
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 13x16b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	48-QFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mkl25z128vft4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Ordering parts

1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to www.freescale.com and perform a part number search for the following device numbers: PKL25 and MKL25

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

Q KL## A FFF R T PP CC N

2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	 M = Fully qualified, general market flow P = Prequalification
KL##	Kinetis family	• KL25
A	Key attribute	• Z = Cortex-M0+
FFF	Program flash memory size	 32 = 32 KB 64 = 64 KB 128 = 128 KB 256 = 256 KB

Table continues on the next page

3.2 Definition: Operating behavior

An *operating behavior* is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.

3.2.1 Example

This is an example of an operating behavior, which is guaranteed if you meet the accompanying operating requirements:

Symbol	Description	Min.	Max.	Unit
	Digital I/O weak pullup/ pulldown current	10	130	μA

3.3 Definition: Attribute

An *attribute* is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.

3.3.1 Example

This is an example of an attribute:

Symbol	Description	Min.	Max.	Unit
CIN_D	Input capacitance: digital pins	—	7	pF

3.4 Definition: Rating

A *rating* is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:

- Operating ratings apply during operation of the chip.
- *Handling ratings* apply when the chip is not powered.

3.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

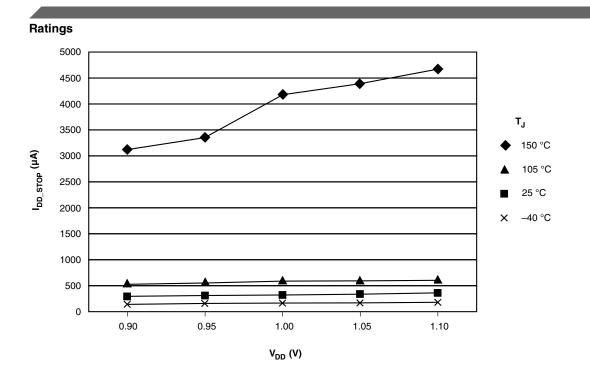
- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

3.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.


3.8.1 Example 1

This is an example of an operating behavior that includes a typical value:

Symbol	Description	Min.	Тур.	Max.	Unit
I _{WP}	Digital I/O weak pullup/pulldown current	10	70	130	μΑ

3.8.2 Example 2

This is an example of a chart that shows typical values for various voltage and temperature conditions:

3.9 Typical Value Conditions

Typical values assume you meet the following conditions (or other conditions as specified):

Symbol	Description	Value	Unit
T _A	Ambient temperature	25	٦°
V _{DD}	3.3 V supply voltage	3.3	V

4 Ratings

4.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free	_	260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	_	3	_	1

1. Determined according to IPC/JEDEC Standard J-STD-020, *Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices*.

4.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-2000	+2000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 105°C	-100	+100	mA	

- 1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.
- 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

4.4 Voltage and current operating ratings


Symbol	Description	Min.	Max.	Unit
V _{DD}	Digital supply voltage	-0.3	3.8	V
I _{DD}	Digital supply current	—	120	mA
V _{DIO}	Digital pin input voltage (except RESET)	-0.3	3.6	V
V _{AIO}	Analog pins ¹ and RESET pin input voltage	-0.3	V _{DD} + 0.3	V
I _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V _{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V
$V_{USB_{DP}}$	USB_DP input voltage	-0.3	3.63	V
$V_{USB_{DM}}$	USB_DM input voltage	-0.3	3.63	V
VREGIN	USB regulator input	-0.3	6.0	V

1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.

5 General

5.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

The midpoint is V_{IL} + $(V_{IH} - V_{IL})/2$.

Figure 1. Input signal measurement reference

All digital I/O switching characteristics, unless otherwise specified, assumes:

- 1. output pins
 - have C_L =30pF loads,
 - are slew rate disabled, and
 - are normal drive strength

5.2 Nonswitching electrical specifications

5.2.1 Voltage and current operating requirements

Table 1. Voltage and current operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	3.6	V	
V _{DDA}	Analog supply voltage	1.71	3.6	V	
V _{DD} – V _{DDA}	V _{DD} -to-V _{DDA} differential voltage	-0.1	0.1	V	
$V_{SS} - V_{SSA}$	V _{SS} -to-V _{SSA} differential voltage	-0.1	0.1	V	
V _{IH}	Input high voltage				
	• $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	$0.7 \times V_{DD}$	—	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	$0.75 \times V_{DD}$	_	V	
V _{IL}	Input low voltage				
	• $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$		$0.35 \times V_{DD}$	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$		$0.3 \times V_{DD}$	V	

Table continues on the next page...

