

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Obsolete
Core Processor	H8S/2600
Core Size	16-Bit
Speed	20MHz
Connectivity	CANbus, SCI, SmartCard
Peripherals	POR, PWM, WDT
Number of I/O	51
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BFQFP
Supplier Device Package	100-QFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df2626fa20jv

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Preface

The H8S/2626 Group and H8S/2623 Group are series of high-performance microcontrollers with a 32-bit H8S/2600 CPU core, and a set of on-chip supporting modules required for system configuration.

The H8S/2600 CPU can execute basic instructions in one state, and is provided with sixteen 16-bit general registers with a 32-bit internal configuration, and a concise and optimized instruction set. The CPU can handle a 16 Mbyte linear address space (architecturally 4 Gbytes). Programs based on the high-level language C can also be run efficiently.

The address space is divided into eight areas. The data bus width and access states can be selected for each of these areas, and various kinds of memory can be connected fast and easily.

Single-power-supply flash memory (F-ZTAT^{TM*}), and mask ROM versions are available, providing a quick and flexible response to conditions from ramp-up through full-scale volume production, even for applications with frequently changing specifications.

On-chip supporting functions include a 16-bit timer pulse unit (TPU), programmable pulse generator (PPG), watchdog timer (WDT), serial communication interface (SCI), controller area network (HCAN), A/D converter, D/A converter (H8S/2626 Group only), and I/O ports.

In addition, data transfer controller (DTC) is provided, enabling high-speed data transfer without CPU intervention.

Use of the H8S/2626 Group or H8S/2623 Group enables easy implementation of compact, high-performance systems capable of processing large volumes of data.

This manual describes the hardware of the H8S/2626 Group and H8S/2623 Group. Refer to the H8S/2600 Series and H8S/2000 Series Programming Manual for a detailed description of the instruction set.

Note: * F-ZTAT (Flexible-ZTAT) is a trademark of Renesas Technology Corp.

Renesas

Table 1.3 Pin Functions in Each Operating Mode

Pin No.	Pin Name								
FP-100B	Mode 4	Mode 5	Mode 6	Mode 7					
1	P13/PO11/TIOCD0/ TCLKB/A23	P13/PO11/TIOCD0/ TCLKB/A23	P13/PO11/TIOCD0/ TCLKB/A23	P13/PO11/TIOCD0/ TCLKB					
2	P14/PO12/TIOCA1/ IRQ0	P14/PO12/TIOCA1/ IRQ0	P14/PO12/TIOCA1/ IRQ0	P14/PO12/TIOCA1/ IRQ0					
3	P15/PO13/TIOCB1/ TCLKC	P15/PO13/TIOCB1/ TCLKC	P15/PO13/TIOCB1/ TCLKC	P15/PO13/TIOCB1/ TCLKC					
4	P16/PO14/TIOCA2/ IRQ1	P16/PO14/TIOCA2/ IRQ1	P16/PO14/TIOCA2/ IRQ1	P16/PO14/TIOCA2/ IRQ1					
5	P17/PO15/TIOCB2/ TCLKD	P17/PO15/TIOCB2/ TCLKD	P17/PO15/TIOCB2/ TCLKD	P17/PO15/TIOCB2/ TCLKD					
6	VCC	VCC	VCC	VCC					
7	HTxD	HTxD	HTxD	HTxD					
8	VSS	VSS	VSS	VSS					
9	HRxD	HRxD	HRxD	HRxD					
10	PE0/D0	PE0/D0	PE0/D0	PE0					
11	PE1/D1	PE1/D1	PE1/D1	PE1					
12	PE2/D2	PE2/D2	PE2/D2	PE2					
13	PE3/D3	PE3/D3	PE3/D3	PE3					
14	PE4/D4	PE4/D4	PE4/D4	PE4					
15	VSS	VSS	VSS	VSS					
16	PE5/D5	PE5/D5	PE5/D5	PE5					
17	PVCC1	PVCC1	PVCC1	PVCC1					
18	PE6/D6	PE6/D6	PE6/D6	PE6					
19	PE7/D7	PE7/D7	PE7/D7	PE7					
20	D8	D8	D8	PD0					
21	D9	D9	D9	PD1					
22	D10	D10	D10	PD2					
23	D11	D11	D11	PD3					
24	D12	D12	D12	PD4					
25	D13	D13	D13	PD5					
26	D14	D14	D14	PD6					

2.7 Addressing Modes and Effective Address Calculation

2.7.1 Addressing Mode

The CPU supports the eight addressing modes listed in table 2.4. Each instruction uses a subset of these addressing modes. Arithmetic and logic instructions can use the register direct and immediate modes. Data transfer instructions can use all addressing modes except program-counter relative and memory indirect. Bit manipulation instructions use register direct, register indirect, or absolute addressing mode to specify an operand, and register direct (BSET, BCLR, BNOT, and BTST instructions) or immediate (3-bit) addressing mode to specify a bit number in the operand.

No.	Addressing Mode	Symbol
1	Register direct	Rn
2	Register indirect	@ERn
3	Register indirect with displacement	@(d:16,ERn)/@(d:32,ERn)
4	Register indirect with post-increment Register indirect with pre-decrement	@ERn+ @–ERn
5	Absolute address	@aa:8/@aa:16/@aa:24/@aa:32
6	Immediate	#xx:8/#xx:16/#xx:32
7	Program-counter relative	@(d:8,PC)/@(d:16,PC)
8	Memory indirect	@@aa:8

Table 2.4 Addressing Modes

(1) Register Direct—Rn

The register field of the instruction specifies an 8-, 16-, or 32-bit general register containing the operand. R0H to R7H and R0L to R7L can be specified as 8-bit registers. R0 to R7 and E0 to E7 can be specified as 16-bit registers. ER0 to ER7 can be specified as 32-bit registers.

(2) Register Indirect—@ERn

The register field of the instruction code specifies an address register (ERn) which contains the address of the operand on memory. If the address is a program instruction address, the lower 24 bits are valid and the upper 8 bits are all assumed to be 0 (H'00).

Renesas

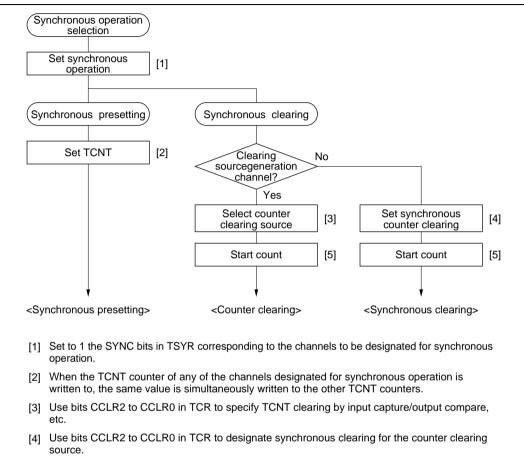
8.2 **Register Descriptions**

8.2.1 DTC Mode Register A (MRA)

Bit	:	7	6	5	4	3	2	1	0
		SM1	SM0	DM1	DM0	MD1	MD0	DTS	Sz
Initial value :		Unde-							
		fined							
R/W	:		_	_		_	_	_	_

MRA is an 8-bit register that controls the DTC operating mode.

Bits 7 and 6—Source Address Mode 1 and 0 (SM1, SM0): These bits specify whether SAR is to be incremented, decremented, or left fixed after a data transfer.


Bit 7	Bit 6	
SM1	SM0	Description
0	_	SAR is fixed
1	0	SAR is incremented after a transfer (by +1 when Sz = 0; by +2 when Sz = 1)
	1	SAR is decremented after a transfer (by -1 when Sz = 0; by -2 when Sz = 1)

Bits 5 and 4—Destination Address Mode 1 and 0 (DM1, DM0): These bits specify whether DAR is to be incremented, decremented, or left fixed after a data transfer.

Bit 5	Bit 4	
DM1	DM0	Description
0	_	DAR is fixed
1	0	DAR is incremented after a transfer (by +1 when Sz = 0; by +2 when Sz = 1)
	1	DAR is decremented after a transfer (by -1 when Sz = 0; by -2 when Sz = 1)

Example of Synchronous Operation Setting Procedure: Figure 10.14 shows an example of the synchronous operation setting procedure.

[5] Set to 1 the CST bits in TSTR for the relevant channels, to start the count operation.

Figure 10.14 Example of Synchronous Operation Setting Procedure

Clock

Either an internal clock generated by the on-chip baud rate generator or an external clock input at the SCK pin can be selected as the SCI's serial clock, according to the setting of the C/\overline{A} bit in SMR and the CKE1 and CKE0 bits in SCR. For details of SCI clock source selection, see table 13.9.

When an external clock is input at the SCK pin, the clock frequency should be 16 times the bit rate used.

When the SCI is operated on an internal clock, the clock can be output from the SCK pin. The frequency of the clock output in this case is equal to the bit rate, and the phase is such that the rising edge of the clock is in the middle of the transmit data, as shown in figure 13.3.

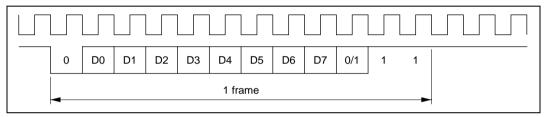


Figure 13.3 Relation between Output Clock and Transfer Data Phase (Asynchronous Mode)

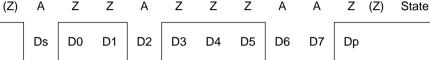
Data Transfer Operations

SCI initialization (asynchronous mode): Before transmitting and receiving data, you should first clear the TE and RE bits in SCR to 0, then initialize the SCI as described below.

When the operating mode, transfer format, etc., is changed, the TE and RE bits must be cleared to 0 before making the change using the following procedure. When the TE bit is cleared to 0, the TDRE flag is set to 1 and TSR is initialized. Note that clearing the RE bit to 0 does not change the contents of the RDRF, PER, FER, and ORER flags, or the contents of RDR.

