PLPH}	Min	3 T - x	1.5 T - x	20	15	25	ns
T _{PLIV}	Max	3 T - x	1.5 T - x	40	25	45	ns
T _{PXIX}	Min	x	х	0	0	0	ns
T _{PXIZ}	Max	T - x	0.5 T - x	7	5	15	ns
T _{AVIV}	Max	5 T - x	2.5 T - x	40	30	45	ns
T _{PLAZ}	Max	x	x	10	10	10	ns

Table 20. AC Parameter	s for	a Variable	Clock:	derating	formula
------------------------	-------	------------	--------	----------	---------

7.5.3 External Program Memory Read Cycle

Figure 14. External Program Memory Read Cycle

7.5.4 External Data Memory Characteristics

Table 21. Symbol Description

Symbol	Parameter
T _{RLRH}	RD Pulse Width
T _{WLWH}	WR Pulse Width
T _{RLDV}	RD to Valid Data In
T _{RHDX}	Data Hold After RD
T _{RHDZ}	Data Float After RD
T _{LLDV}	ALE to Valid Data In
T _{AVDV}	Address to Valid Data In
T _{LLWL}	ALE to WR or RD
T _{AVWL}	Address to \overline{WR} or \overline{RD}
T _{QVWX}	Data Valid to WR Transition
T _{QVWH}	Data set-up to WR High
T _{WHQX}	Data Hold After WR
T _{RLAZ}	RD Low to Address Float
T _{WHLH}	$\overline{\text{RD}}$ or $\overline{\text{WR}}$ High to ALE high

Speed	ed -M 40 MHz		- X2 r 30 N 60 MH	V node ⁄IHz z equiv.	- standar 40 N	V °d mode MHz	- X2 n 20 N 40 MH	L node ⁄IHz z equiv.	-j standar 30 N	L ·d mode ⁄IHz	Units
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
T _{RLRH}	130		85		135		125		175		ns
T _{WLWH}	130		85		135		125		175		ns
T _{RLDV}		100		60		102		95		137	ns
T _{RHDX}	0		0		0		0		0		ns
T _{RHDZ}		30		18		35		25		42	ns
T _{LLDV}		160		98		165		155		222	ns
T _{AVDV}		165		100		175		160		235	ns
T _{LLWL}	50	100	30	70	55	95	45	105	70	130	ns
T _{AVWL}	75		47		80		70		103		ns
T _{QVWX}	10		7		15		5		13		ns
T _{QVWH}	160		107		165		155		213		ns
T _{WHQX}	15		9		17		10		18		ns
T _{RLAZ}		0		0		0		0		0	ns
T _{WHLH}	10	40	7	27	15	35	5	45	13	53	ns

Table 22. AC Parameters for a Fix Clock

7.5.9 External Clock Drive Characteristics (XTAL1)

Table	27.	AC	Parameters
-------	-----	----	------------

Symbol	Parameter	Min	Max	Units
T _{CLCL}	Oscillator Period	25		ns
T _{CHCX}	High Time	5		ns
T _{CLCX}	Low Time	5		ns
T _{CLCH}	Rise Time		5	ns
T _{CHCL}	Fall Time		5	ns
T _{CHCX} /T _{CLCX}	Cyclic ratio in X2 mode	40	60	%

7.5.10 External Clock Drive Waveforms

Figure 18. External Clock Drive Waveforms

7.5.11 AC Testing Input/Output Waveforms

Figure 19. AC Testing Input/Output Waveforms

AC inputs during testing are driven at V_{CC} - 0.5 for a logic "1" and 0.45V for a logic "0". Timing measurement are made at V_{IH} min for a logic "1" and V_{IL} max for a logic "0".

7.5.12 Float Waveforms

Figure 20. Float Waveforms

Table 29. Possible Ordering Entries

	TS80C31X2 ROMless
-MCA	Х
-MCB	Х
-MCC	Х
-MCE	Х
-VCA	Х
-VCB	Х
-VCC	Х
-VCE	Х
-LCA	Х
-LCB	Х
-LCC	Х
-LCE	Х
-MIA	Х
-MIB	Х
-MIC	Х
-MIE	Х
-VIA	Х
-VIB	Х
-VIC	Х
-VIE	Х
-LIA	Х
-LIB	Х
-LIC	Х
-LIE	Х
-EA	Х
-EB	Х
-EC	Х
-EE	Х

- -Ex for samples
- Tape and Reel available for B, C and E packages
- Dry pack mandatory for E packages