

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	F ² MC-8L
Core Size	8-Bit
Speed	10MHz
Connectivity	EBI/EMI, Serial I/O, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	53
Program Memory Size	16KB (16K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 6V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-BQFP
Supplier Device Package	64-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb89635rpf-g-1447e1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

(Continued)

- UART
 - CLK-synchronous/CLK-asynchronous data transfer capable (6, 7, and 8 bits)
- Serial interface Switchable transfer direction to allows communication with various equipment.
- 10-bit A/D converter Start by an external input capable
- External interrupt: 4 channels Four channels are independent and capable of wake-up from low-power consumption modes (with an edge detection function).
- Low-power consumption modes
 Stop mode (Oscillation stops to minimize the current consumption.)
 Sleep mode (The CPU stops to reduce the current consumption to approx. 1/3 of normal.)
 Subclock mode
 Watch mode
- Bus interface function With hold and ready function

- Other specifications Both MB89630 series and MB89635R/636R/637R is the same.
- Electrical specifications/electrical characteristics Electrical specifications of the MB89635R/636R/637R series are the same as that of the MB89630 series. Electrical characteristics of both the series are much the same.

■ CORRESPONDENCE BETWEEN THE MB89630 AND MB89630R SERIES

- The MB89630R series is the reduction version of the MB89630 series.
- The the MB89630 and MB89630R series consist of the following products:

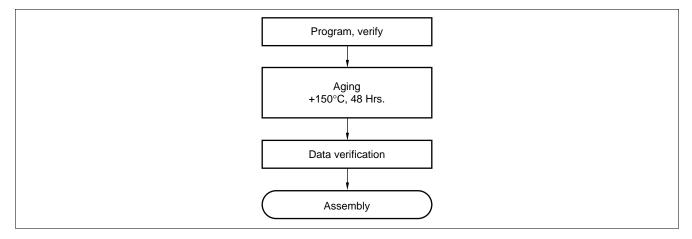
MB89630 series	MB89635	MB89636	MB89637	MB89P637	MB89PV630
MB89630R series	MB89635R	MB89636R	MB89637R		

■ PIN DESCRIPTION

Pin no.				a :	
SH-DIP ^{*1} MDIP ^{*2}	QFP2 ^{*3}	QFP1 ^{*4} MQFP ^{*5}	Pin name	Circuit type	Function
30	22	23	X0	А	Main clock crystal oscillator pins
31	23	24	X1		
28	20	21	MOD0	D	Operating mode selection pins
29	21	22	MOD1		Connect directly to Vcc or Vss.
27	19	20	RST	C	Reset I/O pin This pin is an N-ch open-drain output type with a pull-up resistor, and a hysteresis input type. "L" is output from this pin by an internal reset source. The internal circuit is initialized by the input of "L".
56 to 49	48 to 41	49 to 42	P00/AD0 to P07/AD7	F	General-purpose I/O ports When an external bus is used, these ports function as the multiplex pins of the lower address output and the data I/O.
48 to 41	40 to 33	41 to 34	P10/A08 to P17/A157	F	General-purpose I/O ports When an external bus is used, these ports function as an upper address output.
40	32	33	P20/BUFC	Н	General-purpose output port When an external bus is used, this port can also be used as a buffer control output by setting the BCTR.
39	31	32	P21/HAK	Н	General-purpose output port When an external bus is used, this port can also be used as a hold acknowledge by setting the BCTR.
38	30	31	P22/HRQ	F	General-purpose output port When an external bus is used, this port can also be used as a hold request input by setting the BCTR.
37	29	30	P23/RDY	F	General-purpose output port When an external bus is used, this port functions as a ready input.
36	28	29	P24/CLK	Н	General-purpose output port When an external bus is used, this port functions as a clock output.
35	27	28	P25/WR	Н	General-purpose output port When an external bus is used, this port functions as a write signal output.
34	26	27	P26/RD	Н	General-purpose output port When an external bus is used, this port functions as a read signal output.

