

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	60/30MHz
Connectivity	UART/USART
Peripherals	POR
Number of I/O	32
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.6x16.6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ts80c31x2-vib

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3. Block Diagram

4. SFR Mapping

The Special Function Registers (SFRs) of the TS80C31X2 fall into the following categories:

- C51 core registers: ACC, B, DPH, DPL, PSW, SP, AUXR1
- I/O port registers: P0, P1, P2, P3
- Timer registers: TCON, TH0, TH1, TMOD, TL0, TL1
- Serial I/O port registers: SADDR, SADEN, SBUF, SCON
- Power and clock control registers: PCON
- Interrupt system registers: IE, IP, IPH
- Others: CKCON

Table 1. All SFRs with their address and their reset value

	Bit Non Bit addressable address- able								
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	
F8h									FFh
F0h	B 0000 0000								F7h
E8h									EFh
E0h	ACC 0000 0000								E7h
D8h									DFh
D0h	PSW 0000 0000								D7h
C8h									CFh
C0h									C7h
B8h	IP XXX0 0000	SADEN 0000 0000							BFh
B0h	P3 1111 1111							IPH XXX0 0000	B7h
A8h	IE 0XX0 0000	SADDR 0000 0000							AFh
A0h	P2 1111 1111		AUXR1 XXXX XXX0						A7h
98h	SCON 0000 0000	SBUF XXXX XXXX							9Fh
90h	P1 1111 1111								97h
88h	TCON 0000 0000	TMOD 0000 0000	TL0 0000 0000	TL1 0000 0000	TH0 0000 0000	TH1 0000 0000		CKCON XXXX XXX0	8Fh
80h	P0 1111 1111	SP 0000 0111	DPL 0000 0000	DPH 0000 0000				PCON 00X1 0000	87h
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	

reserved

5. Pin Configuration

*NIC: No Internal Connection

Table 2.	Pin	Description	for	40/44	pin	packages
----------	-----	-------------	-----	-------	-----	----------

MNEMONIC PIN NUMBER TYPE NAME AND FUNCTION					
MNEMONIC	DIL	LCC	VQFP 1.4		NAME AND FUNCTION
V _{SS}	20	22	16	I	Ground: 0V reference
Vss1		1	39	Ι	Optional Ground: Contact the Sales Office for ground connection.
V _{CC}	40	44	38	Ι	Power Supply: This is the power supply voltage for normal, idle and power- down operation
P0.0-P0.7	39-32	43-36	37-30	I/O	Port 0 : Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s written to them float and can be used as high impedance inputs. Port 0 pins must be polarized to Vcc or Vss in order to prevent any parasitic current consumption. Port 0 is also the multiplexed low-order address and data bus during access to external program and data memory. In this application, it uses strong internal pull-up when emitting 1s.
P1.0-P1.7	1-8	2-9	40-44 1-3	I/O	Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Port 1 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 1 pins that are externally pulled low will source current because of the internal pull-ups.
P2.0-P2.7	21-28	24-31	18-25	I/O	Port 2 : Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally pulled low will source current because of the internal pull-ups. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @DPTR).In this application, it uses strong internal pull-ups emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @Ri), port 2 emits the contents of the P2 SFR.
P3.0-P3.7	10-17	11, 13-19	5, 7-13	I/O	Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally pulled low will source current because of the internal pull-ups. Port 3 also serves the special features of the 80C51 family, as listed below.
	10	11	5	I	RXD (P3.0): Serial input port
	11	13	7	0	TXD (P3.1): Serial output port
	12	14	8	I	INTO (P3.2): External interrupt 0
	13	15	9	I	INT1 (P3.3): External interrupt 1
	14	16	10	I	T0 (P3.4): Timer 0 external input
	15	17	11	I	T1 (P3.5): Timer 1 external input
	16	18	12	0	WR (P3.6): External data memory write strobe
	17	19	13	0	RD (P3.7): External data memory read strobe
Reset	9	10	4	Ι	Reset: A high on this pin for two machine cycles while the oscillator is running, resets the device. An internal diffused resistor to V_{SS} permits a power-on reset using only an external capacitor to V_{CC} .
ALE	30	33	27	(I) O	Address Latch Enable: Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 (1/3 in X2 mode) the oscillator frequency, and can be used for external timing or clocking. Note that one ALE pulse is skipped during each access to external data memory.
PSEN	29	32	26	0	Program Store ENable: The read strobe to external program memory. When executing code from the external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory. PSEN is not activated during fetches from internal program memory.
ĒĀ	31	35	29	Ι	External Access Enable: \overline{EA} must be externally held low to enable the device to fetch code from external program memory locations.
XTAL1	19	21	15	I	Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator circuits.
XTAL2	18	20	14	0	Crystal 2: Output from the inverting oscillator amplifier

