

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	F ² MC-8L
Core Size	8-Bit
Speed	10MHz
Connectivity	EBI/EMI, Serial I/O, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	53
Program Memory Size	16KB (16K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 6V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-BQFP
Supplier Device Package	64-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb89635rpf-g-1460

8-bit Proprietary Microcontroller

CMOS

F²MC-8L MB89630R Series

MB89635R/636R/637R/P637/PV630

■ OUTLINE

The MB89630R series has been developed as a general-purpose version of the F²MC*-8L family consisting of proprietary 8-bit, single-chip microcontrollers.

In addition to a compact instruction set, the microcontrollers contain a variety of peripheral functions such as dual-clock control system, five operating speed control stages, a UART, timers, a PWM timer, a serial interface, an A/D converter, an external interrupt, and a watch prescaler.

*: F²MC is the abbreviation for Fujitsu Flexible Microcontroller.

■ FEATURES

- · High-speed operating capability at low voltage
- Minimum execution time: 0.4 μs@3.5 V, 0.8 μs@2.7 V
- F²MC-8L family CPU core

Instruction set optimized for controllers

Multiplication and division instructions
16-bit arithmetic operations
Test and branch instructions
Bit manipulation instructions, etc.

· Five types of timers

8-bit PWM timer: 2 channels (Also usable as a reload timer)

8-bit pulse-width count timer (Continuous measurement capable, applicable to remote control, etc.)

16-bit timer/counter

21-bit timebase timer

(Continued)

For the information for microcontroller supports, see the following web site.

http://edevice.fujitsu.com/micom/en-support/

(Continued)

• UART

CLK-synchronous/CLK-asynchronous data transfer capable (6, 7, and 8 bits)

Serial interface

Switchable transfer direction to allows communication with various equipment.

• 10-bit A/D converter

Start by an external input capable

• External interrupt: 4 channels

Four channels are independent and capable of wake-up from low-power consumption modes (with an edge detection function).

• Low-power consumption modes

Stop mode (Oscillation stops to minimize the current consumption.)

Sleep mode (The CPU stops to reduce the current consumption to approx. 1/3 of normal.)

Subclock mode

Watch mode

· Bus interface function

With hold and ready function

- Other specifications
 Both MB89630 series and MB89635R/636R/637R is the same.
- Electrical specifications/electrical characteristics
 Electrical specifications of the MB89635R/636R/637R series are the same as that of the MB89630 series.
 Electrical characteristics of both the series are much the same.

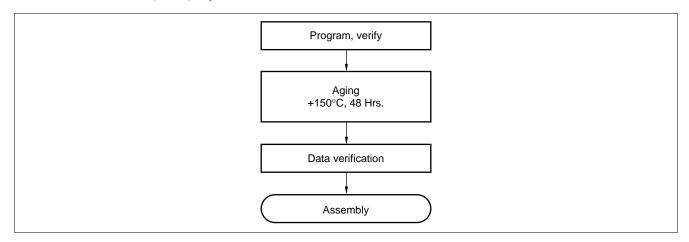
■ CORRESPONDENCE BETWEEN THE MB89630 AND MB89630R SERIES

- The MB89630R series is the reduction version of the MB89630 series.
- The the MB89630 and MB89630R series consist of the following products:

MB89630 series	MB89635	MB89636	MB89637	MB89P637	MB89PV630
MB89630R series	MB89635R	MB89636R	MB89637R		

■ I/O CIRCUIT TYPE

Туре	Circuit	Remarks
A	X1 X0 X0 X0 X0 X0 X0 X1 X0 X1 X0 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1	Crystal or ceramic oscillation type (main clock) External clock input selection versions of MB89PV630, MB89P637, MB89635R, MB89636R, and MB89637R At an oscillation feedback resistor of approximately 1 MΩ@5.0 V
В	X1A X0A X0A Standby control signal	Crystal or ceramic oscillation type (subclock) MB89PV630, MB89P637, MB89635R, MB89636R, and MB89637R with dual-clock system At an oscillation feedback resistor of approximately 4.5 MΩ@5.0 V
С	R P-ch	 At an output pull-up resistor (P-ch) of approximately 50 kΩ@5.0 V Hysteresis input
D		
E	R W	Hysteresis input Pull-up resistor optional (except P70 and P71)
F	R P-ch	CMOS output CMOS input Pull-up resistor optional (except P22 and P23)