*1: DIP-64P-M01

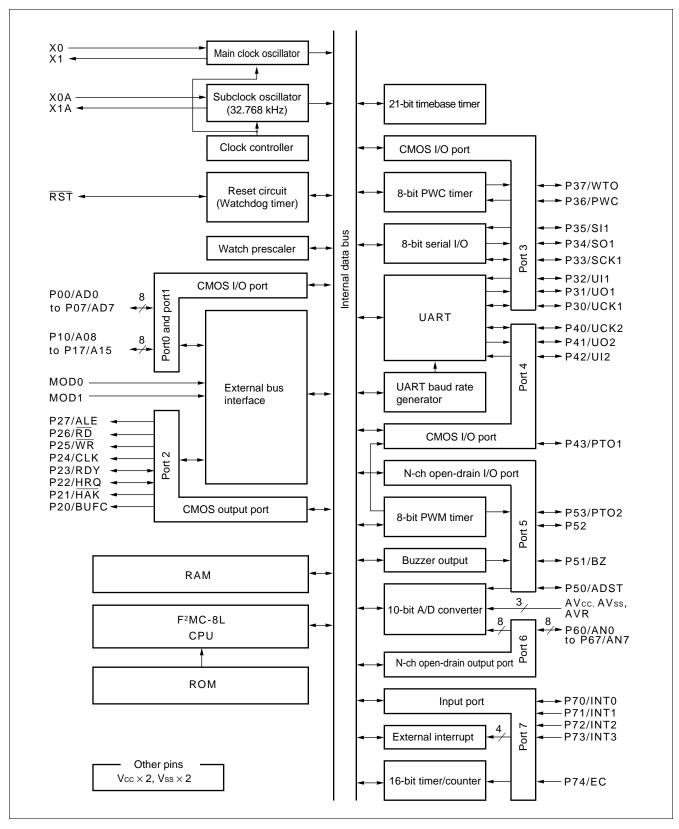
*2: MDP-64C-P02 *3: FPT-64P-M23 *4: FPT-64P-M06 *5: MQP-M64C-P01 (Continued)


DS07-12531-4E

• Programming procedure

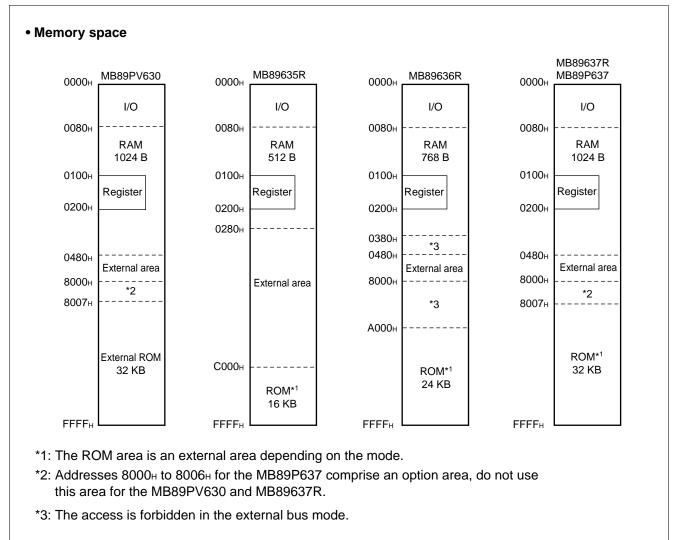
- (1) Set the EPROM programmer to the MBM27C256A.
- (2) Load program data into the EPROM programmer at 0007^H to 7FFF^H. (Note that addresses 8000^H to FFFF^H in the operating mode assign to 0000^H to 7FFF^H in EPROM mode).
- (3) Load option data into addresses 0000H to 0006H of the EPROM programmer. (For information about each corresponding option, see "8. OTPROM Option Bit Map".)
- (4) Program with the EPROM programmer.

4. Recommended Screening Conditions


High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked OTPROM microcomputer program.