When an external clock is used the clock should not be stopped during operation, including initialization, since operation is uncertain.

Figure 13.4 shows a sample SCI initialization flowchart.


Smart Card Mode Register (SCMR) Setting: The SDIR bit is cleared to 0 if the IC card is of the direct convention type, and set to 1 if of the inverse convention type.

The SINV bit is cleared to 0 if the IC card is of the direct convention type, and set to 1 if of the inverse convention type.

The SMIF bit is set to 1 in the case of the Smart Card interface.

Examples of register settings and the waveform of the start character are shown below for the two types of IC card (direct convention and inverse convention).

• Direct convention (SDIR = SINV =
$$O/\overline{E} = 0$$
)
(Z) A Z Z A Z Z A

With the direct convention type, the logic 1 level corresponds to state Z and the logic 0 level to state A, and transfer is performed in LSB-first order. The start character data above is H'3B.

The parity bit is 1 since even parity is stipulated for the Smart Card.

• Inverse convention (SDIR = SINV =
$$O/\overline{E} = 1$$
)

(Z)	А	Ζ	Ζ	А	А	А	А	А	А	Z	(Z)	State
	Ds	D7	D6	D5	D4	D3	D2	D1	D0	Dp		

With the inverse convention type, the logic 1 level corresponds to state A and the logic 0 level to state Z, and transfer is performed in MSB-first order. The start character data above is H'3F.

The parity bit is 0, corresponding to state Z, since even parity is stipulated for the Smart Card.

With the H8S/2626 Group and H8S/2623 Group, inversion specified by the SINV bit applies only to the data bits, D7 to D0. For parity bit inversion, the O/\overline{E} bit in SMR is set to odd parity mode (the same applies to both transmission and reception).

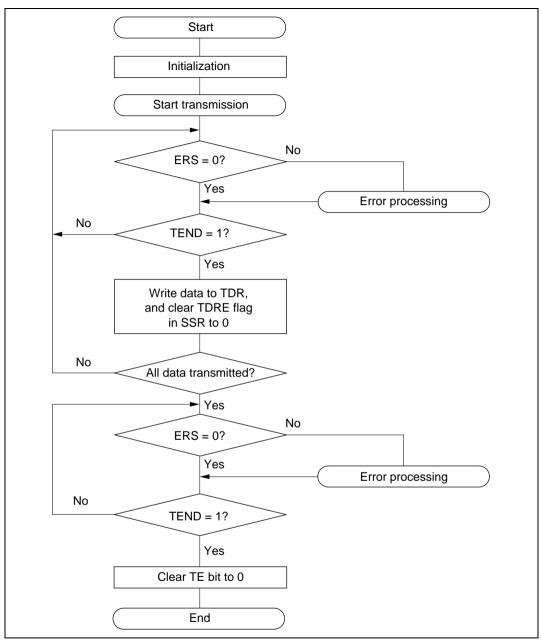
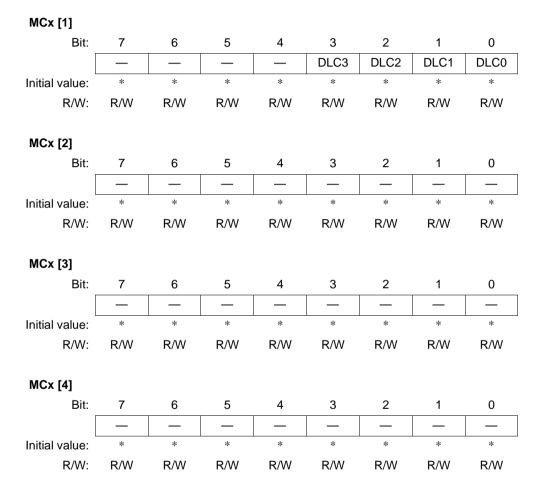



Figure 14.4 Example of Transmission Processing Flow

15.2.18 Message Control (MC0 to MC15)

The message control register sets (MC0 to MC15) consist of eight 8-bit readable/writable registers (MCx[1] to MCx[8]). The HCAN has 16 sets of these registers (MC0 to MC15).

The initial value of these registers is undefined, so they must be initialized (by writing 0 or 1).

Setting a bit to 1 in the mailbox configuration register (MBCR) designates the corresponding mailbox for reception use. When setting mailboxes for reception, to improve message transmission efficiency, high-priority messages should be set in low-to-high mailbox order (priority order: mailbox 1 (MCx[1]) > mailbox 15 (MCx[15]).

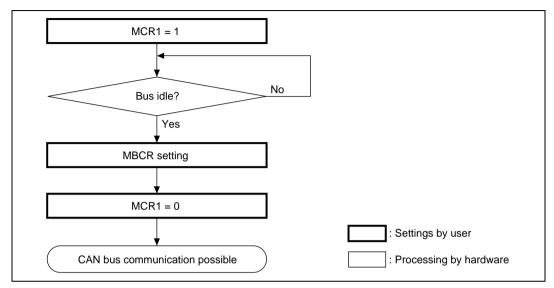
• Receive-only mailbox (mailbox 0)

No setting is necessary, as this mailbox is always used for reception.

Mailbox (Message Control/Data (MCx[x], MDx[x]) Initial Settings: After power is supplied, all registers and RAM (message control/data, control registers, status registers, etc.) are initialized. Message control/data (MCx[x], MDx[x]) only are in RAM, and so their values are undefined. Initial values must therefore be set in all the mailboxes (by writing 0s or 1s).

Setting the Message Transmission Method: Either of the following message transmission methods can be selected with the message transmission method bit (MCR2) in the master control register (MCR):

- a. Transmission order determined by message identifier priority
- b. Transmission order determined by mailbox number priority


When a is selected, if a number of messages are designated as waiting for transmission (TXPR = 1), the message with the highest priority set in the message identifier (MCx[5]–MCx[8]) is stored in the transmit buffer. CAN bus arbitration is then carried out for the message in the transmit buffer, and message transmission is performed when the transmission right is acquired. When the TXPR bit is set, internal arbitration is performed again, and the highest-priority message is found and stored in the transmit buffer.

When b is selected, if a number of messages are designated as waiting for transmission (TXPR = 1), messages are stored in the transmit buffer in low-to-high mailbox order (priority order: mailbox 1 > mailbox 15). CAN bus arbitration is then carried out for the messages in the transmit buffer, and message transmission is performed when the bus is acquired.

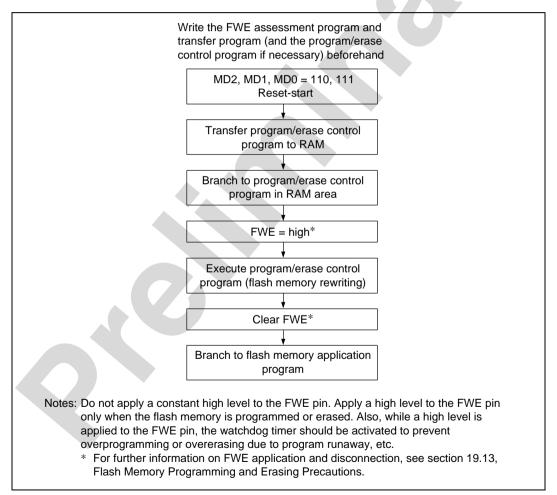
Renesas

15.3.6 HCAN Halt Mode

The HCAN halt mode is provided to enable mailbox settings to be changed without performing an HCAN hardware or software reset. Figure 15.12 shows a flowchart of the HCAN halt mode.

HCAN halt mode is entered by setting the halt request bit (MCR1) to 1 in the master control register (MCR). If the CAN bus is operating, the transition to HCAN halt mode is delayed until the bus becomes idle.

HCAN halt mode is cleared by clearing MCR1 to 0.



Section 19 ROM (Preliminary)

To select user program mode, select a mode that enables the on-chip flash memory (mode 6 or 7), and apply a high level to the FWE pin. In this mode, on-chip supporting modules other than flash memory operate as they normally would in modes 6 and 7.

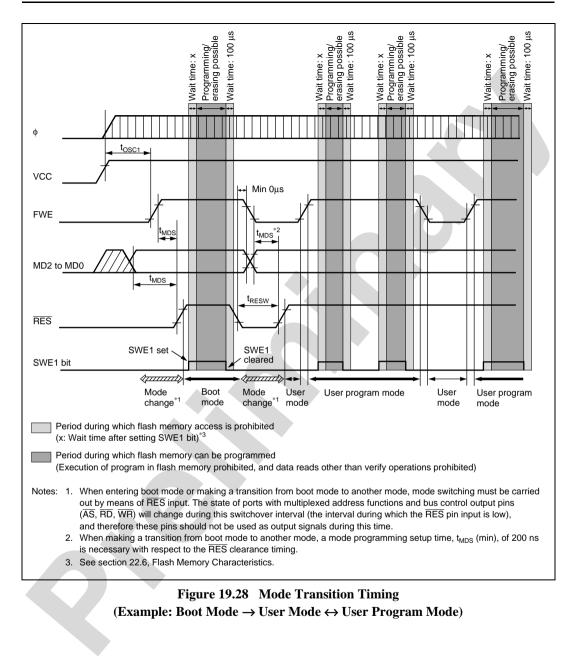

The flash memory itself cannot be read while the SWE1 bit is set to 1 to perform programming or erasing, so the control program that performs programming and erasing should be run in on-chip RAM or external memory. If the program is to be located in external memory, the instruction for writing to flash memory, and the following instruction, should be placed in on-chip RAM.

Figure 19.9 shows the procedure for executing the program/erase control program when transferred to on-chip RAM.