Туре	Circuit	Remarks
G	R P-ch P-ch N-ch	CMOS output Hysteresis input Pull-up resistor optional
Н	P-ch N-ch	CMOS output
I	N-ch Analog input	Analog input
J	R P-ch N-ch	CMOS input Pull-up resistor optional
К	P-ch N-ch	Hysteresis input Pull-up resistor optional

• Programming procedure

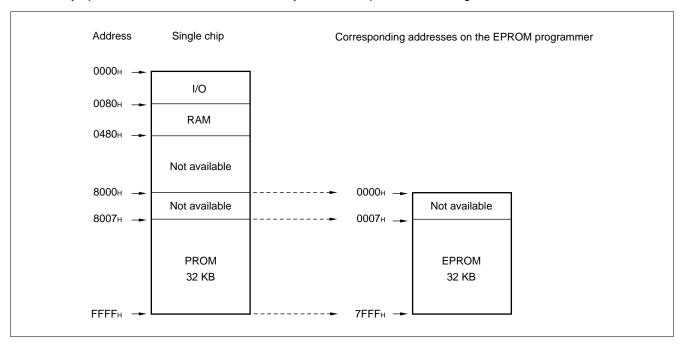
- (1) Set the EPROM programmer to the MBM27C256A.
- (2) Load program data into the EPROM programmer at 0007_H to 7FFF_H. (Note that addresses 8000_H to FFFF_H in the operating mode assign to 0000_H to 7FFF_H in EPROM mode).
- (3) Load option data into addresses 0000_H to 0006_H of the EPROM programmer. (For information about each corresponding option, see "8. OTPROM Option Bit Map".)
- (4) Program with the EPROM programmer.

4. Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked OTPROM microcomputer program.

5. Programming Yield

All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature. For this reason, a programming yield of 100% cannot be assured at all times.

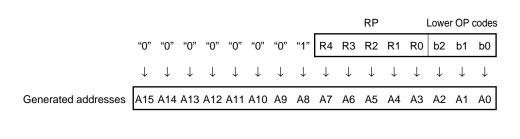

■ PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE

1. EPROM for Use

MBM27C256A-20CZ, MBM27C256A-20TV

2. Memory Space

Memory space in each mode, such as 32-Kbyte PROM, option area is diagrammed below.



3. Programming to the EPROM

- (1) Set the EPROM programmer to the MBM27C256A.
- (2) Load program data into the EPROM programmer at 0007_H to 7FFF_H.
- (3) Program to 0000H to 7FFFH with the EPROM programmer.

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

• Rule for conversion of actual addresses of the general-purpose register area

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.

H-flag: Set to '1' when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared to '0' otherwise. This flag is for decimal adjustment instructions.

I-flag: Interrupt is enabled when this flag is set to '1'. Interrupt is disabled when the flag is cleared to '0'. Cleared to '0' at the reset.

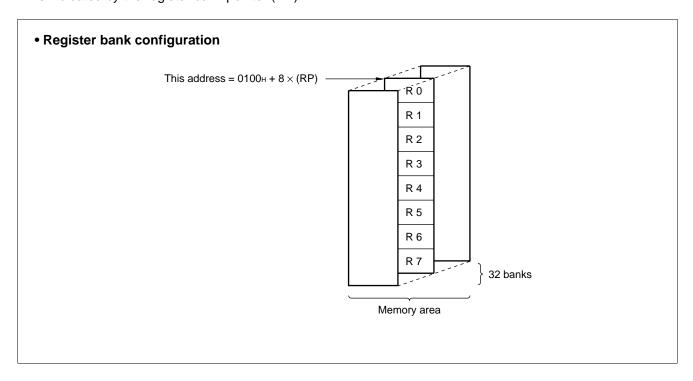
IL1, IL0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	IL0	Interrupt level	High-low
0	0	1	High
0	1	l	†
1	0	2	ļ .
1	1	3	Low

N-flag: Set to '1' if the MSB becomes to '1' as the result of an arithmetic operation. Cleared to '0' when the bit is cleared to '0'.

Z-flag: Set to '1' when an arithmetic operation results in 0. Cleared to '0' otherwise.

Set to the shift-out value in the case of a shift instruction.


V-flag: Set to '1' if the complement on 2 overflows as a result of an arithmetic operation. Cleared to '0' if the overflow does not occur.

C-flag: Set to '1' when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to '0' otherwise.