Symbol	Description		•	Tempera	ature (°C	;)		Un
		-40	25	50	70	85	105	
IEREFSTEN32KHz	External 32 kHz crystal clock adder by means of the OSC0_CR[EREFSTEN and EREFSTEN] bits. Measured by							
	entering all modes with the crystal	440	490	540	560	570	580	
	enabled.	440	490	540	560	570	580	
	VLLS1	490	490	540	560	570	680	n.
	VLLS3	510	560	560	560	610	680	
	LLS	510	560	560	560	610	680	
	VLPS							
	STOP							
I _{CMP}	CMP peripheral adder measured by placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption.	22	22	22	22	22	22	μ
I _{RTC}	RTC peripheral adder measured by placing the device in VLLS1 mode with external 32 kHz crystal enabled by means of the RTC_CR[OSCE] bit and the RTC ALARM set for 1 minute. Includes ERCLK32K (32 kHz external crystal) power consumption.	432	357	388	475	532	810	n
I _{UART} L r r I	UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption.	66	66	66	66	66	66	μ
	MCGIRCLK (4MHz internal reference clock)							
	OSCERCLK (4MHz external crystal)	214	237	246	254	260	268	
I _{TPM}	TPM peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source configured for output compare generating 100Hz clock signal. No load is placed on the I/O generating the clock signal. Includes selected clock source and I/O switching currents.							μ
	MCGIRCLK (4MHz internal reference clock)	86	86	86	86	86	86	
	OSCERCLK (4MHz external crystal)	235	256	265	274	280	287	
I _{BG}	Bandgap adder when BGEN bit is set and device is placed in VLPx, LLS, or VLLSx mode.	45	45	45	45	45	45	μ

Table 6. Low power mode peripheral adders — typical value (continued)

Table continues on the next page...

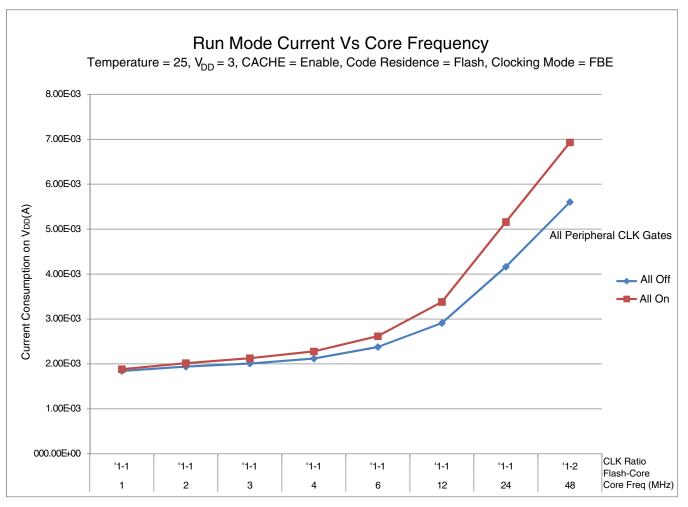


Figure 2. Run mode supply current vs. core frequency

5.4.2 Thermal attributes

Board type	Symbol	Description	80 LQFP	64 LQFP	48 QFN	32 QFN	Unit	Notes
Single-layer (1S)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	70	71	84	92	°C/W	1
Four-layer (2s2p)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	53	52	28	33	°C/W	
Single-layer (1S)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	_	59	69	75	°C/W	
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	_	46	22	27	°C/W	
_	R _{θJB}	Thermal resistance, junction to board	34	34	10	12	°C/W	2
_	R _{θJC}	Thermal resistance, junction to case	15	20	2.0	1.8	°C/W	3
	Ψ_{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	0.6	5	5.0	8	°C/W	4

Table 10. Thermal attributes

- 1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions —Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air).
- 2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions —Junction-to-Board.
- 3. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
- 4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions —Natural Convection (Still Air).

6 Peripheral operating requirements and behaviors

6.1 Core modules

6.1.1 SWD Electricals

Table 11. SWD full voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V

Table continues on the next page...

6.2 System modules

There are no specifications necessary for the device's system modules.