Figure 19.9 User Program Mode Execution Procedure

Rev. 5.00 Jan 10, 2006 page 648 of 1042 REJ09B0275-0500

Function		High- Speed	Medium- Speed	Sleep	Module Stop	Software Standby	Hardware Standby	
System cloc generator	k pulse	Functioning	Functioning	Functioning	Functioning	Halted	Halted	
CPU	Instructions Registers	Functioning	Medium-speed operation	Halted (retained)	High/medium- speed operation	Halted (retained)	Halted (undefined)	
External	NMI	Functioning	Functioning	Functioning	Functioning	Functioning	Halted	
interrupts	IRQ0–IRQ5	_						
Peripheral functions	WDT0	Functioning	Functioning	Functioning	_	Halted (retained)	Halted (reset)	
	DTC	Functioning	Medium-speed operation	Functioning	Halted (retained)	Halted (retained)	Halted (reset)	
	TPU	Functioning	Functioning	Functioning	Halted	Halted (retained)	Halted (reset)	
	PBC	_	(PBC medium- speed		(retained)			
	PPG		operation)					
	SCI0	Functioning	Functioning	Functioning	Halted (reset)	Halted (reset)	Halted (reset)	
	SCI1	_						
	SCI2	_						
	PWM							
	A/D	_						
	RAM	Functioning	Functioning	Functioning (DTC)	Functioning	Retained	Retained	
	I/O	Functioning	Functioning	Functioning	Functioning	Retained	High impedance	
	HCAN	Functioning	Functioning*	Functioning	Halted (reset)	Halted (reset)	Halted (reset)	

Table 21A.1 LSI Internal States in Each Mode

Notes: "Halted (retained)" means that internal register values are retained. The internal state is "operation suspended."

"Halted (reset)" means that internal register values and internal states are initialized. In module stop mode, only modules for which a stop setting has been made are halted (reset or retained).

* Note, however, that registers cannot be read or written to.

21A.1.1 Register Configuration

Power-down modes are controlled by the SBYCR, SCKCR, LPWRCR, and MSTPCR registers. Table 21A.2 summarizes these registers.

Name	Abbreviation	R/W	Initial Value	Address*
Standby control register	SBYCR	R/W	H'08	H'FDE4
System clock control register	SCKCR	R/W	H'00	H'FDE6
Low power control register	LPWRCR	R/W	H'00	H'FDEC
Module stop control register	MSTPCRA	R/W	H'3F	H'FDE8
A, B, C	MSTPCRB	R/W	H'FF	H'FDE9
	MSTPCRC	R/W	H'FF	H'FDEA

Note: * Lower 16 bits of the address.

21A.2 Register Descriptions

21A.2.1 Standby Control Register (SBYCR)

Bit	:	7	6	5	4	3	2	1	0
		SSBY	STS2	STS1	STS0	OPE	—	—	—
Initial va	lue :	0	0	0	0	1	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	_	_	_

SBYCR is an 8-bit readable/writable register that performs power-down mode control.

SBYCR is initialized to H'08 by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 7—Software Standby (SSBY): When making a low power dissipation mode transition by executing the SLEEP instruction, the operating mode is determined in combination with other control bits.

Note that the value of the SSBY bit does not change even when shifting between modes using interrupts.

22.2 DC Characteristics

Table 22.2 lists the DC characteristics. Table 22.3 lists the permissible output currents.

Table 22.2DC Characteristics

- Preliminary -

Conditions: $V_{cc} = PLLV_{cc} = 3.0 \text{ V}$ to 3.6 V, $PV_{cc} = 4.5 \text{ V}$ to 5.5 V, $AV_{cc} = 4.5 \text{ V}$ to 5.5 V, $V_{ref} = 4.5 \text{ V}$ to AV_{cc} , $V_{ss} = AV_{ss} = 0 \text{ V}$, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$ (regular specifications), $T_a = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (wide-range specifications)^{*1}

ltem		Symbol	Min	Тур	Max	Unit	Test Conditions
Schmitt	IRQ0 to IRQ5	V_T	$PV_{cc} imes 0.2$	_		V	
trigger input		V _T ⁺	_	-	$PV_{cc} \times 0.7$	V	_
voltage		$V_T^+ - V_T^-$	$PV_{cc} \times 0.05$	-		V	_
Input high voltage	RES, STBY, NMI, MD2 to MD0, FWE	V _{IH}	$PV_{cc} \times 0.9$		PV _{cc} + 0.3	V	
	EXTAL, OSC1	_	$V_{cc} \times 0.7$	-	V _{cc} + 0.3	V	_
	Ports 1, A to F, HRxD	_	$PV_{cc} \times 0.7$		PV _{cc} + 0.3	V	
	Port 4 and 9	_	$AV_{cc} \times 0.7$	-	AV_{cc} + 0.3	V	
Input low voltage	RES, STBY, NMI, MD2 to MD0, FWE	V _{il}	-0.3	-	$PV_{cc} \times 0.1$	V	
	EXTAL, OSC1	-	-0.3	_	$V_{cc} \times 0.2$	V	_
	Ports 1, A to F, HRxD		-0.3		$PV_{cc} \times 0.2$	V	_
	Ports 4 and 9		-0.3	_	$AV_{cc} \times 0.2$	V	
Output high	All output pins	V _{OH}	$PV_{cc} - 0.5$	_	_	V	I _{oH} = -200 μA
voltage			PV _{cc} – 1.0	—	—	V	I _{он} = —1 mA
Output low voltage	All output pins	V _{ol}	_	_	0.4	V	I _{oL} = 1.6 mA
Input leakage	RES	l I _{in}	_	_	1.0	μA	$V_{in} = 0.5 \text{ to}$
current	STBY, NMI, HRxD, MD2 to MD0, FWE	-	_	_	1.0	μA	[–] PV _{cc} – 0.5 V
	Ports 4 and 9	-	_	—	1.0	μA	V_{in} = 0.5 to AV_{cc} – 0.5 V