6. TS80C31X2 Enhanced Features

In comparison to the original 80C31, the TS80C31X2 implements some new features, which are:

- The X2 option.
- The Dual Data Pointer.
- The 4 level interrupt priority system.
- The power-off flag.
- The ONCE mode.
- Enhanced UART

6.1 X2 Feature

The TS80C31X2 core needs only 6 clock periods per machine cycle. This feature called "X2" provides the following advantages:

- Divide frequency crystals by 2 (cheaper crystals) while keeping same CPU power.
- Save power consumption while keeping same CPU power (oscillator power saving).
- Save power consumption by dividing dynamically operating frequency by 2 in operating and idle modes.
- Increase CPU power by 2 while keeping same crystal frequency.

In order to keep the original C51 compatibility, a divider by 2 is inserted between the XTAL1 signal and the main clock input of the core (phase generator). This divider may be disabled by software.

6.1.1 Description

The clock for the whole circuit and peripheral is first divided by two before being used by the CPU core and peripherals. This allows any cyclic ratio to be accepted on XTAL1 input. In X2 mode, as this divider is bypassed, the signals on XTAL1 must have a cyclic ratio between 40 to 60%. Figure 1. shows the clock generation block diagram. X2 bit is validated on XTAL1+2 rising edge to avoid glitches when switching from X2 to STD mode. Figure 2. shows the mode switching waveforms.

Figure 2. Mode Switching Waveforms

The X2 bit in the CKCON register (See Table 3.) allows to switch from 12 clock cycles per instruction to 6 clock cycles and vice versa. At reset, the standard speed is activated (STD mode). Setting this bit activates the X2 feature (X2 mode).

CAUTION

In order to prevent any incorrect operation while operating in X2 mode, user must be aware that all peripherals using clock frequency as time reference (UART, timers) will have their time reference divided by two. For example a free running timer generating an interrupt every 20 ms will then generate an interrupt every 10 ms. UART with 4800 baud rate will have 9600 baud rate.

Table 3. CKCON Register

CKCON - Clock Control Register (8Fh)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	X2

Bit Number	Bit Mnemonic	Description
7	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
6	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
5	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
4	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
3	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
2	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
1	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
0	X2	CPU and peripheral clock bit Clear to select 12 clock periods per machine cycle (STD mode, $F_{OSC}=F_{XTAL}/2$). Set to select 6 clock periods per machine cycle (X2 mode, $F_{OSC}=F_{XTAL}$).

Reset Value = XXXX XXX0b Not bit addressable

For further details on the X2 feature, please refer to ANM072 available on the web (http://www.atmel-wm.com)

6.2 Dual Data Pointer Register Ddptr

The additional data pointer can be used to speed up code execution and reduce code size in a number of ways.

The dual DPTR structure is a way by which the chip will specify the address of an external data memory location. There are two 16-bit DPTR registers that address the external memory, and a single bit called DPS = AUXR1/bit0 (See Table 5.) that allows the program code to switch between them (Refer to Figure 3).

Figure 3. Use of Dual Pointer

ASSEMBLY LANGUAGE

; Block move using dual data pointers ; Destroys DPTR0, DPTR1, A and PSW ; note: DPS exits opposite of entry state ; unless an extra INC AUXR1 is added

00A2 AUXR1 EQU 0A2H 0000 909000MOV DPTR,#SOURCE : address of SOURCE 0003 05A2 INC AUXR1 ; switch data pointers 0005 90A000 MOV DPTR,#DEST ; address of DEST 0008 LOOP: 0008 05A2 INC AUXR1 ; switch data pointers ; get a byte from SOURCE 000A E0 MOVX A, @DPTR INC DPTR ; increment SOURCE address 000B A3 ; switch data pointers 000C 05A2 INC AUXR1 000E F0 MOVX @DPTR,A ; write the byte to DEST 000F A3 INC DPTR : increment DEST address 0010 70F6 JNZ LOOP ; check for 0 terminator 0012 05A2 INC AUXR1 ; (optional) restore DPS

INC is a short (2 bytes) and fast (12 clocks) way to manipulate the DPS bit in the AUXR1 SFR. However, note that the INC instruction does not directly force the DPS bit to a particular state, but simply toggles it. In simple routines, such as the block move example, only the fact that DPS is toggled in the proper sequence matters, not its actual value. In other words, the block move routine works the same whether DPS is '0' or '1' on entry. Observe that without the last instruction (INC AUXR1), the routine will exit with DPS in the opposite state.