6.3 Clock modules

6.3.1 MCG specifications

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
f _{ints_ft}		frequency (slow clock) — nominal V _{DD} and 25 °C	—	32.768	—	kHz	
f _{ints_t}	Internal reference trimmed	frequency (slow clock) — user	31.25	_	39.0625	kHz	
$\Delta_{fdco_res_t}$		ned average DCO output voltage and temperature — d SCFTRIM	_	± 0.3	± 0.6	%f _{dco}	1
Δf_{dco_t}		rimmed average DCO output tage and temperature		+0.5/-0.7	± 3	%f _{dco}	1, 2
Δf_{dco_t}		rimmed average DCO output ed voltage and temperature	_	± 0.4	± 1.5	%f _{dco}	1, 2
f _{intf_ft}		nternal reference frequency (fast clock) — actory trimmed at nominal V _{DD} and 25 °C		4	—	MHz	
$\Delta f_{intf_{ft}}$	Frequency deviation of internal reference clock (fast clock) over temperature and voltage factory trimmed at nominal V _{DD} and 25 °C		_	+1/-2	± 3	%f _{intf_ft}	2
f _{intf_t}	Internal reference trimmed at nomina	frequency (fast clock) — user Il V _{DD} and 25 °C	3	—	5	MHz	
f _{loc_low}	Loss of external cl RANGE = 00	ock minimum frequency —	(3/5) x f _{ints_t}	—	—	kHz	
f _{loc_high}	Loss of external cl RANGE = 01, 10,	ock minimum frequency — or 11	(16/5) x f _{ints_t}	_	—	kHz	
		FI	L				
f _{fll_ref}	FLL reference freq	uency range	31.25	—	39.0625	kHz	
f _{dco}	DCO output frequency range	Low range (DRS = 00) 640 × f _{fll_ref}	20	20.97	25	MHz	3, 4
		Mid range (DRS = 01) 1280 × f _{fll_ref}	40	41.94	48	MHz	

Table 12. MCG specifications

Table continues on the next page...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
R _S	Series resistor — low-frequency, low-power mode (HGO=0)	—	_	_	kΩ	
	Series resistor — low-frequency, high-gain mode (HGO=1)	—	200	_	kΩ	
	Series resistor — high-frequency, low-power mode (HGO=0)	—			kΩ	
	Series resistor — high-frequency, high-gain mode (HGO=1)					
		—	0	_	kΩ	
V _{pp} ⁵	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0)	_	0.6	_	kΩ V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)		V _{DD}	_	V	

Table 13. Oscillator DC electrical specifications (continued)

- 1. V_{DD} =3.3 V, Temperature =25 °C
- 2. See crystal or resonator manufacturer's recommendation
- 3. C_x,C_y can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For all other cases external capacitors must be used.
- 4. When low power mode is selected, R_F is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

6.3.2.2 Oscillator frequency specifications Table 14. Oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low frequency mode (MCG_C2[RANGE]=00)	32	_	40	kHz	
f _{osc_hi_1}	Oscillator crystal or resonator frequency — high frequency mode (low range) (MCG_C2[RANGE]=01)	3	_	8	MHz	
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	8	_	32	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)	—	—	48	MHz	1, 2
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	

Table continues on the next page...

Peripheral operating requirements and behaviors

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
C _{rate}	ADC conversion rate	16-bit mode					6
		No ADC hardware averaging	37.037	—	461.467	Ksps	
		Continuous conversions enabled, subsequent conversion time					

 Table 19.
 16-bit ADC operating conditions (continued)

- 1. Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- 2. DC potential difference.
- 3. For packages without dedicated VREFH and VREFL pins, V_{REFH} is internally tied to V_{DDA} , and V_{REFL} is internally tied to V_{SSA} .
- 4. This resistance is external to MCU. The analog source resistance must be kept as low as possible to achieve the best results. The results in this data sheet were derived from a system which has < 8 Ω analog source resistance. The R_{AS}/C_{AS} time constant should be kept to < 1ns.</p>
- 5. To use the maximum ADC conversion clock frequency, the ADHSC bit must be set and the ADLPC bit must be clear.
- 6. For guidelines and examples of conversion rate calculation, download the ADC calculator tool



Figure 6. ADC input impedance equivalency diagram

6.6.1.2 16-bit ADC electrical characteristics Table 20. 16-bit ADC characteristics (V_{REFH} = V_{DDA}, V_{REFL} = V_{SSA})

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
I _{DDA_ADC}	Supply current		0.215	_	1.7	mA	3

Table continues on the next page ...