CLRMAC $ -$ CMP \updownarrow \updownarrow \updownarrow \updownarrow $H = Sm-4 \cdot \overline{Dm-4} + \overline{Dm-4} \cdot Rm-4 + Sm-4 \cdot Rm-4$ $N = Rm$ $Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$ $Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \overline{Rm} + Sm \cdot \overline{Dm} \cdot Rm$ DAA * \updownarrow \uparrow $T = Rm$ $\overline{Rm-1} \cdot \dots \cdot \overline{R0}$ DAA * \updownarrow \uparrow $T = Rm \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$ $C:$ decimal arithmetic carry DAS * \updownarrow \uparrow Rm $Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$ $C:$ decimal arithmetic borrow DEC $ \updownarrow$ \uparrow $T = Rm \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$ $V = Dm \cdot \overline{Rm}$ $Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$ $V = Dm \cdot \overline{Rm}$	Instruction	н	Ν	z	v	С	Definition
$N = Rm$ $Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$ $V = \overline{Sm} \cdot Dm \cdot \overline{Rm} + Sm \cdot \overline{Dm} \cdot Rm$ $C = Sm \cdot \overline{Dm} + \overline{Dm} \cdot Rm + Sm \cdot Rm$ $DAA \qquad * \uparrow \uparrow \uparrow * \uparrow N = Rm$ $Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$ $C: decimal arithmetic carry$ $DAS \qquad * \uparrow \uparrow \uparrow * \uparrow N = Rm$ $Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$ $C: decimal arithmetic borrow$ $DEC \qquad - \uparrow \uparrow \uparrow \uparrow \cdots \qquad N = Rm$ $Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$ $V = Dm \cdot \overline{Rm}$	CLRMAC	_	_	_	_	_	
$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$ $V = \overline{Sm} \cdot Dm \cdot \overline{Rm} + Sm \cdot \overline{Dm} \cdot Rm$ $C = Sm \cdot \overline{Dm} + \overline{Dm} \cdot Rm + Sm \cdot Rm$ $\overline{DAA} \qquad * \uparrow \uparrow \uparrow * \uparrow N = Rm$ $Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$ $C: decimal arithmetic carry$ $\overline{DAS} \qquad * \uparrow \uparrow \uparrow * \uparrow N = Rm$ $Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$ $C: decimal arithmetic borrow$ $\overline{DEC} \qquad - \uparrow \uparrow \uparrow \uparrow - N = Rm$ $Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$ $\overline{Z} = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$ $\overline{Z} = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$	CMP	\updownarrow	\updownarrow	\updownarrow	\updownarrow	€	$H = Sm-4 \cdot \overline{Dm-4} + \overline{Dm-4} \cdot Rm-4 + Sm-4 \cdot Rm-4$
$V = \overline{Sm} \cdot Dm \cdot \overline{Rm} + Sm \cdot \overline{Dm} \cdot Rm$ $C = Sm \cdot \overline{Dm} + \overline{Dm} \cdot Rm + Sm \cdot Rm$ $\overline{DAA} \qquad * \uparrow \uparrow \uparrow * \uparrow N = Rm$ $Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$ $C: \text{ decimal arithmetic carry}$ $\overline{DAS} \qquad * \uparrow \uparrow \uparrow * \uparrow N = Rm$ $Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$ $C: \text{ decimal arithmetic borrow}$ $\overline{DEC} \qquad - \uparrow \uparrow \uparrow \uparrow - N = Rm$ $Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$ $V = Dm \cdot \overline{Rm}$							N = Rm
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							$Z = \overline{Rm} \cdot \overline{Rm} - 1 \cdot \dots \cdot \overline{R0}$
DAA* \uparrow \uparrow \uparrow * \uparrow N = Rm Z = $\overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$ C: decimal arithmetic carryDAS* \uparrow \uparrow * \uparrow N = Rm Z = $\overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$ C: decimal arithmetic borrowDEC- \uparrow \uparrow \uparrow \uparrow N = Rm Z = $\overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$ V = $Dm \cdot \overline{Rm}$							$V = \overline{Sm} \cdot Dm \cdot \overline{Rm} + Sm \cdot \overline{Dm} \cdot Rm$
$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$ $C: \text{ decimal arithmetic carry}$ $DAS \qquad * \uparrow \uparrow \uparrow * \uparrow N = Rm$ $Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$ $C: \text{ decimal arithmetic borrow}$ $DEC \qquad - \uparrow \uparrow \uparrow \uparrow - N = Rm$ $Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$ $V = Dm \cdot \overline{Rm}$							$C = Sm \cdot \overline{Dm} + \overline{Dm} \cdot Rm + Sm \cdot Rm$
$\begin{array}{c c} C: \mbox{ decimal arithmetic carry} \\ \hline DAS & * \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	DAA	*	\updownarrow	\updownarrow	*	\updownarrow	N = Rm
DAS * \uparrow \uparrow \uparrow * \uparrow N = Rm $Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$ C: decimal arithmetic borrow DEC $- \uparrow$ \uparrow \uparrow $-$ N = Rm $Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$ V = Dm $\cdot \overline{Rm}$							$Z = \overline{Rm} \cdot \overline{Rm} - 1 \cdot \dots \cdot \overline{R0}$
$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$ C: decimal arithmetic borrow $\overline{DEC} \qquad - \updownarrow \qquad \updownarrow \qquad \uparrow \qquad = \overline{Rm}$ $Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$ $V = Dm \cdot \overline{Rm}$							C: decimal arithmetic carry
$\begin{array}{c} C: \text{ decimal arithmetic borrow} \\ \hline DEC & \updownarrow & \uparrow & \frown & N = Rm \\ & & Z = \overline{Rm} \cdot \overline{Rm} - 1 \cdot \dots \cdot \overline{R0} \\ & & V = Dm \cdot \overline{Rm} \end{array}$	DAS	*	\updownarrow	\updownarrow	*	\updownarrow	N = Rm
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$
$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$ $V = Dm \cdot \overline{Rm}$							C: decimal arithmetic borrow
$V = Dm \cdot \overline{Rm}$	DEC	—	\updownarrow	\updownarrow	\updownarrow		N = Rm
							$Z = \overline{Rm} \cdot \overline{Rm} - 1 \cdot \dots \cdot \overline{R0}$
							$V = Dm \cdot \overline{Rm}$
DIVXS $ \uparrow$ \uparrow $ N = Sm \cdot Dm + Sm \cdot Dm$	DIVXS	—	\updownarrow	\updownarrow	—		$N = Sm \cdot \overline{Dm} + \overline{Sm} \cdot Dm$
$Z = \overline{Sm} \cdot \overline{Sm} - 1 \cdot \dots \cdot \overline{S0}$							$Z = \overline{Sm} \cdot \overline{Sm-1} \cdot \dots \cdot \overline{S0}$
$\overline{\text{DIVXU}}$ — \updownarrow \updownarrow — — N = Sm	DIVXU	_	\updownarrow	\updownarrow			N = Sm
$Z = \overline{Sm} \cdot \overline{Sm} - 1 \cdot \dots \cdot \overline{S0}$							$Z = \overline{Sm} \cdot \overline{Sm-1} \cdot \dots \cdot \overline{S0}$
EEPMOV — — — — —	EEPMOV	_					
EXTS $-\uparrow \uparrow 0 - N = Rm$	EXTS	—	\updownarrow	\updownarrow	0	—	N = Rm
$Z = \overline{Rm} \cdot \overline{Rm} - 1 \cdot \dots \cdot \overline{R0}$							$Z = \overline{Rm} \cdot \overline{Rm} - 1 \cdot \dots \cdot \overline{R0}$
EXTU $-$ 0 \updownarrow 0 $-$ Z = $\overline{Rm} \cdot \overline{Rm} - 1 \cdot \dots \cdot \overline{R0}$	EXTU	_	0	\updownarrow	0	_	$Z = \overline{Rm} \cdot \overline{Rm} - 1 \cdot \dots \cdot \overline{R0}$
$\frac{1}{1} \text{INC} \qquad - \text{ (c) } $	INC	_	\updownarrow	\updownarrow	\updownarrow		N = Rm
$Z = \overline{Rm} \cdot \overline{Rm} - 1 \cdot \dots \cdot \overline{R0}$							$Z = \overline{Rm} \cdot \overline{Rm} - 1 \cdot \dots \cdot \overline{R0}$
$V = \overline{Dm} \cdot Rm$							$V = \overline{Dm} \cdot Rm$
JMP — — — — —	JMP	_	_	_		_	
JSR	JSR					_	
LDC $\uparrow \uparrow \uparrow \uparrow \uparrow$ Stores the corresponding bits of the result.	LDC	\updownarrow	\updownarrow	\updownarrow	\updownarrow	\$	Stores the corresponding bits of the result.
No flags change when the operand is EXR.							No flags change when the operand is EXR.
LDM	LDM		_	—			
LDMAC	LDMAC	—	—	—			
MAC							