The following general-purpose registers are provided:

General-purpose registers: An 8-bit register for storing data

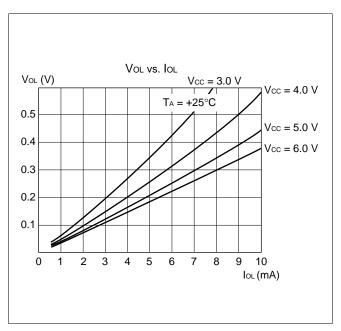
The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers and up to a total of 32 banks can be used on the MB89630R series. The bank currently in use is indicated by the register bank pointer (RP).

■ I/O MAP

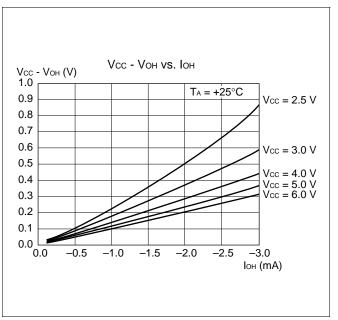
Address	Read/write	Register name	Register description			
00н	(R/W)	PDR0	Port 0 data register			
01н	(W)	DDR0	Port 0 data direction register			
02н	(R/W)	PDR1	Port 1 data register			
03н	(W)	DDR1	Port 1 data direction register			
04н	(R/W)	PDR2	Port 2 data register			
05н	(W)	BCTR	External bus pin control register			
06н		Vac	cancy			
07н	(R/W)	SYCC	System clock control register			
08н	(R/W)	STBC	System clock control register			
09н	(R/W)	WDTE	Watchdog timer control register			
0Ан	(R/W)	TBCR	Timebase timer control register			
0Вн	(R/W)	WPCR	Watch prescaler control register			
0Сн	(R/W)	CHG3	Port 3 switching register			
0Дн	(R/W)	PDR3	Port 3 data register			
0Ен	(W)	DDR3	Port 3 data direction register			
0Fн	(R/W)	PDR4	Port 4 data register			
10н	(W)	DDR4	Port 4 data direction register			
11н	(R/W)	BUZR	Buzzer register			
12н	(R/W)	PDR5	Port 5 data register			
13н	(R/W)	PDR6	Port 6 data register			
14н	(R)	PDR7	Port 7 data register			
15н	(R/W)	PCR1	PWC pulse width control register 1			
16н	(R/W)	PCR2	PWC pulse width control register 2			
17н	(R/W)	RLBR	PWC reload buffer register			
18н	(R/W)	TMCR	16-bit timer control register			
19н	(R/W)	TCHR	16-bit timer count register (H)			
1Ан	(R/W)	TCLR	16-bit timer count register (L)			
1Вн		Vac	cancy			
1Сн	(R/W)	SMR1	Serial mode register			
1Dн	(R/W)	SDR1 Serial data register				
1Ен	Vacancy					
1F _H	Vacancy					

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

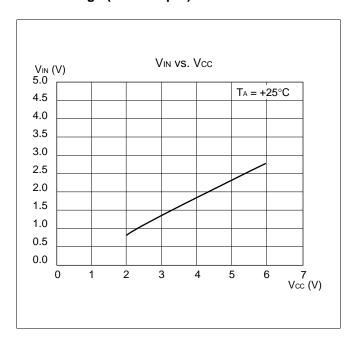
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

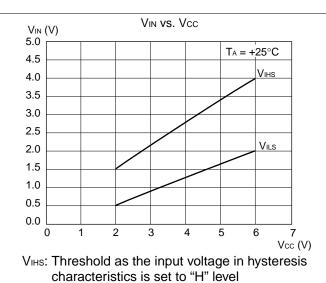

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

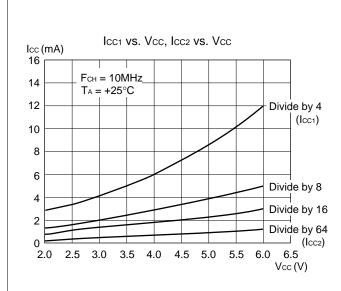
 $(AVcc = Vcc = 5.0 \text{ V}, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