Peripheral operating requirements and behaviors

Table 21.	Comparator and	6-bit DAC electrical s	pecifications	(continued)
-----------	----------------	------------------------	---------------	-------------

Symbol	Description	Min.	Тур.	Max.	Unit
	Analog comparator initialization delay ²	—	—	40	μs
I _{DAC6b}	6-bit DAC current adder (enabled)	—	7	—	μA
INL	6-bit DAC integral non-linearity	-0.5	—	0.5	LSB ³
DNL	6-bit DAC differential non-linearity	-0.3	—	0.3	LSB

1. Typical hysteresis is measured with input voltage range limited to 0.7 to V_{DD} – 0.7 V.

- 2. Comparator initialization delay is defined as the time between software writes to change control inputs (writes to DACEN,
- VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.
- 3. 1 LSB = V_{reference}/64

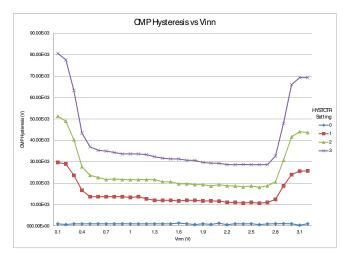


Figure 9. Typical hysteresis vs. Vin level (V_{DD} = 3.3 V, PMODE = 0)

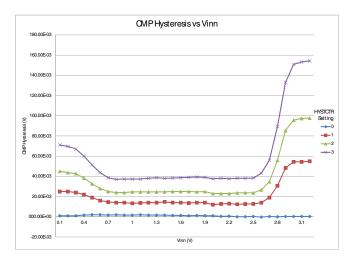


Figure 10. Typical hysteresis vs. Vin level (V_{DD} = 3.3 V, PMODE = 1)

6.6.3 12-bit DAC electrical characteristics

6.6.3.1 12-bit DAC operating requirements Table 22. 12-bit DAC operating requirements

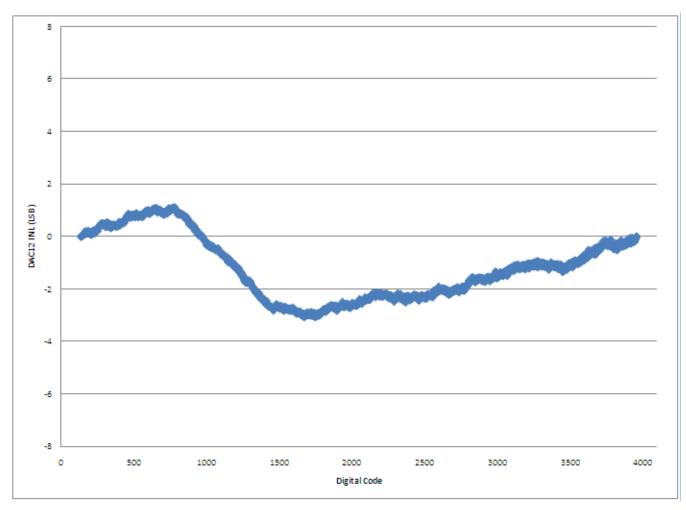
Symbol	Desciption	Min. Max.		Unit	Notes
V _{DDA}	Supply voltage	1.71 3.6		V	
V _{DACR}	Reference voltage	1.13 3.6		V	1
T _A	Temperature		emperature he device	°C	
CL	Output load capacitance	— 100		pF	2
١L	Output load current	—	1	mA	