Appendix B Internal I/O Register

HFF12ISCRHIRQ3SCBIRQ3SCIRC3SC <th>Address</th> <th>Register Name</th> <th>Bit 7</th> <th>Bit 6</th> <th>Bit 5</th> <th>Bit 4</th> <th>Bit 3</th> <th>Bit 2</th> <th>Bit 1</th> <th>Bit 0</th> <th>Module Name</th> <th>Data Bus Width</th>	Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
HTE13 ISCR. IRG3SCA IRG3SCA IRG2SCA IRG15CB IRG15CB IRG05CB IRG05CA HTF14 IER — — IRG5F IRG24C IRG35CB IRG21E IRG01E IRG05C HTF14 IER — — IRG5F IRG24F IRG25 IRG22E IRG1F IRG01E IRG02E IRG1E IRG02E IRG1E IRG01E IRG02E IRG1E IRG1E IRG03CA HTF15 DTCERA DTCEGA DTCE	H'FE12	ISCRH	_	_	_	_	IRQ5SCB	IRQ5SCA	IRQ4SCB	IRQ4SCA		8
HFE15 ISR - - IRQSF IRQ3F IICEG3 IICEG1 IICEG1 IICEG1 IICEG1 IICEG1 IICEG7 IICEG7 IICEG6 IICEG5 IICEG3 IICEG2 IICEG1 IIICEG9 IIICEG9 IIIICEG9 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	H'FE13	ISCRL	IRQ3SCB	IRQ3SCA	IRQ2SCB	IRQ2SCA	IRQ1SCB	IRQ1SCA	IRQ0SCB	IRQ0SCA	controller	
HFE16 DTCERA DTCEA4 DTCEA4 DTCEA3 DTCEA2 DTCEA1 DTCEA0 DTC 8 HFE17 DTCERB DTCECB7 DTCEB6 DTCEB5 DTCEB4 DTCEB3 DTCEB2 DTCEB1 DTCEB0 DTCEB0 HTE13 DTCECC7 DTCEC60 DTCE60 DTCE60 DTCE60 DTCE60 DTCE610 DTCE60 DTCE60 DTCE60 DTCE60 DTCE60	H'FE14	IER	_	_	IRQ5E	IRQ4E	IRQ3E	IRQ2E	IRQ1E	IRQ0E		
HFE17 DTCERB DTCEB7 DTCEB6 DTCEB6 DTCEB3 DTCEB2 DTCEB1 DTCEB0 HFE18 DTCERC DTCEC7 DTCEC6 DTCEC5 DTCEC4 DTCED3 DTCED2 DTCED0 DTCEC7 DTCEC6 DTCEC65 DTCEC4 DTCED2 DTCED1 DTCED0 DTCED0 DTCEC60 DTCE60 DTCE60 </td <td>H'FE15</td> <td>ISR</td> <td>_</td> <td>_</td> <td>IRQ5F</td> <td>IRQ4F</td> <td>IRQ3F</td> <td>IRQ2F</td> <td>IRQ1F</td> <td>IRQ0F</td> <td>_</td> <td></td>	H'FE15	ISR	_	_	IRQ5F	IRQ4F	IRQ3F	IRQ2F	IRQ1F	IRQ0F	_	
HFE18 DTCERC DTCEC7 DTCEC6 DTCEC6 DTCEC3 DTCEC2 DTCEC1 DTCEC0 HFE19 DTCERD DTCED7 DTCED6 DTCED6 DTCED3 DTCED3 DTCED3 DTCED2 DTCED1 DTCED0 HFE14 DTCERF DTCEF7 DTCEF6 DTCEF6 DTCEF5 DTCEF4 DTCEF2 DTCEF6 DTCEF6 DTCEF3 DTCEF2 DTCEF1 DTCEF0 HFE16 DTCERG DTCEF6 DTCE65 DTCEG4 DTCEG2 DTCEC2 DTCEC61 DTCE60 HFE17 DTCERG DTCEG6 DTCEG5 DTCEC4 DTVEC3 DTVEC2 DTVEC1 DTVEC3 DTVEC4 DTVEC3 DTVEC4 DTVEC3 DTVEC4 DTVEC3 DTVEC4 DTVEC4 DTVEC3 DTVEC4 DTVEC3 DTVEC4 DTVEC3 DTVEC4 DTVEC3 DTVEC4 DTVEC3 DTVEC4 DTVEC4 DTVEC3 DTVEC4 DTVEC3 DTVEC4 DTVEC3 DTVEC4 DTVE72 DTVE72 DTNC4 DON0 PD04 PD010 PD010 PD03 PD011 PD11 NDR11 NDR1	H'FE16	DTCERA	DTCEA7	DTCEA6	DTCEA5	DTCEA4	DTCEA3	DTCEA2	DTCEA1	DTCEA0	DTC	8
HFE19 DTCERD DTCED7 DTCED6 DTCED5 DTCED3 DTCED2 DTCED1 DTCED0 HFE1A DTCERE DTCEE7 DTCEE6 DTCEE6 DTCEE5 DTCEE3 DTCE22 DTCE11 DTCE60 HFE1B DTCERF DTCEF7 DTCE66 DTCE65 DTCEF3 DTCEF2 DTCEF2 DTCE61 DTCE60 HFE1P DTCCR SUCEG7 DTCE60 DTCE65 DTCE64 DTCE52 DTCE62 DTCE61 DTCE60 HFE1P DTCCR SWDTE DTVEC6 DTVEC5 DTVEC4 DTVEC2 DTVEC2 DTVEC1 DTVEC0 HFE27 PMR G3INV G3CMS0 G2CMS1 G3CMS0 G2MS1 G3CMS0 G2MS1 MDR3 NDER1 NDER9 NDE8 HFE28 NDERL NDER1 NDER14 NDER13 NDER11 NDER10 NDE8 NDE8 HFE28 PODR POD7 POD6 POD5 PO14 POD1 PO09 POD8 HFE20 NDR41 NDR13 NDR13 NDR11 NDR10 NDR3 ND	H'FE17	DTCERB	DTCEB7	DTCEB6	DTCEB5	DTCEB4	DTCEB3	DTCEB2	DTCEB1	DTCEB0	_	
HFE1A DTCEEF DTCEEF DTCEE5 DTCEE4 DTCEE3 DTCEE2 DTCEE1 DTCEE0 HFE1B DTCEFF DTCEF7 TCEF6 DTCEF6 DTCEF4 DTCEF3 DTCEF2 DTCEF1 DTCEF0 HFE1C DTCERG DTCEG7 DTCEG6 DTCEG6 DTCEG4 DTCEG3 DTCEG2 DTCEG1 DTCEG0 HFE1F DTVECR SWDTE DTVEC6 DTVEC6 DTVEC4 DTVEC3 DTVEC2 DTVEC1 DTVEC0 HFE28 PCR G3CMS1 G3CMS0 G2CMS1 G2MS0 G1CMS1 G1CMS0 G0CMS1 G0CMS0 PPG 8 HFE28 NDERH NDER1 NDER14 NDER13 NDER11 NDER11 NDER2 NDER1 NDER0 HFE29 NDRH POD15 POD14 POD13 POD12 POD11 POD10 POD3 POD3 POD4 POD3 POD2 POD1 POD3 POD4 POD3 POD4 POD3 POD1 POD0 POD3 POD4 POD3 PO11 POD10 POD3 PO14 PO11	H'FE18	DTCERC	DTCEC7	DTCEC6	DTCEC5	DTCEC4	DTCEC3	DTCEC2	DTCEC1	DTCEC0	_	
HFE1B DTCEFF DTCEF6 DTCEF5 DTCEF4 DTCEF3 DTCEF2 DTCEF1 DTCEF0 HFE1C DTCEGG DTCEG3 DTCEG3 DTCEG3 DTCEG3 DTCEG3 DTCEG3 DTCEG4 DTCEG3 DTCEG3 DTCEG4 DTCEG3	H'FE19	DTCERD	DTCED7	DTCED6	DTCED5	DTCED4	DTCED3	DTCED2	DTCED1	DTCED0	_	
HFE1C DTCERG DTCEG7 DTCEG6 DTCEG5 DTCEG4 DTCEG3 DTCEG2 DTCEG1 DTCEG3 DTCEG4 DTCEG4 DTVEC4 DTVEC3 DTVEC4 DTVEC4 DTVEC4 DTVEC3 DTVEC4 DTVEC4 DTVEC4 DTVEC4 DTVEC3 DTVEC4 DTVEC4 DTVEC4 DTVEC3 DTVEC4 DTVEC4 DTVEC3 DTVEC4 DTVEC4 DTVEC3 DTVEC4 DTVEC4 DTVEC4 DTVEC4 DTVEC3 DTVEC4 DTVEC3 DTVEC4 DTVEC4 DTVEC3 DTVEC4 DTVEC4 DTVEC3 DTVEC4 DTVEC4 DTVEC3 DTVEC4 DTVEC3 DTVEC4 DTVEC3 DTVEC4 DTVEC3 DTVE74 DTVE74 DTVE74 DTVE74	H'FE1A	DTCERE	DTCEE7	DTCEE6	DTCEE5	DTCEE4	DTCEE3	DTCEE2	DTCEE1	DTCEE0	_	
HFE1F DTVECR SWDTE DTVEC6 DTVEC6 DTVEC4 DTVEC3 DTVEC2 DTVEC1 DTVEC0 HFE26 PCR G3CMS1 G3CMS0 G2CMS1 G2CMS0 G1CMS1 G1CMS0 G0CMS1 G0CMS0 PPG 8 HFE27 PMR G3INV G2INV G1INV G0INV G3NOV G2NOV G1NOV G0NOV G0NOV HFE28 NDER1 NDER15 NDER14 NDER13 NDER12 NDER11 NDER2 NDER3 NDER3 HDER4 NDER4 NDER3 NDER2 NDER1 NDER6 HDE7 NDE7 NDE7 NDE7 NDE7 NDE7 POD14 POD12 POD11 POD10 POD9 POD8 HFE24 PODRL POD7 POD6 POD5 POD4 POD3 POD2 POD1 POD0 POD8 POD4 PO11 NDR10 NDR8 NDR8 NDR4 NDR1 NDR1 NDR0 NDR3 NDR2 NDR1 NDR0 NDR2 NDR1 NDR0 NDR3 NDR4 NDR3 NDR2 NDR1 NDR0	H'FE1B	DTCERF	DTCEF7	DTCEF6	DTCEF5	DTCEF4	DTCEF3	DTCEF2	DTCEF1	DTCEF0	_	
HFE26 PCR G3CMS1 G3CMS0 G2CMS1 G2CMS0 G1CMS1 G1CMS0 G0CMS1 G0CMS0 PPG 8 HFE27 PMR G3INV G2INV G1INV G0INV G3NOV G2NOV G1NOV G0NOV G0NON G0NON G0N	H'FE1C	DTCERG	DTCEG7	DTCEG6	DTCEG5	DTCEG4	DTCEG3	DTCEG2	DTCEG1	DTCEG0	_	
HFE27 PMR G3INV G2INV G1INV G0INV G3NOV G2NOV G1NOV G0NOV HFE28 NDERH NDER15 NDER14 NDER13 NDER12 NDER11 NDER10 NDER9 NDER8 HFE29 NDERL NDER7 NDER6 NDER5 NDER4 NDER3 NDER2 NDER1 NDER0 HFE20 NDRH POD15 POD14 POD13 POD12 POD11 POD10 POD9 POD8 HFE20 NDRH POD7 POD6 POD5 POD4 POD3 POD2 POD1 POD0 HFE20 NDR15 NDR14 NDR3 NDR12 NDR11 NDR0 NDR9 NDR8 HFE21 NDR ^{4**} NDR7 NDR6 NDR5 NDR4 NDR3 NDR2 NDR1 NDR0 HFE25 NDR. ^{4***} - - - NDR3 NDR2 NDR1 NDR0 HFE30 P1DD P17DDR P16DDR P15DDR P14DDR P13DDR P12DDR P14DDR P40DDR HF530	H'FE1F	DTVECR	SWDTE	DTVEC6	DTVEC5	DTVEC4	DTVEC3	DTVEC2	DTVEC1	DTVEC0	_	
HFE28 NDERH NDER15 NDER14 NDER13 NDER12 NDER11 NDER10 NDER9 NDER8 HFE29 NDERL NDER7 NDER6 NDER5 NDER4 NDER3 NDER2 NDER1 NDER0 HFE24 PODRH POD15 POD14 POD13 POD12 POD11 POD10 POD9 POD8 HFE28 PODR POD7 POD6 POD5 POD4 POD3 POD2 POD1 POD0 HFE20 NDR14 NDR14 NDR13 NDR12 NDR11 NDR9 NDR8 HFE21 NDR1*** NDR7 NDR6 NDR5 NDR4 NDR3 NDR2 NDR1 NDR0 HFE24 NDR.**** NDR3 NDR2 NDR1 NDR0 HFE30 P1DD P16DDR P15DDR P14DDR P13DDR P12DDR P10DDR P40DDR HF530 PADDR P26DDR P65DDR P64DDR P63DDR P62DDR P61DDR P60DDR HF532 PDDR P27DR P66DDR<	H'FE26	PCR	G3CMS1	G3CMS0	G2CMS1	G2CMS0	G1CMS1	G1CMS0	G0CMS1	G0CMS0	PPG	8