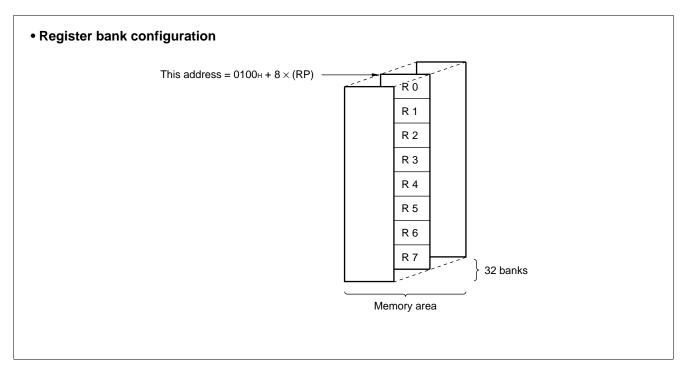
5. Programming Yield

All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature. For this reason, a programming yield of 100% cannot be assured at all times.


BLOCK DIAGRAM

CPU CORE

1. Memory Space


The microcontrollers of the MB89630R series offer 64 Kbytes of memory for storing all of I/O, data, and program areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end of I/O area, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89630R series is structured as illustrated below.

The following general-purpose registers are provided:

General-purpose registers: An 8-bit register for storing data

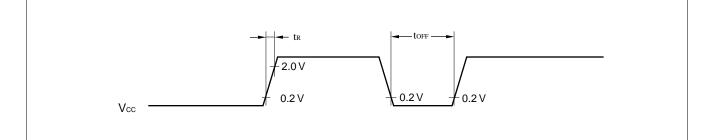
The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers and up to a total of 32 banks can be used on the MB89630R series. The bank currently in use is indicated by the register bank pointer (RP).

Address	Read/write	Register name	Register description				
20н	(R/W)	ADC1	A/D converter control register 1				
21н	(R/W)	ADC2	A/D converter control register 2				
22н	(R/W)	ADDH	A/D converter data register (H)				
23н	(R/W)	ADDL	A/D converter data register (L)				
24н	(R/W)	EIC1	External interrupt control register 1				
25н	(R/W)	EIC2	External interrupt control register 2				
26н		Vac	ancy				
27н		Vac	ancy				
28н	(R/W)	CNTR1	PWM timer control register 1				
29н	(R/W)	CNTR2	PWM timer control register 2				
2Ан	(R/W)	CNTR3	PWM timer control register 3				
2Вн	(W)	COMR1	PWM timer compare register 1				
2Сн	(W)	COMR2	PWM timer compare register 2				
2Dн	(R/W)	SMC	UART serial mode control register				
2Ен	(R/W)	SRC	UART serial rate control register				
2Fн	(R/W)	SSD	UART serial status/data register				
30н	(R) (W)	SIDR SODR	UART serial input data control register UART serial output data control register				
31н to 7Вн		Vac	ancy				
7Сн	(W)	ILR1	Interrupt level setting register 1				
7Dн	(W)	ILR2	Interrupt level setting register 2				
7 Ен	(W)	ILR3	Interrupt level setting register 3				
7Fн	7F _H Vacancy						

Note: Do not use vacancies.

.		D .			Value			= -40°C to +85°C	
Parameter	Symbol	Pin name	Condition	Min.	Тур.	Max.	Unit	Remarks	
Pull-up resistance	Rpull	P00 to P07, P10 to P17, P30 to P37, P40 to P43, P50 to P53, P72 to P74	VI = 0.0 V	25	50	100	kΩ	With pull-up resistor	
	Icc1		$F_{CH} = 10 \text{ MHz}$ $V_{CC} = 5.0 \text{ V}$ $t_{inst}^{*2} = 0.4 \mu\text{s}$	_	12	20	mA		
	Icc2		$F_{CH} = 10 \text{ MHz}$ $V_{CC} = 3.0 \text{ V}$	_	1.0	2	mA	MB89635R/ 636R/637R/ PV630	
			$t_{inst}^{*2} = 6.4 \ \mu s$	_	1.5	2.5	mA	MB89P637	
	Iccs1		$ \begin{array}{c} F_{CH} = 10 \text{ MHz} \\ \Psi \\ V_{CC} = 5.0 \text{ V} \\ t_{inst}^{*2} = 0.4 \mu s \end{array} $	_	3	7	mA		
	Iccs2			_	0.5	1.5	mA		
Power supply	lcc∟		FcL = 32.768 kHz, Vcc = 3.0 V Subclock mode	_	50	100	μΑ	MB89635R/ 636R/637R/ PV630	
current ^{*1}			Subclock mode	—	500	700	μA	MB89P637	
	lcc∟s		$\label{eq:Fcl} \begin{array}{l} F_{\text{CL}} = 32.768 \text{ kHz}, \\ V_{\text{CC}} = 3.0 \text{ V} \\ \textbf{Subclock sleep} \\ \textbf{mode} \end{array}$	_	25	50	μΑ		
	Ісст		FcL = 32.768 kHz, Vcc = 3.0 V ● Watch mode ● Main clock stop mode at dual- clock system	_	3	15	μΑ		
	Іссн		 T_A = +25°C Subclock stop mode Main clock stop mode at single-clock system 	_	_	1	μΑ		