1. The DAC reference can be selected to be V_{DDA} or the voltage output of the VREF module (VREF_OUT)

2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC

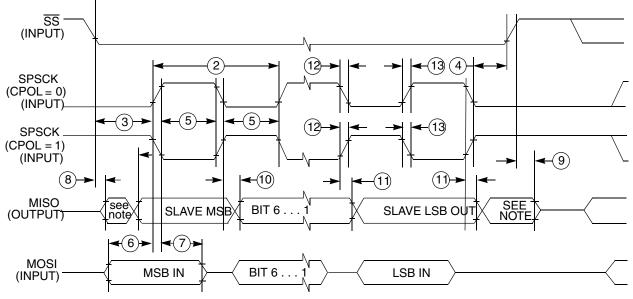
6.6.3.2 12-bit DAC operating behaviors Table 23. 12-bit DAC operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA_DACL} P	Supply current — low-power mode	—	—	250	μΑ	
I _{DDA_DACH} P	Supply current — high-speed mode	_	-	900	μA	
t _{DACLP}	Full-scale settling time (0x080 to 0xF7F) — low-power mode		100	200	μs	1
t _{DACHP}	Full-scale settling time (0x080 to 0xF7F) — high-power mode	_	15	30	μs	1
t _{CCDACLP}	Code-to-code settling time (0xBF8 to 0xC08) — low-power mode and high-speed mode	_	0.7	1	μs	1
V _{dacoutl}	DAC output voltage range low — high-speed mode, no load, DAC set to 0x000	_	—	100	mV	
V _{dacouth}	DAC output voltage range high — high- speed mode, no load, DAC set to 0xFFF	V _{DACR} -100	—	V _{DACR}	mV	
INL	Integral non-linearity error — high speed mode	_	—	±8	LSB	2
DNL	Differential non-linearity error — V _{DACR} > 2 V	_	—	±1	LSB	3
DNL	Differential non-linearity error — V _{DACR} = VREF_OUT	_	—	±1	LSB	4
VOFFSET	Offset error	_	±0.4	±0.8	%FSR	5
E _G	Gain error	_	±0.1	±0.6	%FSR	5
PSRR	Power supply rejection ratio, $V_{DDA} \ge 2.4 \text{ V}$	60	-	90	dB	
T _{CO}	Temperature coefficient offset voltage	—	3.7	—	μV/C	6
T _{GE}	Temperature coefficient gain error	—	0.000421	—	%FSR/C	
Rop	Output resistance load = $3 \text{ k}\Omega$	—	—	250	Ω	

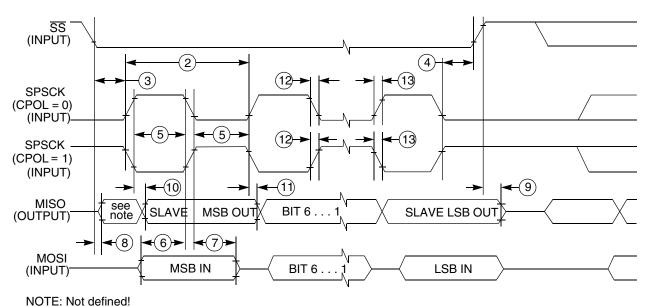

Table continues on the next page ...

Peripheral operating requirements and behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
SR	Slew rate -80h→ F7Fh→ 80h				V/µs	
	 High power (SP_{HP}) 	1.2	1.7	—		
	 Low power (SP_{LP}) 	0.05	0.12	—		
BW	3dB bandwidth				kHz	
	 High power (SP_{HP}) 	550	—	—		
	• Low power (SP _{LP})	40	—	_		


Table 23. 12-bit DAC operating behaviors (continued)

- 1. Settling within ±1 LSB
- 2. The INL is measured for 0 + 100 mV to V_{DACR} –100 mV
- 3. The DNL is measured for 0 + 100 mV to V_{DACR} –100 mV
- 4. The DNL is measured for 0 + 100 mV to V_{DACR} –100 mV with V_{DDA} > 2.4 V
- 5. Calculated by a best fit curve from V_{SS} + 100 mV to V_{DACR} 100 mV 6. V_{DDA} = 3.0 V, reference select set for V_{DDA} (DACx_CO:DACRFS = 1), high power mode (DACx_CO:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device


Figure 11. Typical INL error vs. digital code

Peripheral operating requirements and behaviors

NOTE: Not defined!

6.8.4 I²C

See General switching specifications.

6.8.5 UART

See General switching specifications.