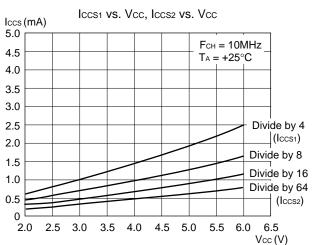

Danamatan	Symbol	Pin name		= Vcc = 5.0 V, AVss = Vss = 0.0 Value					
Parameter			Condition		Min.	Тур.	Max.	- Unit	Remarks
Pull-up resistance			= 0.0 V	25	50	100	kΩ	With pull-up resistor	
	Icc1			= 10 MHz = 5.0 V ² = 0.4 μs	_	12	20	mA	
	Icc2			= 10 MHz = 3.0 V	_	1.0	2	mA	MB89635R/ 636R/637R/ PV630
			Linst	$^2 = 6.4 \mu s$	_	1.5	2.5	mA	MB89P637
	Iccs ₁			FcH = 10 MHz Vcc = 5.0 V t_{inst}^{*2} = 0.4 μ s	_	3	7	mA	
	Iccs2		Sleep mode	FcH = 10 MHz Vcc = 3.0 V t_{inst}^{*2} = 6.4 µs	_	0.5	1.5	mA	
Power supply	Iccl			= 32.768 kHz, = 3.0 V	_	50	100	μΑ	MB89635R/ 636R/637R/ PV630
current*1		Vcc	Subclock mode		_	500	700	μΑ	MB89P637
	Iccls			= 32.768 kHz, = 3.0 V oclock sleep de	_	25	50	μΑ	
	Ісст			= 32.768 kHz, = 3.0 V atch mode ain clock stop ode at dual- ock system	_	3	15	μА	
	Іссн			= +25°C ubclock stop ode ain clock stop ode at single- ock system	_	_	1	μА	

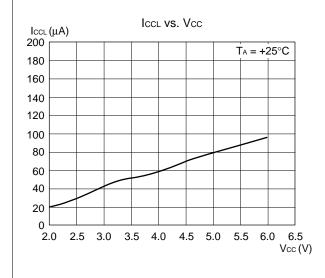
■ CHARACTERISTICS EXAMPLE

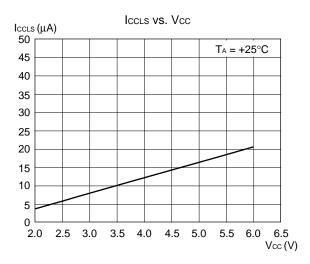

(1) "L" Level Output Voltage


(2) "H" Level Output Voltage

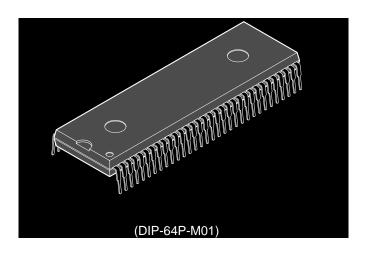

(3) "H" Level Input Voltage/"L" Level Input Voltage (CMOS Input)

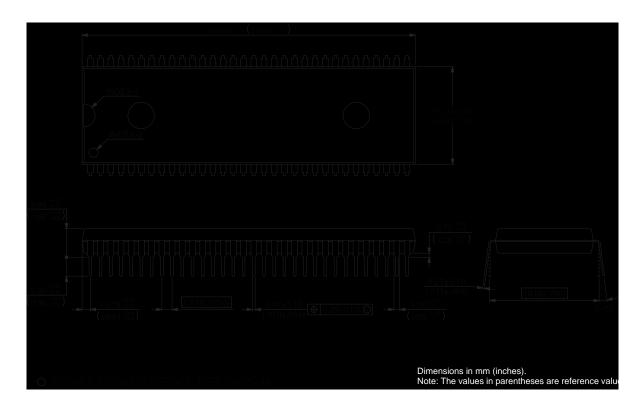



(4) "H" Level Input Voltage/"L" Level Input Voltage (Hysteresis Input)

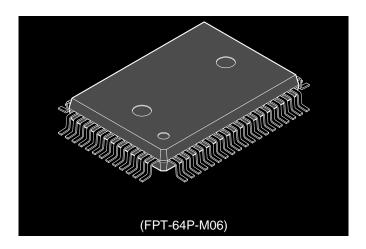


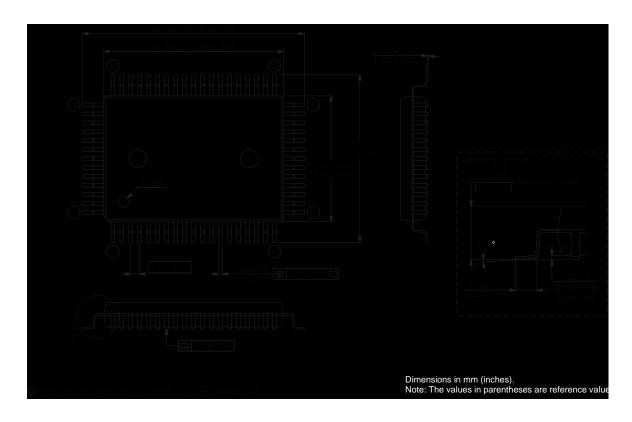
(5) Power Supply Current (External Clock)