 $(AVcc = Vcc = 5.0 V, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$


(Continued)

(2) Specification for Power-on Reset

 $(AV_{SS} = V_{SS} = 0.0 \text{ V}, \text{ } T_{A} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C})$

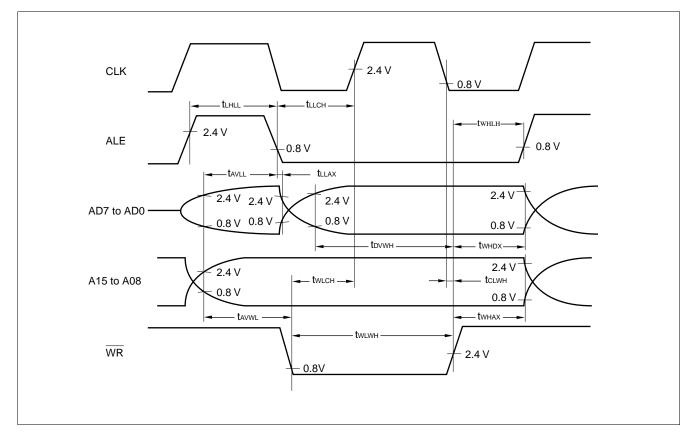
Deremeter	Symbol	Condition	Va	ue	Unit	Remarks
Parameter	Symbol	Min. Max.		Min. Max.		Rellidiks
Power supply rising time	t R		—	50	ms	Power-on reset function only
Power supply cut-off time	toff		1	_	ms	Min. interval time for the next power-on reset

Note: Make sure that power supply rises within the selected oscillation stabilization time. If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.

(3) Clock Timing

 $(AV_{SS} = V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks	
Falailletei	Symbol		Condition	Min.	Тур.	Max.	Unit	Remarks
Clock frequency	Fсн	X0, X1		1	—	10	MHz	
Clock frequency	Fc∟	X0A, X1A		_	32.768		kHz	
	t HCYL	X0, X1		100		1000	ns	
Clock cycle time	t LCYL	X0A, X1A		_	30.5	_	μs	
Input clock pulse width	Pwн Pw∟	X0		20	_	_	ns	External clock
Input clock pulse width	Pwlh Pwll	X0A		_	15.2	_	μs	External clock
Input clock rising/ falling time	tcr tcf	X0				10	ns	External clock