Pinout

80 LQFP	64 LQFP	48 QFN	32 QFN	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
32	28	_	_	PTA12	DISABLED		PTA12		TPM1_CH0				
33	29	-	_	PTA13	DISABLED		PTA13		TPM1_CH1				
34	_	_	_	PTA14	DISABLED		PTA14	SPI0_PCS0	UART0_TX				
35	_	-	_	PTA15	DISABLED		PTA15	SPI0_SCK	UART0_RX				
36	_	_	_	PTA16	DISABLED		PTA16	SPI0_MOSI			SPI0_MISO		
37	_	_	_	PTA17	DISABLED		PTA17	SPI0_MISO			SPI0_MOSI		
38	30	22	15	VDD	VDD	VDD							
39	31	23	16	VSS	VSS	VSS							
40	32	24	17	PTA18	EXTALO	EXTAL0	PTA18		UART1_RX	TPM_CLKIN0			
41	33	25	18	PTA19	XTALO	XTAL0	PTA19		UART1_TX	TPM_CLKIN1		LPTMR0_ ALT1	
42	34	26	19	RESET_b	RESET_b		PTA20						
43	35	27	20	PTB0/ LLWU_P5	ADC0_SE8/ TSI0_CH0	ADC0_SE8/ TSI0_CH0	PTB0/ LLWU_P5	I2C0_SCL	TPM1_CH0				
44	36	28	21	PTB1	ADC0_SE9/ TSI0_CH6	ADC0_SE9/ TSI0_CH6	PTB1	I2C0_SDA	TPM1_CH1				
45	37	29	—	PTB2	ADC0_SE12/ TSI0_CH7	ADC0_SE12/ TSI0_CH7	PTB2	I2C0_SCL	TPM2_CH0				
46	38	30	_	PTB3	ADC0_SE13/ TSI0_CH8	ADC0_SE13/ TSI0_CH8	PTB3	I2C0_SDA	TPM2_CH1				
47	_	_	_	PTB8	DISABLED		PTB8		EXTRG_IN				
48	-	-	_	PTB9	DISABLED		PTB9						
49	-	-	_	PTB10	DISABLED		PTB10	SPI1_PCS0					
50	_	_	_	PTB11	DISABLED		PTB11	SPI1_SCK					
51	39	31	_	PTB16	TSI0_CH9	TSI0_CH9	PTB16	SPI1_MOSI	UART0_RX	TPM_CLKIN0	SPI1_MISO		
52	40	32	_	PTB17	TSI0_CH10	TSI0_CH10	PTB17	SPI1_MISO	UART0_TX	TPM_CLKIN1	SPI1_MOSI		
53	41	-	_	PTB18	TSI0_CH11	TSI0_CH11	PTB18		TPM2_CH0				
54	42	-	_	PTB19	TSI0_CH12	TSI0_CH12	PTB19		TPM2_CH1				
55	43	33	_	PTC0	ADC0_SE14/ TSI0_CH13	ADC0_SE14/ TSI0_CH13	PTC0		EXTRG_IN		CMP0_OUT		
56	44	34	22	PTC1/ LLWU_P6/ RTC_CLKIN	ADC0_SE15/ TSI0_CH14	ADC0_SE15/ TSI0_CH14	PTC1/ LLWU_P6/ RTC_CLKIN	I2C1_SCL		TPM0_CH0			
57	45	35	23	PTC2	ADC0_SE11/ TSI0_CH15	ADC0_SE11/ TSI0_CH15	PTC2	I2C1_SDA		TPM0_CH1			
58	46	36	24	PTC3/ LLWU_P7	DISABLED		PTC3/ LLWU_P7		UART1_RX	TPM0_CH2	CLKOUT		
59	47	-	-	VSS	VSS	VSS							
60	48	-	-	VDD	VDD	VDD							
61	49	37	25	PTC4/ LLWU_P8	DISABLED		PTC4/ LLWU_P8	SPI0_PCS0	UART1_TX	TPM0_CH3			
62	50	38	26	PTC5/ LLWU_P9	DISABLED		PTC5/ LLWU_P9	SPI0_SCK	LPTMR0_ ALT2			CMP0_OUT	
63	51	39	27	PTC6/ LLWU_P10	CMP0_IN0	CMP0_IN0	PTC6/ LLWU_P10	SPI0_MOSI	EXTRG_IN		SPI0_MISO		