6.3 TS80C31X2 Serial I/O Port

The serial I/O port in the TS80C31X2 is compatible with the serial I/O port in the 80C31.

It provides both synchronous and asynchronous communication modes. It operates as an Universal Asynchronous Receiver and Transmitter (UART) in three full-duplex modes (Modes 1, 2 and 3). Asynchronous transmission and reception can occur simultaneously and at different baud rates

Serial I/O port includes the following enhancements:

- Framing error detection
- Automatic address recognition

6.3.1 Framing Error Detection

Framing bit error detection is provided for the three asynchronous modes (modes 1, 2 and 3). To enable the framing bit error detection feature, set SMOD0 bit in PCON register (See Figure 4).

Figure 4. Framing Error Block Diagram

When this feature is enabled, the receiver checks each incoming data frame for a valid stop bit. An invalid stop bit may result from noise on the serial lines or from simultaneous transmission by two CPUs. If a valid stop bit is not found, the Framing Error bit (FE) in SCON register (See Table 5.) bit is set.

Table 7. Priority Level Bit Values

IPH.x	IP.x	Interrupt Level Priority
0	0	0 (Lowest)
0	1	1
1	0	2
1	1	3 (Highest)

A low-priority interrupt can be interrupted by a high priority interrupt, but not by another low-priority interrupt. A high-priority interrupt can't be interrupted by any other interrupt source.

If two interrupt requests of different priority levels are received simultaneously, the request of higher priority level is serviced. If interrupt requests of the same priority level are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence.

Table 8. IE Register

IE - Interrupt Enable Register (A8h)										
7	6	5	4	3	2	1	0			
EA	-	-	ES	ET1	EX1	ЕТО	EX0			

Bit Number	Bit Mnemonic	Description
7	EA	Enable All interrupt bit Clear to disable all interrupts. Set to enable all interrupts. If EA=1, each interrupt source is individually enabled or disabled by setting or clearing its own interrupt enable bit.
6	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
5	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
4	ES	Serial port Enable bit Clear to disable serial port interrupt. Set to enable serial port interrupt.
3	ET1	Timer 1 overflow interrupt Enable bit Clear to disable timer 1 overflow interrupt. Set to enable timer 1 overflow interrupt.
2	EX1	External interrupt 1 Enable bit Clear to disable external interrupt 1. Set to enable external interrupt 1.
1	ET0	Timer 0 overflow interrupt Enable bit Clear to disable timer 0 overflow interrupt. Set to enable timer 0 overflow interrupt.
0	EX0	External interrupt 0 Enable bit Clear to disable external interrupt 0. Set to enable external interrupt 0.

Reset Value = 0XX0 0000b Bit addressable

IP - Interrupt Priority Register (B8h)

7	6	5	4	3	2	1	0		
-	-	-	PS	PT1	PX1	РТО	PX0		
Bit Number	Bit Mnemonic		Description						
7	-	Reserved The value read t	from this bit is inde	eterminate. Do not s	set this bit.				
6	-	Reserved The value read t	from this bit is inde	eterminate. Do not s	set this bit.				
5	-	Reserved The value read t	from this bit is inde	eterminate. Do not s	set this bit.				
4	PS	Serial port Priority Refer to PSH fo							
3	PT1	Timer 1 overflow in Refer to PT1H 1	nterrupt Priority I for priority level.	bit					
2	PX1		External interrupt 1 Priority bit Refer to PX1H for priority level.						
1	PT0		Timer 0 overflow interrupt Priority bit Refer to PT0H for priority level.						
0	PX0		External interrupt 0 Priority bit Refer to PX0H for priority level.						