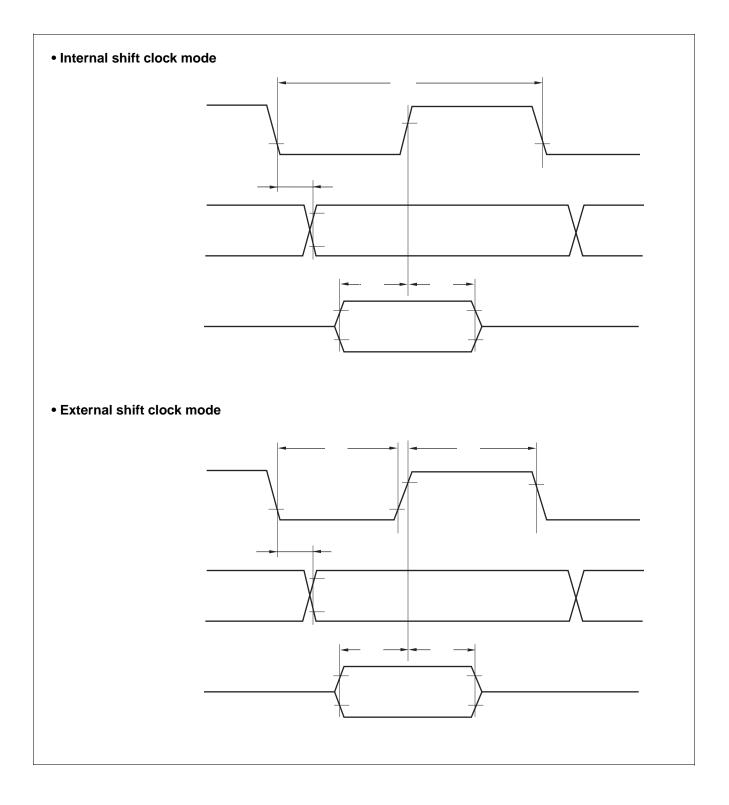

(7) Bus Write Timing

Devementer	Symbol	Din nomo	Condition	Value	e	Unit	Domorko
Parameter	Parameter Symbol Pin name Condition		Condition	Min.	Max.	Unit	Remarks
Valid address \rightarrow ALE \downarrow time	tavll	AD7 to AD0,		1/4 t _{inst} *1-64 ns*2	_	μs	
ALE \downarrow time \rightarrow address loss time	tllax	ALE A15 to A08		5	—	ns	
Valid address $\rightarrow \overline{WR} \downarrow time$	tavwl	WR, ALE		1/4 t _{inst} *1-60 ns*2	_	μs	
WR pulse width	twlwн	WR		1/2 t _{inst} *1 – 20 ns*2	—	μs	
Write data $\rightarrow \overline{WR} \uparrow$ time	tovwн	AD7 to AD0, WR		1/2 t _{inst} *1-60 ns*2	—	μs	
$\overline{WR} \uparrow \rightarrow address loss time$	twhax	WR, A15 to A08		1/4 t _{inst} *1-40 ns*2	—	μs	
$\overline{WR} \uparrow \rightarrow data hold time$	t whdx	AD7 to AD0, WR		1/4 t _{inst} *1-40 ns*2	—	μs	
$\overline{WR} \uparrow \rightarrow ALE \uparrow time$	twнLн	WR, ALE		1/4 t _{inst} *1-40 ns*2	—	μs	
$\overline{WR} \downarrow \rightarrow CLK \uparrow time$	twlch	WR, CLK		1/4 t _{inst} *1-40 ns*2	—	μs	
$CLK \downarrow \to \overline{WR} \uparrow time$	t clwh	WR, ULN		0	—	ns	
ALE pulse width	tlhll	ALE		1/4 t _{inst} *1-35 ns*2	_	μs	
$ALE \downarrow \rightarrow CLK \uparrow time$	t llch	ALE,CLK		1/4 t _{inst} *1-30 ns*2	—	μs	

(Vcc = 5.0 V±10%, FcH = 10 MHz, AVss = Vss= 0.0 V, TA = $-40^{\circ}C$ to $+85^{\circ}C$)

*1: For information on t_{inst}, see "(4) Instruction Cycle".

*2: This characteristics are also applicable to the bus read timing.