80 LQFP	64 LQFP	48 QFN	32 QFN	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
64	52	40	28	PTC7	CMP0_IN1	CMP0_IN1	PTC7	SPI0_MISO			SPI0_MOSI		
65	53	-	_	PTC8	CMP0_IN2	CMP0_IN2	PTC8	I2C0_SCL	TPM0_CH4				
66	54	-	_	PTC9	CMP0_IN3	CMP0_IN3	PTC9	I2C0_SDA	TPM0_CH5				
67	55	-	_	PTC10	DISABLED		PTC10	I2C1_SCL					
68	56	_	_	PTC11	DISABLED		PTC11	I2C1_SDA					
69	_	-	_	PTC12	DISABLED		PTC12			TPM_CLKIN0			
70	_	-	_	PTC13	DISABLED		PTC13			TPM_CLKIN1			
71	-	_	_	PTC16	DISABLED		PTC16						
72	_	-	_	PTC17	DISABLED		PTC17						
73	57	41	_	PTD0	DISABLED		PTD0	SPI0_PCS0		TPM0_CH0			
74	58	42	_	PTD1	ADC0_SE5b	ADC0_SE5b	PTD1	SPI0_SCK		TPM0_CH1			
75	59	43	_	PTD2	DISABLED		PTD2	SPI0_MOSI	UART2_RX	TPM0_CH2	SPI0_MISO		
76	60	44	_	PTD3	DISABLED		PTD3	SPI0_MISO	UART2_TX	TPM0_CH3	SPI0_MOSI		
77	61	45	29	PTD4/ LLWU_P14	DISABLED		PTD4/ LLWU_P14	SPI1_PCS0	UART2_RX	TPM0_CH4			
78	62	46	30	PTD5	ADC0_SE6b	ADC0_SE6b	PTD5	SPI1_SCK	UART2_TX	TPM0_CH5			
79	63	47	31	PTD6/ LLWU_P15	ADC0_SE7b	ADC0_SE7b	PTD6/ LLWU_P15	SPI1_MOSI	UART0_RX		SPI1_MISO		
80	64	48	32	PTD7	DISABLED		PTD7	SPI1_MISO	UART0_TX		SPI1_MOSI		

8.2 KL25 Pinouts

Pinout

The below figures show the pinout diagrams for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section.

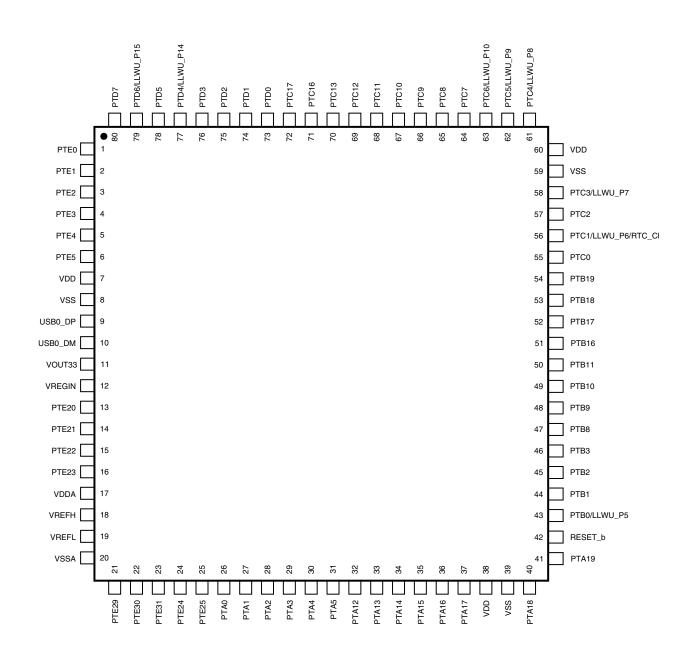


Figure 17. KL25 80-pin LQFP pinout diagram

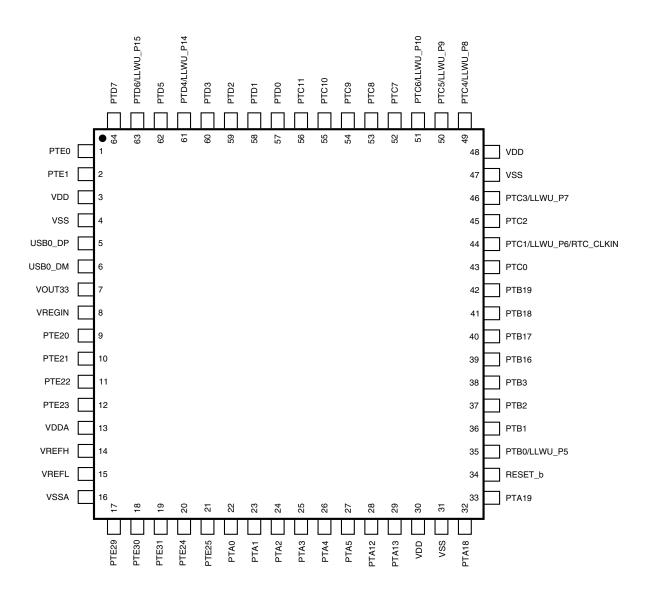


Figure 18. KL25 64-pin LQFP pinout diagram