Reset Value = XXX0 0000b Bit addressable

Table 10. IPH Register

IPH - Interrupt Priority High Register (B7h)

7	6	5	4	3	2	1	0
-	-	-	PSH	PT1H	PX1H	РТОН	РХОН

Bit Number	Bit Mnemonic			Description					
7	-	Reserved The value read f	Reserved The value read from this bit is indeterminate. Do not set this bit.						
6	-	Reserved The value read f	from this bit is inde	terminate. Do not set this	bit.				
5	-	Reserved The value read f	rom this bit is inde	terminate. Do not set this	bit.				
4	PSH	Serial port Priority <u>PSH</u> 0 1 1 1	High bit PS 0 1 0 1	<u>Priority Level</u> Lowest Highest					
3	PT1H	Timer 1 overflow in PT1H 0 1 1	iterrupt Priority I <u>PT1</u> 0 1 0 1	Jigh bit <u>Priority Level</u> Lowest Highest					
2	PX1H	External interrupt <u>PX1H</u> 0 0 1 1	1 Priority High bi <u>PX1</u> 0 1 0 1 1	t <u>Priority Level</u> Lowest Highest					
1	РТОН	Timer 0 overflow in <u>PT0H</u> 0 1 1	tterrupt Priority I <u>PTO</u> 0 1 0 1 1	Fligh bit <u>Priority Level</u> Lowest Highest					
0	РХОН	External interrupt <u>PX0H</u> 0 1 1 1	0 Priority High bi <u>PX0</u> 0 1 0 1	t <u>Priority Level</u> Lowest Highest					

Reset Value = XXX0 0000b Not bit addressable

6.7 ONCETM Mode (ON Chip Emulation)

The ONCE mode facilitates testing and debugging of systems using TS80C31X2 without removing the circuit from the board. The ONCE mode is invoked by driving certain pins of the TS80C31X2; the following sequence must be exercised:

- Pull ALE low while the device is in reset (RST high) and $\overline{\text{PSEN}}$ is high.
- Hold ALE low as RST is deactivated.

While the TS80C31X2 is in ONCE mode, an emulator or test CPU can be used to drive the circuit Table 26. shows the status of the port pins during ONCE mode.

Normal operation is restored when normal reset is applied.

Table 12. External Pin Status during ONCE Mode

ALE	PSEN	Port 0	Port 1	Port 2	Port 3	XTAL1/2
Weak pull-up	Weak pull-up	Float	Weak pull-up	Weak pull-up	Weak pull-up	Active

6.8 Power-Off Flag

The power-off flag allows the user to distinguish between a "cold start" reset and a "warm start" reset.

A cold start reset is the one induced by V_{CC} switch-on. A warm start reset occurs while V_{CC} is still applied to the device and could be generated for example by an exit from power-down.

The power-off flag (POF) is located in PCON register (See Table 13.). POF is set by hardware when V_{CC} rises from 0 to its nominal voltage. The POF can be set or cleared by software allowing the user to determine the type of reset.

The POF value is only relevant with a Vcc range from 4.5V to 5.5V. For lower Vcc value, reading POF bit will return indeterminate value.

Table 13. PCON Register

PCON - Power Control Register (87h)

7	6	5	4	3	2	1	0					
SMOD1	SMOD) -	POF	GF1	GF0	PD	IDL					
Bit Number	Bit Mnemonic	Description										
7	SMOD1	Serial port Mode bi Set to select dou	Serial port Mode bit 1 Set to select double baud rate in mode 1, 2 or 3.									
6	SMOD0	Serial port Mode bi Clear to select S Set to to select F	t 0 M0 bit in SCON re E bit in SCON reg	egister. ister.								
5	-	Reserved The value read f	rom this bit is inde	terminate. Do not	set this bit.							
4	POF		Power-Off Flag Clear to recognize next reset type. Set by hardware when V _{CC} rises from 0 to its nominal voltage. Can also be set by software.									
3	GF1	Cleared by user	General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage.									
2	GF0	General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage.										
1	PD	Power-Down mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.										
0	IDL	Idle mode bit Clear by hardware when interrupt or reset occurs. Set to enter idle mode.										

Reset Value = 00X1 0000b Not bit addressable

7.3 DC Parameters for Standard Voltage

 $\begin{array}{l} TA = 0^{\circ}C \mbox{ to } +70^{\circ}C; \mbox{ } V_{SS} = 0 \mbox{ } V; \mbox{ } V_{CC} = 5 \mbox{ } V \pm 10\%; \mbox{ } F = 0 \mbox{ to } 40 \mbox{ } MHz. \\ TA = -40^{\circ}C \mbox{ to } +85^{\circ}C; \mbox{ } V_{SS} = 0 \mbox{ } V; \mbox{ } V_{CC} = 5 \mbox{ } V \pm 10\%; \mbox{ } F = 0 \mbox{ to } 40 \mbox{ } MHz. \\ \end{array}$