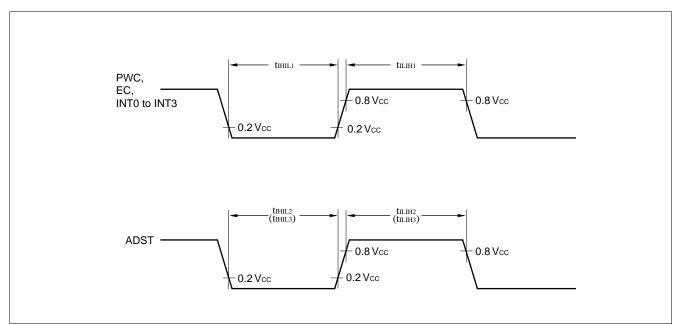


(9) Serial I/O Timing

Parameter	Parameter Symbol Pin name Condition		Condition	Va	lue	Unit	Remarks
Parameter	Symbol	Fin name	Condition	Min. Max.		Unit	Relliars
Serial clock cycle time	tscyc	SCK1, UCK1, UCK2		2 t _{inst} *	_	μs	
$\begin{array}{l} SCK1 \downarrow \to SO1 \text{ time} \\ UCK1 \downarrow \to UO1 \text{ time} \\ UCK2 \downarrow \to UO2 \text{ time} \end{array}$	ts∟ov	SCK1, SO1 UCK1, UO1 UCK2, UO2	Internal	-200	200	ns	
Valid SI1 → SCK1 \uparrow Valid UI1 → UCK1 \uparrow Valid UI2 → UCK2 \uparrow	tıvsн	SI1, SCK1 UI1, UCK1 UI2, UCK2	shift clock mode	1/2 t _{inst} *	_	μs	
$\begin{array}{l} SCK1 \uparrow \to valid \; SI1 \; hold \; time \\ UCK1 \uparrow \to valid \; UI1 \; hold \; time \\ UCK2 \uparrow \to valid \; UI2 \; hold \; time \end{array}$	tsнıx	SCK1, SI1 UCK1, UI1 UCK2, UI2		1/2 t _{inst} *	_	μs	
Serial clock "H" pulse width	tshsl	SCK1, UCK1, UCK2		1 t _{inst} *	_	μs	
Serial clock "L" pulse width	tslsh	SCK1, UCK1, UCK2		1 t _{inst} *	_	μs	
$\begin{array}{l} SCK1 \downarrow \to SO1 \text{ time} \\ UCK1 \downarrow \to UO1 \text{ time} \\ UCK2 \downarrow \to UO2 \text{ time} \end{array}$	ts∟ov	SCK1, SO1 UCK1, UO1 UCK2, UO2	External shift clock	0	200	ns	
Valid SI1 → SCK1 \uparrow Valid UI1 → UCK1 \uparrow Valid UI2 → UCK2 \uparrow	tıvsн	SI1, SCK1 UI1, UCK1 UI2, UCK2	mode	1/2 t _{inst} *		μs	
$\begin{array}{l} \text{SCK1} \downarrow \rightarrow \text{valid SI1 hold time} \\ \text{UCK1} \downarrow \rightarrow \text{valid UI1 hold time} \\ \text{UCK2} \downarrow \rightarrow \text{valid UI2 hold time} \end{array}$	tsнıx	SCK1, SI1 UCK1, UI1 UCK2, UI2		1/2 t _{inst} *		μs	

(Vcc = 5.0 V \pm 10%, FcH = 10 MHz, AVss = Vss= 0.0 V, TA = -40°C to +85°C)

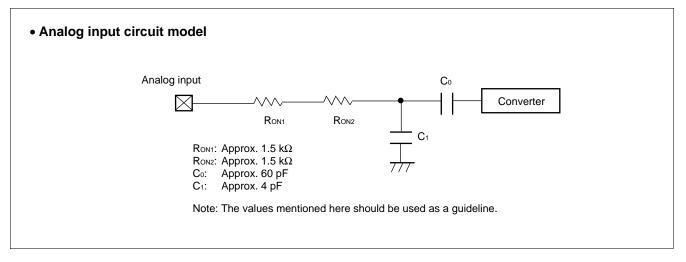
* : For information on tinst, see "(4) Instruction Cycle".