HFE29 NDERL NDER1 NDER7 NDER6 NDER5 NDER4 NDER3 NDER2 NDER1 NDER0 HFE24 PODRH POD15 POD14 POD13 POD12 POD11 POD10 POD9 POD8 HFE26 PODRL POD7 POD6 POD5 POD4 POD3 POD2 POD1 POD0 HFE20 NDR1** NDR15 NDR14 NDR13 NDR12 NDR11 NDR10 NDR9 NDR8 HFE20 NDR1*** NDR7 NDR6 NDR5 NDR4 NDR3 NDR2 NDR1 NDR0 HFE25 NDR1*** NDR1* NDR6 NDR5 NDR4 NDR3 NDR2 NDR1 NDR0 HF529 NDR1*** NDR1*** NDR11 NDR0 NDR0 NDR3 NDR2 NDR1 NDR0 HF530 P1DDR P17DDR P16DDR P14DDR P13DDR P12DDR P11DDR P10DDR P10DDR P10DR P10DR P10DR P10DR P10DR P10DR P10DR P10DR P10DR P10DR <td>H'FE27</td> <td>PMR</td> <td>G3INV</td> <td>G2INV</td> <td>G1INV</td> <td>G0INV</td> <td>G3NOV</td> <td>G2NOV</td> <td>G1NOV</td> <td>G0NOV</td> <td>_</td> <td></td>	H'FE27	PMR	G3INV	G2INV	G1INV	G0INV	G3NOV	G2NOV	G1NOV	G0NOV	_	
HFE2A PODRH POD15 POD14 POD13 POD12 POD11 POD10 POD9 POD8 HFE2B PODRL POD7 POD6 POD5 POD4 POD3 POD2 POD1 POD0 HFE2C NDR1** NDR15 NDR14 NDR13 NDR12 NDR11 NDR10 NDR9 NDR3 HFE2C NDRL** NDR7 NDR6 NDR5 NDR4 NDR3 NDR2 NDR1 NDR0 HFE2E NDRL**2 NDR1* NDR6 NDR5 NDR4 NDR3 NDR2 NDR1 NDR0 HFE2E NDRL**2 - - - NDR11 NDR10 NDR9 NDR3 HFE25 NDRL**2 - - - NDR3 NDR2 NDR1 NDR0 HFE30 P1DDR P16DDR P15DDR P14DDR P13DDR P12DDR P10DDR P00DDR HFE33 PBDDR PB7DDR P66DDR PE5DDR PE4DDR PE3DDR PE3DDR P61DDR P00DR HF535 PCDDR PC6DDR <td>H'FE28</td> <td>NDERH</td> <td>NDER15</td> <td>NDER14</td> <td>NDER13</td> <td>NDER12</td> <td>NDER11</td> <td>NDER10</td> <td>NDER9</td> <td>NDER8</td> <td>_</td> <td></td>	H'FE28	NDERH	NDER15	NDER14	NDER13	NDER12	NDER11	NDER10	NDER9	NDER8	_	
HFE2B PODRL POD7 POD6 POD5 POD4 POD3 POD2 POD1 POD0 HFE2C NDRH** NDR15 NDR14 NDR13 NDR12 NDR11 NDR10 NDR9 NDR8 HFE2C NDRL** NDR15 NDR6 NDR5 NDR4 NDR3 NDR2 NDR1 NDR0 HFE2E NDRL** NDR1 NDR6 NDR5 NDR4 NDR3 NDR2 NDR1 NDR0 H'FE2F NDR1** - - - - NDR3 NDR2 NDR1 NDR0 H'FE39 P1DDR P17DDR P16DDR P15DDR P14DDR P13DDR P12DDR P10DDR P40DDR H'FE39 PADDR - - PA5DDR** PA4DDR** PA3DDR PA2DDR PA1DDR P40DDR P40DDR H'FE30 PDDR P67DDR P66DDR PE5DDR PE4DDR PE3DDR PE2DR P11DDR P00DR P0P0P0 P0 <pdr< td=""> P66DDR PE5DDR PE4DDR PE3DDR PE2DDR P11DDR P00DR <td< td=""><td>H'FE29</td><td>NDERL</td><td>NDER7</td><td>NDER6</td><td>NDER5</td><td>NDER4</td><td>NDER3</td><td>NDER2</td><td>NDER1</td><td>NDER0</td><td>_</td><td></td></td<></pdr<>	H'FE29	NDERL	NDER7	NDER6	NDER5	NDER4	NDER3	NDER2	NDER1	NDER0	_	
HFE2CNDR1*sNDR14NDR13NDR12NDR11NDR10NDR9NDR8HFE2DNDRL*2NDR7NDR6NDR5NDR4NDR3NDR2NDR1NDR0HFE2ENDR1***NDR11NDR10NDR9NDR8HFE2FNDR1***NDR3NDR2NDR1NDR0HFE3PP1DDRP17DDRP16DDRP15DDRP14DDRP13DDRP12DDRP11DDRP10DDRVO port8HFE39PADRPA5DDR**PA4DDR**PA3DDRPA2DDRPA1DDRPA0DDRVO port8HFE39PADRPA5DDR**PA4DDR**PA3DDRPA2DDRPA1DDRPA0DDRHFE39PADRPA5DDR**PA4DDR**PA3DDRPA2DDRPA1DDRPA0DDRHFE39PADRPE7DDRPE6DDRPE5DDRPE4DDRPE3DDRPE2DDRPE1DDRPE0DDRHFE30PDDRPD7DDRPC6DDRPC5DDRPE4DDRPE3DDRPE2DDRPE1DDRPE0DDRHFE30PEDRPE7DDRPE6DDRPE5DDRPE4DDRPE3DDRPE2DDRPE1DDRPE0DDRHFE30PEDRPE7DDRPE6DDRPE5DDRPE4DDRPE3DDRPE2DDRPE1DDRPE0DDRHFE41PBPCRPB7DCRPE6DDRPE5DDRPE4DCRPE3PCRPA2PCRPA1PCRPA0PCRHFE42PCPCRPE7PCRPE6PCR<	H'FE2A	PODRH	POD15	POD14	POD13	POD12	POD11	POD10	POD9	POD8	_	
HFE2DNDRL*2NDR7NDR6NDR5NDR4NDR3NDR2NDR1NDR0H'FE2ENDRH**2NDR11NDR10NDR9NDR8H'FE2FNDR1*2NDR1NDR0NDR0H'FE30P1DDRP17DDRP16DDRP15DDRP14DDRP13DDRP12DDRP11DDRP10DDRI/O port8H'FE39PADRPA5DDR*5PA4DDR*5PA3DDRPA2DDRPA1DDRPA0DDRNOR1NDR1H'FE38PCDDRPB7DDRPB6DDRPB5DDRPB4DDRPB3DDRPB2DDRPB1DDRPB0DDRP60DDRH'FE36PDDRPC7DDRPC6DDRPC5DDRPC4DDRPC3DDRPC2DDRPC1DDRPC0DDRH'FE36PDDRPD7DDRPD6DDRPD5DDRPD4DDRPD3DDRPD2DDRPD1DDRPD0DDRH'FE36PEDDRPE7DDRPF6DDRPF5DDRPF4DDRPF3DDRPE2DRPE1DDRPE0DDRH'FE36PFDDRPF7DDRPF6DDRPF5DDRPF4DDRPF3DDRPE2DRPE1DDRPE0DDRH'FE37PAPCRPA5PCR*PA3PCRPA3PCRPA2PCRPA1PCRPA0PCRH'FE38PCDRPF7DDRPF6DDRPF5DDRPF4DDRPF3DDRPE2DDRPE1DDRPE0DDRH'FE38PEDDRPF7DDRPF6DDRPF5DDRPF4DDRPF3DDRPE2DRPE1DDRPE0DRH	H'FE2B	PODRL	POD7	POD6	POD5	POD4	POD3	POD2	POD1	POD0	_	
HFE2ENDRH**NDR11NDR10NDR9NDR8H'FE2FNDRL**2NDR3NDR2NDR1NDR0H'FE30P1DDRP17DDRP16DDRP15DDRP14DDRP13DDRP12DDRP11DDRP10DDRP10DDRH'FE39PADDRPA5DDR**PA4DDR**PA3DDRPA2DDRPA1DDRPA0DDRPA0DDRH'FE34PBDDRPB7DDRPB6DDRPB5DDRPB5DDRPB4DDRPB3DDRPB2DDRPB1DDRPB0DDRH'FE36PCDDRPC7DDRPC6DDRPC5DDRPC4DDRPC3DDRPC2DDRPC1DDRPC0DDRH'FE32PDDRPD7DDRPD6DDRPD5DDRPD4DDRPD3DDRPD2DDRPD1DDRPD0DDRH'FE36PFDDRPF7DDRPE6DDRPE5DDRPE4DDRPF3DDRPE2DDRPE1DDRPE0DDRH'FE36PFDDRPF7DDRPF6DDRPF5DDRPF4DDRPF3DDRPF2DDRPF1DDRPE0DRH'FE36PFDRPF7DRPF6DRPF5DRPF4DRPF3DRPA2PCRPA1PCRPA0PCRH'FE34PAPCRPA5PCR**PA4PCR**PA3PCRPA2PCRPA1PCRPA0PCRH'FE41PBPCRPB7PCRPB6PCRPD5PCRPD4PCRPD3PCRPD3PCRPD1PCRPD0PCRH'FE44PEPCRPE7PCRPE6PCRPE5PCRPE4PCRPE3PCRPE2PCRPE1PCRPE0PCRH'FE44 </td <td>H'FE2C</td> <td>NDRH^{*2}</td> <td>NDR15</td> <td>NDR14</td> <td>NDR13</td> <td>NDR12</td> <td>NDR11</td> <td>NDR10</td> <td>NDR9</td> <td>NDR8</td> <td>_</td> <td></td>	H'FE2C	NDRH ^{*2}	NDR15	NDR14	NDR13	NDR12	NDR11	NDR10	NDR9	NDR8	_	
H'FE2FNDRL*2NDR3NDR2NDR1NDR0H'FE30P1DDRP17DDRP16DDRP15DDRP14DDRP13DDRP12DDRP11DDRP10DDRVO port8H'FE39PADDRPA5DDR**PA4DDR**PA3DDRPA2DDRPA1DDRPA0DDRPA0DDRH'FE34PBDDRPB7DDRPB6DDRPB5DDRPB4DDRPB3DDRPB2DDRPB1DDRPB0DDRPB0DDRH'FE32PDDRPC7DDRPC6DDRPC5DDRPC4DDRPC3DDRPD2DDRPD1DDRPD0DDRH'FE32PEDDRPE7DDRPE6DDRPE5DDRPE4DDRPE3DDRPE2DDRPE1DDRPE0DDRH'FE34PEDDRPF7DDRPF6DDRPF5DDRPF4DDRPF3DDRPF2DDRPF1DDRPF0DDRH'FE44PAPCRPA5PCR*PA4PCR**PA3PCRPA2PCRPA1PCRPE0PCRH'FE44PECRPE7PCRPE6PCRPD5PCRPD4PCRPC3PCRPE3PCRPE1PCRPE0PCRH'FE44PEPCRPE7PCRPE6PCRPE5PCRPE4PCRPE3PCRPE2PCRPE1PCRPE0PCRH'FE44PEPCRPE7PCRPE6PCRPE5PCRPE4PCRPE3PCRPE3PCRPE1PCRPE0PCRH'FE44PEPCRPE7PCRPE6PCRPE5PCRPE4PCRPE3PCRPE2PCRPE1PCRPE0PCRH'FE44PBODRPB70DRPB60DRPE5PCRPE4PCRPE3PCRPE3PCRPE1P	H'FE2D	NDRL*2	NDR7	NDR6	NDR5	NDR4	NDR3	NDR2	NDR1	NDR0	_	
H'FE30P1DDRP17DDRP16DDRP15DDRP14DDRP13DDRP12DDRP11DDRP10DDRI/O port8H'FE39PADDRPA5DDR**PA4DDR**PA3DDRPA2DDRPA1DDRPA0DDRPA0DDRH'FE34PBDDRPB7DDRPB6DDRPB5DDRPB5DDRPB4DDRPB3DDRPB2DDRPB1DDRPB0DDRH'FE38PCDDRPC7DDRPC6DDRPC5DDRPC4DDRPC3DDRPC2DDRPC1DDRPC0DDRH'FE30PDDRPD7DDRPD6DDRPD5DDRPD4DDRPD3DDRPD2DDRPD1DDRPD0DDRH'FE32PFDDRPF7DDRPF6DDRPF5DDRPF4DDRPF3DDRPF2DDRPF1DDRPF0DRH'FE32PFDDRPF7DDRPF6DRPF5DDRPF4DRPF3DRPF2DRPF1DDRPF0DRH'FE41PBPCRPB7PCRPB6PCRPB5PCRPB4PCRPB3PCRPB2PCRPB1PCRPB0PCRH'FE42PCPCRPC7PCRPC6PCRPC5PCRPC4PCRPC3PCRPC2PCRPC1PCRPD0PCRH'FE43PDPCRPD7PCRPD6PCRPD5PCRPB4PCRPB3PCRPB2PCRPB1PCRPB0PCRH'FE44PEPCRPE7PCRPE6PCRPE5PCRPE4PCRPE3PCRPE2PCRPE1PCRPE0PCRH'FE44PB0DRPB70DRPB60DRPB50DRPB40DR**PA30DRPA20DRPA10DRPA00DRH'FE44PB0DRPB70DRPB60DRPB50DRPB40DR**	H'FE2E	NDRH*2	_	_	_	_	NDR11	NDR10	NDR9	NDR8	_	