Table 14.	DC	Parameters	in	Standard	Voltage
-----------	----	-------------------	----	----------	---------

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V _{IL}	Input Low Voltage	-0.5		0.2 V _{CC} - 0.1	v	
V _{IH}	Input High Voltage except XTAL1, RST	0.2 V _{CC} + 0.9		V _{CC} + 0.5	v	
V _{IH1}	Input High Voltage, XTAL1, RST	0.7 V _{CC}		V _{CC} + 0.5	v	
V _{OL}	Output Low Voltage, ports 1, 2, 3 ⁽⁶⁾			0.3 0.45 1.0	V V V	$I_{OL} = 100 \ \mu A^{(4)}$ $I_{OL} = 1.6 \ m A^{(4)}$ $I_{OL} = 3.5 \ m A^{(4)}$
V _{OL1}	Output Low Voltage, port 0 ⁽⁶⁾			0.3 0.45 1.0	V V V	$I_{OL} = 200 \ \mu A^{(4)}$ $I_{OL} = 3.2 \ m A^{(4)}$ $I_{OL} = 7.0 \ m A^{(4)}$
V _{OL2}	Output Low Voltage, ALE, PSEN			0.3 0.45 1.0	V V V	$I_{OL} = 100 \ \mu A^{(4)}$ $I_{OL} = 1.6 \ m A^{(4)}$ $I_{OL} = 3.5 \ m A^{(4)}$
V _{OH}	Output High Voltage, ports 1, 2, 3	$V_{CC} - 0.3$ $V_{CC} - 0.7$ $V_{CC} - 1.5$			V V V	$I_{OH} = -10 \ \mu A$ $I_{OH} = -30 \ \mu A$ $I_{OH} = -60 \ \mu A$ $V_{CC} = 5 \ V \pm 10\%$
V _{OH1}	Output High Voltage, port 0	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			V V V	$\begin{split} I_{OH} &= -200 \; \mu A \\ I_{OH} &= -3.2 \; m A \\ I_{OH} &= -7.0 \; m A \\ V_{CC} &= 5 \; V \pm 10\% \end{split}$
V _{OH2}	Output High Voltage, ALE, PSEN	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			V V V	$\begin{split} I_{OH} &= -100 \; \mu A \\ I_{OH} &= -1.6 \; m A \\ I_{OH} &= -3.5 \; m A \\ V_{CC} &= 5 \; V \pm 10\% \end{split}$
R _{RST}	RST Pulldown Resistor	50	90 ⁽⁵⁾	200	kΩ	
I _{IL}	Logical 0 Input Current ports 1, 2 and 3			-50	μΑ	Vin = 0.45 V
I _{LI}	Input Leakage Current			±10	μΑ	0.45 V < Vin < V _{CC}
I _{TL}	Logical 1 to 0 Transition Current, ports 1, 2, 3			-650	μΑ	Vin = 2.0 V
C _{IO}	Capacitance of I/O Buffer			10	pF	$Fc = 1 MHz$ $TA = 25^{\circ}C$
I _{PD}	Power Down Current		20 ⁽⁵⁾	50	μΑ	$2.0 \text{ V} < \text{V}_{\text{CC}} < 5.5 \text{ V}^{(3)}$
I _{CC} under RESET	Power Supply Current Maximum values, X1 mode: ⁽⁷⁾			1 + 0.4 Freq (MHz) @12MHz 5.8 @16MHz 7.4	mA	$V_{CC} = 5.5 V^{(1)}$

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
I _{CC} operating	Power Supply Current Maximum values, X1 mode: ⁽⁷⁾			3 + 0.6 Freq (MHz) @12MHz 10.2 @16MHz 12.6	mA	$V_{\rm CC} = 5.5 \ V^{(8)}$
I _{CC} idle	Power Supply Current Maximum values, X1 mode: ⁽⁷⁾			0.25+0.3Freq (MHz) @12MHz 3.9 @16MHz 5.1	mA	$V_{CC} = 5.5 V^{(2)}$

7.4 DC Parameters for Low Voltage

TA = 0°C to +70°C; V_{SS} = 0 V; V_{CC} = 2.7 V to 5.5 V \pm 10%; F = 0 to 30 MHz. TA = -40°C to +85°C; V_{SS} = 0 V; V_{CC} = 2.7 V to 5.5 V \pm 10%; F = 0 to 30 MHz.