(10) Peripheral Input Timing

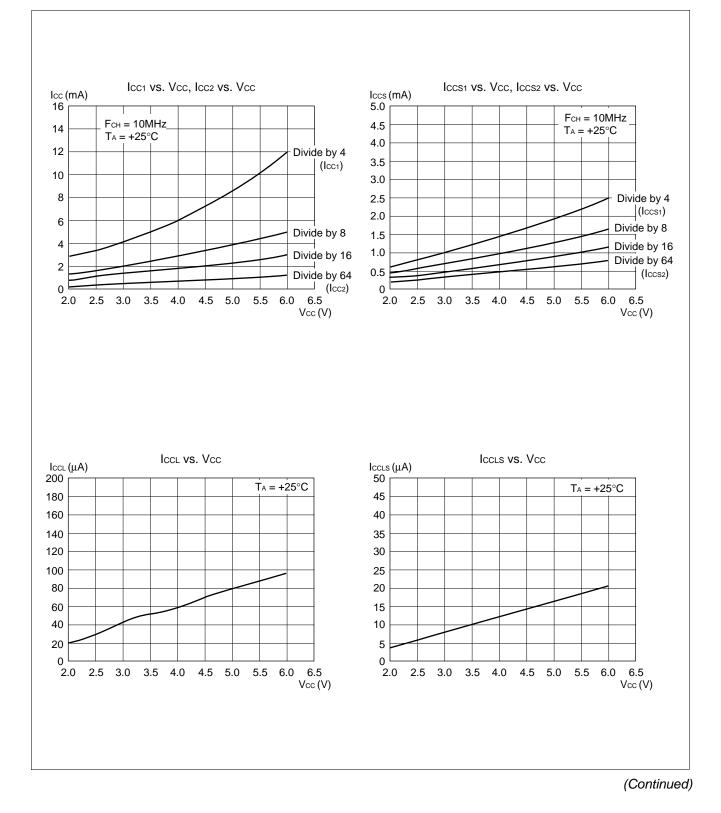
Baramatar	Symbol	Pin name	Value		Unit	Remarks
Parameter	Symbol Pin name		Min.	Max.	Unit	Remarks
Peripheral input "H" pulse width 1	tiliH1	PWC, INT0 to INT3,EC	2 tinst*	_	μs	
Peripheral input "L" pulse width 1	tiHi∟1		2 tinst*		μs	
Peripheral input "H" pulse width 2	tilih2	ADST	2 ⁸ tinst*		μs	A/D mode
Peripheral input "L" pulse width 2	tihil2	ADST	2 ⁸ tinst*		μs	A/D mode
Peripheral input "H" pulse width 3	t ILIH3	ADST	$2^8 t_{\text{inst}}^{*}$		μs	Sense mode
Peripheral input "L" pulse width 3	tініlз		2 ⁸ tinst*		μs	Sense mode

(Vcc = 5.0 V \pm 10%, AVss = Vss = 0.0 V, T_A = -40°C to +85°C)


* : For information on tinst, see "(4) Instruction Cycle".

7. Notes on Using A/D Converter

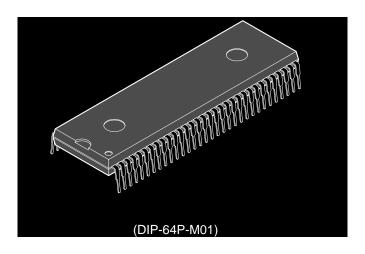
· Input impedance of the analog input pins

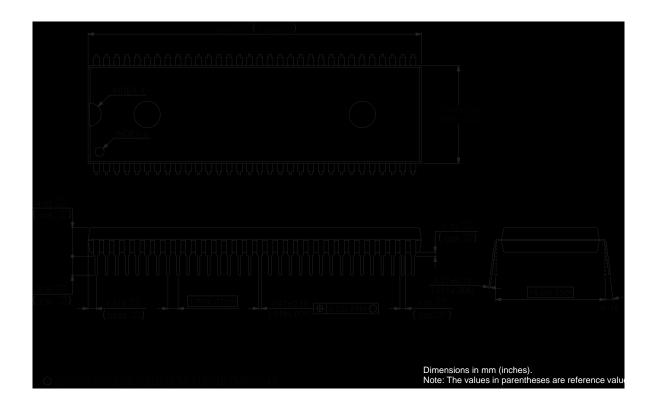

The output impedance of the external circuit for the analog input must satisfy the following conditions. If the output impedance of the external circuit is too high, an analog voltage sampling time might be insufficient (sampling time = 6 μ s at 10 MHz oscillation.) Therefore, it is recommended to keep the output impedance of the external circuit below 10 k Ω .