H'FE39PADDR——PA5DDR**PA4DDR**PA3DDRPA2DDRPA1DDRPA0DDRH'FE34PBDDRPB7DDRPB6DDRPB5DDRPB4DDRPB3DDRPB2DDRPB1DDRPB0DDRH'FE38PCDDRPC7DDRPC6DDRPC5DDRPC4DDRPC3DDRPC2DDRPC1DDRPC0DDRH'FE30PDDDRPD7DDRPD6DDRPD5DDRPD4DDRPD3DDRPD2DDRPE1DDRPE0DDRH'FE30PEDDRPE7DDRPE6DDRPE5DDRPE4DDRPE3DDRPE2DDRPE1DDRPE0DDRH'FE32PFDDRPF7DDRPF6DDRPF5DDRPF4DDRPF3DDRPF2DDRPF0DDRH'FE40PAPCR——PA5PCR**5PA4PCR**5PA3PCRPA2PCRPA1PCRPA0PCRH'FE41PBPCRPB7PCRPB6PCRPB5PCRPB4PCRPB3PCRPB2PCRPB1PCRPB0PCRH'FE42PCPCRPC7PCRPC6PCRPC5PCRPC4PCRPC3PCRPC2PCRPC1PCRPC0PCRH'FE43PDPCRPD7PCRPD6PCRPD5PCRPD4PCRPD3PCRPD2PCRPD1PCRPD0PCRH'FE44PEPCRPE7PCRPE6PCRPE5PCRPE4PCRPE3PCRPE3PCRPE1PCRPE0PCRH'FE44PB0DRPB70DRPB60DRPE50DRPE4PCRPE3PCRPE3PCRPE1PCRPE0PCRH'FE44PB0DRPB70DRPB60DRPE50DRPE4PCRPE3PCRPE30DRPA20DRPA10DRPA00DR <td>H'FE2F</td> <td>NDRL^{*2}</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>NDR3</td> <td>NDR2</td> <td>NDR1</td> <td>NDR0</td> <td>_</td> <td></td>	H'FE2F	NDRL ^{*2}	_	_	_	_	NDR3	NDR2	NDR1	NDR0	_	
H'FE3APBDDRPB7DDRPB6DDRPB5DDRPB4DDRPB3DDRPB2DDRPB1DDRPB0DDRH'FE3BPCDDRPC7DDRPC6DDRPC5DDRPC4DDRPC3DDRPC2DDRPC1DDRPC0DDRH'FE3CPDDDRPD7DDRPD6DDRPD5DDRPD4DDRPD3DDRPD2DDRPD1DDRPD0DDRH'FE3DPEDDRPE7DDRPE6DDRPE5DDRPE4DDRPE3DDRPE2DDRPE1DDRPE0DDRH'FE3EPFDDRPF7DDRPF6DDRPF5DDRPF4DDRPF3DDRPF2DDRPF1DDRPF0DDRH'FE40PAPCRPA5PCR**PA4PCR**PA3PCRPA2PCRPA1PCRPA0PCRH'FE41PBPCRPB7PCRPB6PCRPB5PCRPB4PCRPB3PCRPB2PCRPB1PCRPB0PCRH'FE42PCPCRPC7PCRPC6PCRPC5PCRPC4PCRPC3PCRPC2PCRPC1PCRPC0PCRH'FE43PDPCRPD7PCRPD6PCRPD5PCRPD4PCRPD3PCRPD2PCRPD1PCRPD0PCRH'FE44PEPCRPE7PCRPE6PCRPE5PCRPE4PCRPE3PCRPE3PCRPE1PCRPE0PCRH'FE44PENCRPE7DCRPE6PCRPE5PCRPE4PCRPE3PCRPE3PCRPE1PCRPE0PCRH'FE44PENCRPE7OCRPE6PCRPE5PCRPE4PCRPE3PCRPE3ODRPA1ODRPA0ODRH'FE48PB0DRPB70DRPB60DRPB50DRPB40DR**PA30DRPA20DRPB10DRPB00	H'FE30	P1DDR	P17DDR	P16DDR	P15DDR	P14DDR	P13DDR	P12DDR	P11DDR	P10DDR	I/O port	8
H'FE3BPCDDRPC7DDRPC60DRPC5DDRPC4DDRPC3DDRPC2DDRPC1DDRPC0DDRH'FE3CPDDRPD7DDRPD6DDRPD5DDRPD4DDRPD3DDRPD2DDRPD1DDRPD0DDRH'FE3DPEDDRPE7DDRPE6DDRPE5DDRPE4DDRPE3DDRPE2DDRPE1DDRPE0DDRH'FE3DPEDDRPF7DDRPF6DDRPF5DDRPF4DDRPF3DDRPF2DDRPF1DDRPF0DDRH'FE40PAPCRPA5PCR**PA4PCR**PA3PCRPA2PCRPA1PCRPA0PCRH'FE41PBPCRPB7PCRPB6PCRPB5PCRPB4PCRPB3PCRPB2PCRPB1PCRPB0PCRH'FE42PCPCRPC7PCRPC6PCRPC5PCRPC4PCRPC3PCRPC2PCRPC1PCRPD0PCRH'FE43PDPCRPD7PCRPD6PCRPD5PCRPD4PCRPD3PCRPD2PCRPD1PCRPD0PCRH'FE44PEPCRPE7PCRPE6PCRPE5PCRPE4PCRPE3PCRPE2PCRPE1PCRPD0PCRH'FE44PEPCRPE7PCRPE6PCRPE5PCRPE4PCRPE3PCRPE2PCRPE1PCRPE0PCRH'FE47PAODRPA5ODR**PA4ODR**PA3ODRPA2ODRPA1ODRPA0ODRH'FE48PB0DRPB6ODRPB5ODRPB4ODRPB30DRPB20DRPB10DRPB00DR	H'FE39	PADDR	_	_	PA5DDR*5	PA4DDR*5	PA3DDR	PA2DDR	PA1DDR	PA0DDR	_	
H'FE3CPDDDRPD7DDRPD6DDRPD5DDRPD4DDRPD3DDRPD2DDRPD1DDRPD0DDRH'FE3DPEDDRPE7DDRPE6DDRPE5DDRPE4DDRPE3DDRPE2DDRPE1DDRPE0DDRH'FE3EPFDDRPF7DDRPF6DDRPF5DDRPF4DDRPF3DDRPF2DDRPF1DDRPF0DDRH'FE40PAPCRPA5PCR*5PA4PCR*5PA3PCRPA2PCRPA1PCRPA0PCRH'FE41PBPCRPB7PCRPB6PCRPB5PCRPB4PCRPB3PCRPB2PCRPB1PCRPB0PCRH'FE42PCPCRPC7PCRPC6PCRPC5PCRPC4PCRPC3PCRPC2PCRPC1PCRPC0PCRH'FE43PDPCRPD7PCRPD6PCRPD5PCRPD4PCRPD3PCRPD2PCRPD1PCRPD0PCRH'FE44PEPCRPE7PCRPE6PCRPE5PCRPE4PCRPE3PCRPE3PCRPE1PCRPE0PCRH'FE44PEPCRPE7PCRPE6PCRPE5PCRPE4PCRPE3PCRPE2PCRPE1PCRPE0PCRH'FE47PAODRPA5ODR**PA4ODR**PA3ODRPA2ODRPA1ODRPA0ODRH'FE48PB0DRPB7ODRPB60DRPB50DRPB40DRPB30DRPB20DRPB10DRPB00DR	H'FE3A	PBDDR	PB7DDR	PB6DDR	PB5DDR	PB4DDR	PB3DDR	PB2DDR	PB1DDR	PB0DDR	_	
H'FE3DPEDDRPE7DDRPE6DDRPE5DDRPE4DDRPE3DDRPE2DDRPE1DDRPE0DDRH'FE3EPFDDRPF7DDRPF6DDRPF5DDRPF4DDRPF3DDRPF2DDRPF1DDRPF0DDRH'FE40PAPCRPA5PCR**PA4PCR**PA3PCRPA2PCRPA1PCRPA0PCRH'FE41PBPCRPB7PCRPB6PCRPB5PCRPB4PCRPB3PCRPB2PCRPB1PCRPB0PCRH'FE42PCPCRPC7PCRPC6PCRPC5PCRPC4PCRPC3PCRPC2PCRPC1PCRPC0PCRH'FE43PDPCRPD7PCRPD6PCRPD5PCRPD4PCRPD3PCRPD2PCRPD1PCRPD0PCRH'FE44PEPCRPE7PCRPE6PCRPE5PCRPE4PCRPE3PCRPE2PCRPE1PCRPE0PCRH'FE47PAODRPA5ODR**PA4ODR**PA3ODRPA2ODRPA1ODRPA0ODRH'FE48PB0DRPB7ODRPB6ODRPB50DRPB40DRPB30DRPB20DRPB10DRPB00DR	H'FE3B	PCDDR	PC7DDR	PC6DDR	PC5DDR	PC4DDR	PC3DDR	PC2DDR	PC1DDR	PC0DDR	_	
H'FE3EPFDDRPF7DDRPF6DDRPF5DDRPF4DDRPF3DDRPF2DDRPF1DDRPF0DDRH'FE40PAPCRPA5PCR*5PA4PCR*5PA3PCRPA2PCRPA1PCRPA0PCRH'FE41PBPCRPB7PCRPB6PCRPB5PCRPB5PCRPB3PCRPB3PCRPB2PCRPB1PCRPB0PCRH'FE42PCPCRPC7PCRPC6PCRPC5PCRPC4PCRPC3PCRPC2PCRPC1PCRPC0PCRH'FE43PDPCRPD7PCRPD6PCRPD5PCRPD4PCRPD3PCRPD2PCRPD1PCRPD0PCRH'FE44PEPCRPE7PCRPE6PCRPE5PCRPE4PCRPE3PCRPE2PCRPE1PCRPE0PCRH'FE47PAODRPA5ODR**PA4ODR**PA3ODRPA2ODRPA1ODRPA0ODRH'FE48PBODRPB7ODRPB6ODRPB5ODRPB4ODRPB3ODRPB20DRPB10DRPB00DR	H'FE3C	PDDDR	PD7DDR	PD6DDR	PD5DDR	PD4DDR	PD3DDR	PD2DDR	PD1DDR	PD0DDR	_	
H'FE40PAPCRPA5PCR**PA4PCR***PA3PCRPA2PCRPA1PCRPA0PCRH'FE41PBPCRPB7PCRPB6PCRPB5PCRPB4PCRPB3PCRPB2PCRPB1PCRPB0PCRH'FE42PCPCRPC7PCRPC6PCRPC5PCRPC4PCRPC3PCRPC2PCRPC1PCRPC0PCRH'FE43PDPCRPD7PCRPD6PCRPD5PCRPD4PCRPD3PCRPD2PCRPD1PCRPD0PCRH'FE44PEPCRPE7PCRPE6PCRPE5PCRPE4PCRPE3PCRPE2PCRPE1PCRPE0PCRH'FE47PAODRPA5ODR**PA4ODR**PA3ODRPA2ODRPA1ODRPA0ODRH'FE48PBODRPB7ODRPB6ODRPB5ODRPB4ODRPB3ODRPB20DRPB10DRPB00DR	H'FE3D	PEDDR	PE7DDR	PE6DDR	PE5DDR	PE4DDR	PE3DDR	PE2DDR	PE1DDR	PE0DDR	_	
H'FE41PBPCRPB7PCRPB6PCRPB5PCRPB4PCRPB3PCRPB2PCRPB1PCRPB0PCRH'FE42PCPCRPC7PCRPC6PCRPC5PCRPC4PCRPC3PCRPC2PCRPC1PCRPC0PCRH'FE43PDPCRPD7PCRPD6PCRPD5PCRPD4PCRPD3PCRPD2PCRPD1PCRPD0PCRH'FE44PEPCRPE7PCRPE6PCRPE5PCRPE4PCRPE3PCRPE2PCRPE1PCRPE0PCRH'FE47PAODRPA5ODR**PA4ODR**PA3ODRPA2ODRPA1ODRPA0ODRH'FE48PB0DRPB7ODRPB60DRPB50DRPB40DRPB30DRPB20DRPB10DRPB00DR	H'FE3E	PFDDR	PF7DDR	PF6DDR	PF5DDR	PF4DDR	PF3DDR	PF2DDR	PF1DDR	PF0DDR	_	
H'FE42PCPCRPC7PCRPC6PCRPC5PCRPC4PCRPC3PCRPC2PCRPC1PCRPC0PCRH'FE43PDPCRPD7PCRPD6PCRPD5PCRPD4PCRPD3PCRPD2PCRPD1PCRPD0PCRH'FE44PEPCRPE7PCRPE6PCRPE5PCRPE4PCRPE3PCRPE2PCRPE1PCRPE0PCRH'FE47PAODRPA5ODR**PA4ODR**PA3ODRPA2ODRPA1ODRPA0ODRH'FE48PB0DRPB7ODRPB60DRPB50DRPB40DRPB30DRPB20DRPB10DRPB00DR	H'FE40	PAPCR	_	_	PA5PCR ^{∗⁵}	PA4PCR*5	PA3PCR	PA2PCR	PA1PCR	PA0PCR	_	
H'FE43PDPCRPD7PCRPD6PCRPD5PCRPD4PCRPD3PCRPD2PCRPD1PCRPD0PCRH'FE44PEPCRPE7PCRPE6PCRPE5PCRPE4PCRPE3PCRPE2PCRPE1PCRPE0PCRH'FE47PAODRPA5ODR**PA4ODR**PA3ODRPA2ODRPA1ODRPA0ODRH'FE48PB0DRPB7ODRPB60DRPB50DRPB40DRPB30DRPB20DRPB10DRPB00DR	H'FE41	PBPCR	PB7PCR	PB6PCR	PB5PCR	PB4PCR	PB3PCR	PB2PCR	PB1PCR	PB0PCR	_	
H'FE44PEPCRPE7PCRPE6PCRPE5PCRPE4PCRPE3PCRPE2PCRPE1PCRPE0PCRH'FE47PAODRPA5ODR**PA4ODR**PA3ODRPA2ODRPA1ODRPA0ODRH'FE48PB0DRPB7ODRPB60DRPB50DRPB40DRPB30DRPB20DRPB10DRPB00DR	H'FE42	PCPCR	PC7PCR	PC6PCR	PC5PCR	PC4PCR	PC3PCR	PC2PCR	PC1PCR	PC0PCR	-	
H'FE47 PAODR PA5ODR** PA4ODR** PA3ODR PA2ODR PA1ODR PA0ODR H'FE48 PBODR PB7ODR PB6ODR PB5ODR PB3ODR PB2ODR PB10DR PB00DR	H'FE43	PDPCR	PD7PCR	PD6PCR	PD5PCR	PD4PCR	PD3PCR	PD2PCR	PD1PCR	PD0PCR	-	
H'FE48 PBODR PB70DR PB60DR PB50DR PB40DR PB30DR PB20DR PB10DR PB00DR	H'FE44	PEPCR	PE7PCR	PE6PCR	PE5PCR	PE4PCR	PE3PCR	PE2PCR	PE1PCR	PE0PCR	-	
	H'FE47	PAODR	_	_	PA5ODR*5	PA4ODR ^{*5}	PA3ODR	PA2ODR	PA10DR	PA00DR	_	
H'FE49 PCODR PC70DR PC60DR PC50DR PC40DR PC30DR PC20DR PC10DR PC00DR	H'FE48	PBODR	PB70DR	PB60DR	PB50DR	PB40DR	PB3ODR	PB2ODR	PB10DR	PB0ODR	_	
	H'FE49	PCODR	PC70DR	PC60DR	PC50DR	PC40DR	PC3ODR	PC2ODR	PC10DR	PC00DR	-	