Table 15. DC Parameters for Low Voltage

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V _{IL}	Input Low Voltage	-0.5		0.2 V _{CC} - 0.1	V	
V _{IH}	Input High Voltage except XTAL1, RST	$0.2 V_{CC} + 0.9$		V _{CC} + 0.5	V	
V _{IH1}	Input High Voltage, XTAL1, RST	0.7 V _{CC}		V _{CC} + 0.5	V	
V _{OL}	Output Low Voltage, ports 1, 2, 3 ⁽⁶⁾			0.45	v	$I_{OL} = 0.8 \text{ mA}^{(4)}$
V _{OL1}	Output Low Voltage, port 0, ALE, PSEN ⁽⁶⁾			0.45	v	$I_{OL} = 1.6 \text{ mA}^{(4)}$
V _{OH}	Output High Voltage, ports 1, 2, 3	0.9 V _{CC}			V	$I_{OH} = -10 \ \mu A$
V _{OH1}	Output High Voltage, port 0, ALE, PSEN	0.9 V _{CC}			V	$I_{OH} = -40 \ \mu A$
I _{IL}	Logical 0 Input Current ports 1, 2 and 3			-50	μΑ	Vin = 0.45 V
I_{LI}	Input Leakage Current			±10	μΑ	0.45 V < Vin < V _{CC}
I _{TL}	Logical 1 to 0 Transition Current, ports 1, 2, 3			-650	μΑ	Vin = 2.0 V
R _{RST}	RST Pulldown Resistor	50	90 ⁽⁵⁾	200	kΩ	
CIO	Capacitance of I/O Buffer			10	pF	$Fc = 1 MHz$ $TA = 25^{\circ}C$
I _{PD}	Power Down Current		20 ⁽⁵⁾ 10 ⁽⁵⁾	50 30	μΑ	$V_{CC} = 2.0 \text{ V to } 5.5 \text{ V}^{(3)}$ $V_{CC} = 2.0 \text{ V to } 3.3 \text{ V}^{(3)}$
I _{CC} under RESET	Power Supply Current Maximum values, X1 mode: ⁽⁷⁾			1 + 0.2 Freq (MHz) @12MHz 3.4 @16MHz 4.2	mA	$V_{CC} = 3.3 V^{(1)}$
I _{CC} operating	Power Supply Current Maximum values, X1 mode: ⁽⁷⁾			1 + 0.3 Freq (MHz) @12MHz 4.6 @16MHz 5.8	mA	$V_{CC} = 3.3 V^{(8)}$

Speed		M MHz	X2 1 30 M	V node MHz z equiv.	standa	V rd mode MHz	X2 1 20 M	L node MHz z equiv.	standa	L rd mode VIHz	Units
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
T _{RLRH}	130		85		135		125		175		ns
T _{WLWH}	130		85		135		125		175		ns
T _{RLDV}		100		60		102		95		137	ns
T _{RHDX}	0		0		0		0		0		ns
T _{RHDZ}		30		18		35		25		42	ns
T _{LLDV}		160		98		165		155		222	ns
T _{AVDV}		165		100		175		160		235	ns
T _{LLWL}	50	100	30	70	55	95	45	105	70	130	ns
T _{AVWL}	75		47		80		70		103		ns
T _{QVWX}	10		7		15		5		13		ns
T _{QVWH}	160		107		165		155		213		ns
T _{WHQX}	15		9		17		10		18		ns
T _{RLAZ}		0		0		0		0		0	ns
T _{WHLH}	10	40	7	27	15	35	5	45	13	53	ns

Table 22. AC Parameters for a Fix Clock

Symbol	Туре	Standard Clock	X2 Clock	-М	-V	-L	Units
T _{XLXL}	Min	12 T	6 T				ns
T _{QVHX}	Min	10 T - x	5 T - x	50	50	50	ns
T _{XHQX}	Min	2 T - x	T - x	20	20	20	ns
T _{XHDX}	Min	Х	Х	0	0	0	ns
T _{XHDV}	Max	10 T - x	5 T- x	133	133	133	ns

 Table 26. AC Parameters for a Variable Clock: derating formula

7.5.8 Shift Register Timing Waveforms

Figure 17. Shift Register Timing Waveforms

8. Ordering Information

Table 28. Maximum Clock Frequency

Code	-M	-V	-L	Unit
Standard Mode, oscillator frequency	40	40	30	MHz
Standard Mode, internal frequency	40	40	30	
X2 Mode, oscillator frequency	20	30	20	MHz
X2 Mode, internal equivalent frequency	40	60	40	