• Error

The smaller the | AVR-AVss |, the greater the error would become relatively.

(5) Power Supply Current (External Clock)

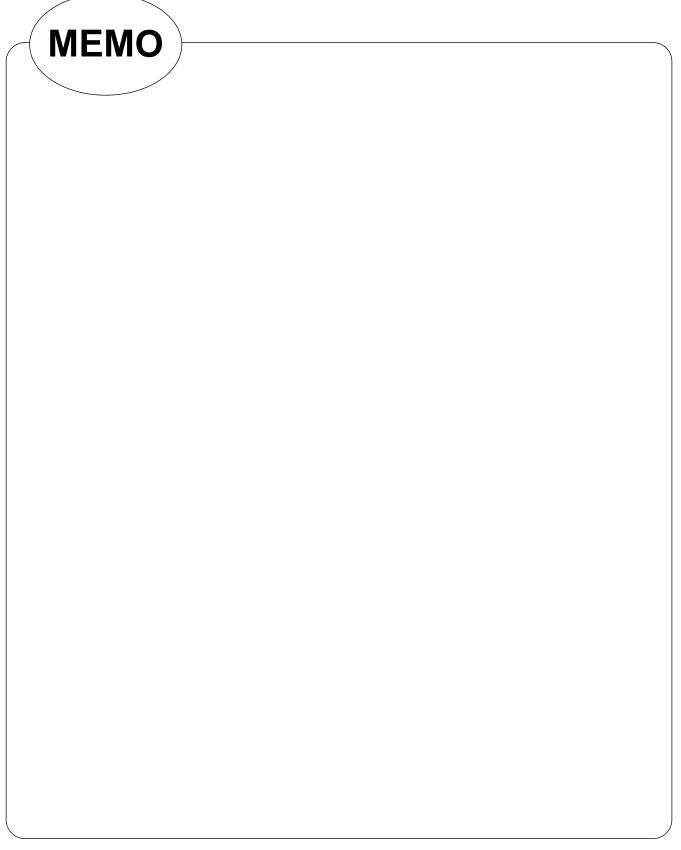



■ MASK OPTIONS

No.	Part number	MB89637R Specify when Set with EPROM		MB89PV630
	Specifying procedure			Setting not possible
1	Pull-up resistors P00 to P07, P10 to P17, P30 to P37, P40 to P43, P50 to P53, P72 to P74	Selectable by pin	Can be set per pin*	Fixed to "without pull-up resistor"
2	Power-on reset selection With power-on reset Without power-on reset	Selectable	Setting possible	Fixed to "with power-on reset"
3	Selection of the main clock oscillation stabilization time (at 10 MHz) 2 ¹⁸ /Fсн (Approx. 26.2 ms) 2 ¹⁷ /Fсн (Approx. 13.1 ms) 2 ¹⁴ /Fсн (Approx. 1.6 ms) 2 ⁴ /Fсн (Approx. 1.6 µs) Fсн : Main clock frequency	Selectable	Setting possible	Fixed to 2 ¹⁸ /Fсн (Approx. 26.2 ms)
4	Reset pin output Reset output provided No reset output	Selectable	Setting possible	Fixed to "with reset output"
5	Single/dual-clock system option Single clock Dual clock	Selectable	Setting possible	MB89PV630-101 Single-clock system MB89PV630-102 Dual-clock systems

* : For P50 to P53, fixed to "Without pull-up resistor."

■ PACKAGE DIMENSIONS


Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/package/en-search/

(Continued)

■ MAIN CHANGES IN THIS EDITION

Page	Section	Change Results
49	■ MASK OPTIONS	Changed the explanation for "*" in "■ MASK OPTIONS".

The vertical lines marked in the left side of the page show the changes.