REC—Receive	e Error Co	ounter		HCAN							
REC											
Bit :			6 5		3	2	1	0			
Initial value :	0	0	0	0	0	0	0	0			
Read/Write :	R	R	R	R	R	R	R	R			
TEC—Transn	nit Error (Counter		HCAN							
TEC											
	7 6		5	4	3	2	1	0			
Bit :	7	6	5	4	3	2	I	0			
Initial value :	0	0	0	0	0	0	0	0			
Read/Write :	₽ R	R	R	R	R	R	R	8 R			
Read/ Write .	i v	IX.	IX.	IX.	IX.	IX.	IX.				
UMSR—Unre	ad Messag	ge Status l	Register	HCAN							
UMSR											
Bit :	15	14	13	12	11	10	9	8			
	UMSR7	UMSR6	UMSR5	UMSR4	UMSR3	UMSR2	UMSR1	UMSR0			
Initial value :	0	0	0	0	0	0	0	0			
Read/Write :	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*			
Bit :	7	6	5	4	3	2	1	0			
	UMSR15	UMSR14	UMSR13	UMSR12	UMSR11	UMSR10	UMSR9	UMSR8			
Initial value :	0	0	0	0	0	0	0	0			
Read/Write :	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*			
	Ur				nread message status flags						
	[Clearing Writing 1										
	1 Unread receive message is overwritten by a new message [Setting condition] When a new message is received before RXPR is cleared										

Note: * Can only be written with 1 for flag clearing.