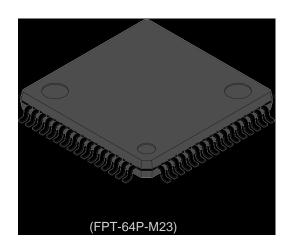


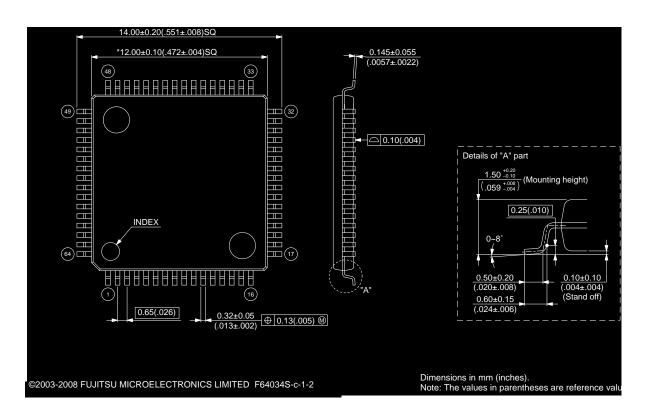

■ MASK OPTIONS

No.	Part number	MB89635R MB89636R MB89637R	MB89P637	MB89PV630	
NO.	Specifying procedure	Specify when ordering masking	Set with EPROM programmer	Setting not possible	
1	Pull-up resistors P00 to P07, P10 to P17, P30 to P37, P40 to P43, P50 to P53, P72 to P74	Selectable by pin	Can be set per pin*	Fixed to "without pull-up resistor"	
2	Power-on reset selection With power-on reset Without power-on reset	Selectable	Setting possible	Fixed to "with power-on reset"	
3	Selection of the main clock oscillation stabilization time (at 10 MHz) 218/FcH (Approx. 26.2 ms) 217/FcH (Approx. 13.1 ms) 214/FcH (Approx. 1.6 ms) 24/FcH (Approx. 1.6 µs) FcH: Main clock frequency	Selectable	Setting possible	Fixed to 2 ¹⁸ /FcH (Approx. 26.2 ms)	
4	Reset pin output Reset output provided No reset output	Selectable	Setting possible	Fixed to "with reset output"	
5	Single/dual-clock system option Single clock Dual clock	Selectable	Setting possible	MB89PV630-101 Single-clock system MB89PV630-102 Dual-clock systems	


^{*:} For P50 to P53, fixed to "Without pull-up resistor."


■ PACKAGE DIMENSIONS




Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/package/en-search/

Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/package/en-search/

Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/package/en-search/

FUJITSU MICROELECTRONICS LIMITED

Shinjuku Dai-Ichi Seimei Bldg., 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0722, Japan

Tel: +81-3-5322-3329 http://jp.fujitsu.com/fml/en/

For further information please contact:

North and South America

FUJITSU MICROELECTRONICS AMERICA, INC. 1250 E. Arques Avenue, M/S 333
Sunnyvale, CA 94085-5401, U.S.A.
Tel: +1-408-737-5600 Fax: +1-408-737-5999
http://www.fma.fujitsu.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://emea.fujitsu.com/microelectronics/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 206 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111 http://kr.fujitsu.com/fmk/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LTD. 151 Lorong Chuan, #05-08 New Tech Park 556741 Singapore Tel: +65-6281-0770 Fax: +65-6281-0220 http://www.fmal.fujitsu.com/

FUJITSU MICROELECTRONICS SHANGHAI CO., LTD. Rm. 3102, Bund Center, No.222 Yan An Road (E), Shanghai 200002, China Tel: +86-21-6146-3688 Fax: +86-21-6335-1605

http://cn.fujitsu.com/fmc/

FUJITSU MICROELECTRONICS PACIFIC ASIA LTD. 10/F., World Commerce Centre, 11 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: +852-2377-0226 Fax: +852-2376-3269

http://cn.fujitsu.com/fmc/en/

Specifications are subject to change without notice. For further information please contact each office.

All Rights Reserved.

The contents of this document are subject to change without notice.

Customers are advised to consult with sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.

FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Edited: Sales Promotion Department